Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolutionary genetics and acclimatization in nephrology

Abstract

Evolutionary processes, including mutation, migration and natural selection, have influenced the prevalence and distribution of various disorders in humans. However, despite a few well-known examples, such as the APOL1 variants — which have undergone positive genetic selection for their ability to confer resistance to Trypanosoma brucei infection but confer a higher risk of chronic kidney disease — little is known about the effects of evolutionary processes that have shaped genetic variation on kidney disease. An understanding of basic concepts in evolutionary genetics provides an opportunity to consider how findings from ancient and archaic genomes could inform our knowledge of evolution and provide insights into how population migration and genetic admixture have shaped the current distribution and landscape of human kidney-associated diseases. Differences in exposures to infectious agents, environmental toxins, dietary components and climate also have the potential to influence the evolutionary genetics of kidneys. Of note, selective pressure on loci associated with kidney disease is often from non-kidney diseases, and thus it is important to understand how the link between genome-wide selected loci and kidney disease occurs in relation to secondary nephropathies.

Key points

  • Kidney diseases that have an age of onset after the reproductive age (that is, most forms of chronic kidney disease) are unlikely to act as agents of natural selection for the elimination of disease-causing alleles because those alleles are successfully transmitted to successive generations.

  • Several loci under natural selection owing to the protection they provide against infectious agents (for example, Trypanosoma brucei and Plasmodium falciparum) have an effect on the risk of kidney disease (APOL1-associated chronic kidney disease and sickle cell nephropathy, respectively).

  • Loci that are under natural selection and that increase the risk of disorders that damage the kidney (such as diabetes mellitus and hypertension) may contribute to the risk of secondary nephropathies.

  • Only a handful of genetic loci identified by genome-wide association studies as being associated with complex kidney diseases show evidence of natural selection in primates; however, many more of these loci show evidence of natural selection in human populations, suggesting that most selective events at kidney-associated loci occurred relatively recently in the evolution of the human species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolutionary forces and processes.
Fig. 2: Relationships between anatomically modern humans, Neanderthals and Denisovans.
Fig. 3: Archaic humans and anatomically modern humans.
Fig. 4: Examples of loci under selection that can influence phenotypes in which kidney disease is a feature or complication.

Similar content being viewed by others

References

  1. Boyd, R. & Silk, J. B. How Humans Evolved (WW Norton & Company, 2014).

  2. Cohen, J. J. Relationship between energy requirements for Na+ reabsorption and other renal functions. Kidney Int. 29, 32–40 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. Chevalier, R. L. Evolutionary nephrology. Kidney Int. Rep. 2, 302–317 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Smith, H. W. From Fish to Philosopher: the Story of our Internal Environment (Little, Brown, and Co., 1953).

  5. Brenner, B. M., Meyer, T. W. & Hostetter, T. H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 307, 652–659 (1982).

    Article  PubMed  CAS  Google Scholar 

  6. Wood-Bradley, R. J., Barrand, S., Giot, A. & Armitage, J. A. Understanding the role of maternal diet on kidney development; an opportunity to improve cardiovascular and renal health for future generations. Nutrients 7, 1881–1905 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gurusinghe, S., Tambay, A. & Sethna, C. B. Developmental origins and nephron endowment in hypertension. Front. Pediatr. 5, 151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D. & Hoy, W. E. Human nephron number: implications for health and disease. Pediatr. Nephrol. 26, 1529–1533 (2011).

    Article  PubMed  Google Scholar 

  9. Hoy, W. E. et al. Distribution of volumes of individual glomeruli in kidneys at autopsy: association with age, nephron number, birth weight and body mass index. Clin. Nephrol. 74, S105–S112 (2010).

    PubMed  Google Scholar 

  10. Luyckx, V. A. et al. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382, 273–283 (2013).

    Article  PubMed  Google Scholar 

  11. Luyckx, V. A. & Brenner, B. M. Birth weight, malnutrition and kidney-associated outcomes — a global concern. Nat. Rev. Nephrol. 11, 135 (2015).

    Article  PubMed  Google Scholar 

  12. Woodman, A. G. & Bourque, S. L. Developmental programming of renal function: nephron endowment and beyond. J. Physiol. 596, 5495–5496 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Giussani, D. A. The fetal brain sparing response to hypoxia: physiological mechanisms. J. Physiol. 594, 1215–1230 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sohail, M. et al. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. eLife 8, e39702 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berg, J. J. et al. Reduced signal for polygenic adaptation of height in UK Biobank. eLife 8, e39725 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ben-Dor, M., Gopher, A. & Barkai, R. Neandertals’ large lower thorax may represent adaptation to high protein diet. Am. J. Phys. Anthropol. 160, 367–378 (2016).

    Article  PubMed  Google Scholar 

  17. Zanolli, C., Hourset, M., Esclassan, R. & Mollereau, C. Neanderthal and Denisova tooth protein variants in present-day humans. PLoS ONE 12, e0183802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gao, B. et al. A polymorphism of matrix Gla protein gene is associated with kidney stones. J. Urol. 177, 2361–2365 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. Lu, X. et al. A polymorphism of matrix Gla protein gene is associated with kidney stone in the Chinese Han population. Gene 511, 127–130 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. Chen, L., Wolf, A. B., Fu, W., Li, L. & Akey, J. M. Identifying and Interpreting Apparent Neanderthal Ancestry in African Individuals. Cell 180, 677–687.e16 (2020).

    Article  PubMed  CAS  Google Scholar 

  21. Luo, Y. Neanderthal DNA highlights complexity of COVID risk factors. Nature 587, 552–553 (2020).

    Article  PubMed  CAS  Google Scholar 

  22. Quach, H. et al. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell 167, 643–656.e17 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. McCoy, R. C., Wakefield, J. & Akey, J. M. Impacts of neanderthal-introgressed sequences on the landscape of human gene expression. Cell 168, 916–927.e12 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dannemann, M. & Kelso, J. The contribution of Neanderthals to phenotypic variation in modern humans. Am. J. Hum. Genet. 101, 578–589 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dannemann, M., Prufer, K. & Kelso, J. Functional implications of Neandertal introgression in modern humans. Genome Biol. 18, 61 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Consortium, S. T. D. et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506, 97–101 (2014).

    Article  Google Scholar 

  27. Bokor, S. et al. Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J. Lipid Res. 51, 2325–2333 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Glaser, C., Lattka, E., Rzehak, P., Steer, C. & Koletzko, B. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health. Matern. Child Nutr. 7, 27–40 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fumagalli, M. et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science 349, 1343–1347 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Ameur, A. et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am. J. Hum. Genet. 90, 809–820 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Buckley, M. T. et al. Selection in Europeans on fatty acid desaturases associated with dietary changes. Mol. Biol. Evol. 34, 1307–1318 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kothapalli, K. S. et al. Positive selection on a regulatory insertion-deletion polymorphism in FADS2 influences apparent endogenous synthesis of arachidonic acid. Mol. Biol. Evol. 33, 1726–1739 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mathias, R. A. et al. Adaptive evolution of the FADS gene cluster within Africa. PLoS ONE 7, e44926 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 40, 1175–1184 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kao, W. H. L. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. 40, 1185–1192 (2008).

    Article  PubMed  CAS  Google Scholar 

  37. Pollak, M. R., Genovese, G. & Friedman, D. J. APOL1 and kidney disease. Curr. Opin. Nephrol. Hypertens. 21, 179–182 (2012).

    Article  PubMed  CAS  Google Scholar 

  38. Freedman, B. I. et al. The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J. Am. Soc. Nephrol. 21, 1422–1426 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kopp, J. B. et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22, 2129–2137 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Limou, S., Nelson, G. W., Kopp, J. B. & Winkler, C. A. APOL1 kidney risk alleles: population genetics and disease associations. Adv. Chronic Kidney Dis. 21, 426–433 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nadkarni, G. N. et al. Worldwide frequencies of APOL1 renal risk variants. N. Engl. J. Med. 379, 2571–2572 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cooper, A. et al. APOL1 renal risk variants have contrasting resistance and susceptibility associations with African trypanosomiasis. eLife 6, e25461 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Samanovic, M., Molina-Portela, M. P., Chessler, A. D., Burleigh, B. A. & Raper, J. Trypanosome lytic factor, an antimicrobial high-density lipoprotein, ameliorates Leishmania infection. PLoS Pathog. 5, e1000276 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Page, N. M., Butlin, D. J., Lomthaisong, K. & Lowry, P. J. The human apolipoprotein L gene cluster: identification, classification, and sites of distribution. Genomics 74, 71–78 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. Monajemi, H., Fontijn, R. D., Pannekoek, H. & Horrevoets, A. J. G. The apolipoprotein L gene cluster has emerged recently in evolution and is expressed in human vascular tissue. Genomics 79, 539–546 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. Duchateau, P. N. et al. Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas: identification, cloning, characterization, and plasma distribution of apolipoprotein L. J. Biol. Chem. 272, 25576–25582 (1997).

    Article  PubMed  CAS  Google Scholar 

  48. Davidson, W. S. et al. Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function. Arterioscler. Thromb. Vasc. Biol. 29, 870–876 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wan, G. et al. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J. Biol. Chem. 283, 21540–21549 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Beckerman, P. et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat. Med. 23, 429–438 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Corre, S. & Galibert, M.-D. Upstream stimulating factors: highly versatile stress-responsive transcription factors. Pigment Cell Res. 18, 337–348 (2005).

    Article  PubMed  CAS  Google Scholar 

  53. Rada-Iglesias, A. et al. Whole-genome maps of USF1 and USF2 binding and histone H3 acetylation reveal new aspects of promoter structure and candidate genes for common human disorders. Genome Res. 18, 380–392 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. van Deursen, D., Jansen, H. & Verhoeven, A. J. Glucose increases hepatic lipase expression in HepG2 liver cells through upregulation of upstream stimulatory factors 1 and 2. Diabetologia 51, 2078–2087 (2008).

    Article  PubMed  CAS  Google Scholar 

  55. Jansen, H., Verhoeven, A. J. M. & Sijbrands, E. J. G. Hepatic lipase: a pro- or anti-atherogenic protein? J. Lipid Res. 43, 1352–1362 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. Deeb, S. S., Zambon, A., Carr, M. C., Ayyobi, A. F. & Brunzell, J. D. Hepatic lipase and dyslipidemia: interactions among genetic variants, obesity, gender, and diet. J. Lipid Res. 44, 1279–1286 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. Syvänne, M. et al. High density lipoprotein subfractions in non-insulin-dependent diabetes mellitus and coronary artery disease. J. Lipid Res. 36, 573–582 (1995).

    Article  PubMed  Google Scholar 

  58. Krauss, R. M. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 27, 1496–1504 (2004).

    Article  PubMed  CAS  Google Scholar 

  59. Consortium, T. E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  60. Braun, D. A. & Hildebrandt, F. Ciliopathies. Cold Spring Harb. Perspect. Biol. 9, a028191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. van der Ven, A. T. et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 2348–2361 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Varner, J. D. et al. Genetic testing for steroid-resistant-nephrotic syndrome in an outbred population. Front. Pediatr. 6, 307 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Warejko, J. K. et al. Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 13, 53–62 (2018).

    Article  PubMed  CAS  Google Scholar 

  65. Groopman, E. E., Rasouly, H. M. & Gharavi, A. G. Genomic medicine for kidney disease. Nat. Rev. Nephrol. 14, 83–104 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Groopman, E. E., Povysil, G., Goldstein, D. B. & Gharavi, A. G. Rare genetic causes of complex kidney and urological diseases. Nat. Rev. Nephrol. 16, 641–656 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Qiu, C. et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. European Molecular Biology Laboratory. Chronic kidney disease. EMBL-EBI http://www.ebi.ac.uk/efo/EFO_0003884 (2021).

  70. van der Lee, R., Wiel, L., van Dam, T. J. P. & Huynen, M. A. Genome-scale detection of positive selection in nine primates predicts human-virus evolutionary conflicts. Nucleic Acids Res. 45, 10634–10648 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Murga-Moreno, J., Coronado-Zamora, M., Bodelon, A., Barbadilla, A. & Casillas, S. PopHumanScan: the online catalog of human genome adaptation. Nucleic Acids Res. 47, D1080–D1089 (2019).

    Article  PubMed  CAS  Google Scholar 

  72. Moorjani, P., Amorim, C. E., Arndt, P. F. & Przeworski, M. Variation in the molecular clock of primates. Proc. Natl Acad. Sci. USA 113, 10607–10612 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Weiss, R. H. G protein-coupled receptor signalling in the kidney. Cell Signal. 10, 313–320 (1998).

    Article  PubMed  CAS  Google Scholar 

  74. Kamal, F. A., Travers, J. G. & Blaxall, B. C. G protein-coupled receptor kinases in cardiovascular disease: why “where” matters. Trends Cardiovasc. Med. 22, 213–219 (2012).

    Article  PubMed  CAS  Google Scholar 

  75. Brauner-Osborne, H., Wellendorph, P. & Jensen, A. A. Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr. Drug Targets 8, 169–184 (2007).

    Article  PubMed  Google Scholar 

  76. Dobon, B., Rossell, C., Walsh, S. & Bertranpetit, J. Is there adaptation in the human genome for taste perception and phase I biotransformation? BMC Evol. Biol. 19, 39 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Beckerman, P. et al. Human kidney tubule-specific gene expression based dissection of chronic kidney disease traits. EBioMedicine 24, 267–276 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nédélec, Y. et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657–669.e21 (2016).

    Article  PubMed  Google Scholar 

  79. Robson, K. J., Ooi, J. D., Holdsworth, S. R., Rossjohn, J. & Kitching, A. R. HLA and kidney disease: from associations to mechanisms. Nat. Rev. Nephrol. 14, 636–655 (2018).

    Article  PubMed  CAS  Google Scholar 

  80. Hetherington, S. et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359, 1121–1122 (2002).

    Article  PubMed  CAS  Google Scholar 

  81. Mallal, S. et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359, 727–732 (2002).

    Article  PubMed  CAS  Google Scholar 

  82. Barreiro, L. B. & Quintana-Murci, L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat. Rev. Genet. 11, 17–30 (2010).

    Article  PubMed  CAS  Google Scholar 

  83. Dannemann, M., Andres, A. M. & Kelso, J. Introgression of neandertal- and denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am. J. Hum. Genet. 98, 22–33 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Deschamps, M. et al. Genomic signatures of selective pressures and introgression from archaic hominins at human innate immunity genes. Am. J. Hum. Genet. 98, 5–21 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Herberg, J., Pahari, A., Walters, S. & Levin, M. in Pediatric Nephrology: Sixth Completely Revised, Updated and Enlarged Edition Ch. 52 (eds Avner, E. D., Harmon, W. E., Niaudet, P. & Yoshikawa, N.) 1235–1273 (Springer, 2009).

  86. Pei, G. et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J. Am. Soc. Nephrol. 31, 1157–1165 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Cheng, Y. et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 97, 829–838 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Puelles, V. G. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383, 590–592 (2020).

    Article  PubMed  Google Scholar 

  89. Kissling, S. et al. Collapsing glomerulopathy in a COVID-19 patient. Kidney Int. 98, 228–231 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Su, H. et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 98, 219–227 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Gabarre, P. et al. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 46, 1339–1348 (2020).

    Article  PubMed  CAS  Google Scholar 

  92. Shriner, D. & Rotimi, C. N. Whole-genome-sequence-based haplotypes reveal single origin of the sickle allele during the holocene wet phase. Am. J. Hum. Genet. 102, 547–556 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Piel, F. B. et al. Global migration and the changing distribution of sickle haemoglobin: a quantitative study of temporal trends between 1960 and 2000. Lancet Glob. Health 2, e80–e89 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Saborio, P. & Scheinman, J. I. Sickle cell nephropathy. J. Am. Soc. Nephrol. 10, 187–192 (1999).

    Article  PubMed  CAS  Google Scholar 

  95. Kramer, H. J. et al. African ancestry-specific alleles and kidney disease risk in hispanics/latinos. J. Am. Soc. Nephrol. 28, 915–922 (2017).

    Article  PubMed  CAS  Google Scholar 

  96. Hellwege, J. N. et al. Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program. Nat. Commun. 10, 3842 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kay, M. A. & Walker, B. D. Engineering cellular resistance to HIV. N. Engl. J. Med. 370, 968–969 (2014).

    Article  PubMed  CAS  Google Scholar 

  98. Martinson, J. J., Chapman, N. H., Rees, D. C., Liu, Y. T. & Clegg, J. B. Global distribution of the CCR5 gene 32-basepair deletion. Nat. Genet. 16, 100–103 (1997).

    Article  PubMed  CAS  Google Scholar 

  99. Stephens, J. C. et al. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet. 62, 1507–1515 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Duncan, S. R., Scott, S. & Duncan, C. J. Reappraisal of the historical selective pressures for the CCR5-Delta32 mutation. J. Med. Genet. 42, 205–208 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Drancourt, M., Aboudharam, G., Signoli, M., Dutour, O. & Raoult, D. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc. Natl Acad. Sci. USA 95, 12637–12640 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Zajac, V. Evolutionary view of the AIDS process. J. Int. Med. Res. 46, 4032–4038 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Baker, J. L., Shriner, D., Bentley, A. R. & Rotimi, C. N. Pharmacogenomic implications of the evolutionary history of infectious diseases in Africa. Pharmacogenomics J. 17, 112–120 (2017).

    Article  PubMed  CAS  Google Scholar 

  104. Mohamed, F. et al. Mechanism-specific injury biomarkers predict nephrotoxicity early following glyphosate surfactant herbicide (GPSH) poisoning. Toxicol. Lett. 258, 1–10 (2016).

    Article  PubMed  CAS  Google Scholar 

  105. Jayasumana, C. et al. Drinking well water and occupational exposure to herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environ. Health 14, 6–6 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Li, M.-H. et al. Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure. Aquat. Toxicol. 188, 159–169 (2017).

    Article  PubMed  CAS  Google Scholar 

  107. Wunnapuk, K. et al. Use of a glyphosate-based herbicide-induced nephrotoxicity model to investigate a panel of kidney injury biomarkers. Toxicol. Lett. 225, 192–200 (2014).

    Article  PubMed  CAS  Google Scholar 

  108. Weidemann, D. K., Weaver, V. M. & Fadrowski, J. J. Toxic environmental exposures and kidney health in children. Pediatr. Nephrol. 31, 2043–2054 (2016).

    Article  PubMed  Google Scholar 

  109. Prasad, G. V. R. & Rossi, N. F. Arsenic intoxication associated with tubulointerstitial nephritis. Am. J. Kidney Dis. 26, 373–376 (1995).

    Article  PubMed  CAS  Google Scholar 

  110. Saxena, P. N., Anand, S., Saxena, N. & Bajaj, P. Effect of arsenic trioxide on renal functions and its modulation by Curcuma aromatica leaf extract in albino rat. J. Environ. Biol. 30, 527–531 (2009).

    PubMed  CAS  Google Scholar 

  111. Sener, U. et al. Protective effects of thymoquinone against apoptosis and oxidative stress by arsenic in rat kidney. Ren. Fail. 38, 117–123 (2016).

    Article  PubMed  CAS  Google Scholar 

  112. Liu, J., Liu, Y., Habeebu, S. M., Waalkes, M. P. & Klaassen, C. D. Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-I/II null mice. Toxicology 147, 157–166 (2000).

    Article  PubMed  CAS  Google Scholar 

  113. Dutta, S., Saha, S., Mahalanobish, S., Sadhukhan, P. & Sil, P. C. Melatonin attenuates arsenic induced nephropathy via the regulation of oxidative stress and inflammatory signaling cascades in mice. Food Chem. Toxicol. 118, 303–316 (2018).

    Article  PubMed  CAS  Google Scholar 

  114. Lewis, D. R., Southwick, J. W., Ouellet-Hellstrom, R., Rench, J. & Calderon, R. L. Drinking water arsenic in Utah: a cohort mortality study. Environ. Health Perspect. 107, 359–365 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Meliker, J. R., Wahl, R. L., Cameron, L. L. & Nriagu, J. O. Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis. Environ. Health 6, 4 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Schlebusch, C. M. et al. Human adaptation to arsenic-rich environments. Mol. Biol. Evol. 32, 1544–1555 (2015).

    Article  PubMed  CAS  Google Scholar 

  117. De Loma, J. et al. Elevated arsenic exposure and efficient arsenic metabolism in indigenous women around Lake Poopó, Bolivia. Sci. Total Environ. 657, 179–186 (2019).

    Article  PubMed  Google Scholar 

  118. Apata, M., Arriaza, B., Llop, E. & Moraga, M. Human adaptation to arsenic in Andean populations of the Atacama Desert. Am. J. Phys. Anthropol. 163, 192–199 (2017).

    Article  PubMed  Google Scholar 

  119. Eichstaedt, C. A. et al. Positive selection of AS3MT to arsenic water in Andean populations. Mutat. Res. 780, 97–102 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Ströhle, A., Hahn, A. & Sebastian, A. Estimation of the diet-dependent net acid load in 229 worldwide historically studied hunter-gatherer societies. Am. J. Clin. Nutr. 91, 406–412 (2009).

    Article  PubMed  Google Scholar 

  121. Eaton, S. & Konner, M. Paleolithic nutrition: a consideration of its nature and current implications. In eds. Goodman, AH, Dufour, DL & Pelto, GH Nutritional Anthropology: Biocultural Perspectives on Food and Nutrition. Mayfield Publishing Company, CA, 2000.

  122. Ungar, P. S. The evolution of human diet: the known, the unknown, and the unknowable. Evolut. Anthropol. 13, 45–46 (2004).

    Article  Google Scholar 

  123. Banerjee, T. et al. Dietary acid load and chronic kidney disease among adults in the United States. BMC Nephrol. 15, 137–137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rebholz, C. M. et al. Dietary acid load and incident chronic kidney disease: results from the ARIC Study. Am. J. Nephrol. 42, 427–435 (2015).

    Article  PubMed  CAS  Google Scholar 

  125. Driver, T. H. et al. Low serum bicarbonate and kidney function decline: the multi-ethnic study of atherosclerosis (MESA). Am. J. Kidney Dis. 64, 534–541 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Goraya, N., Simoni, J., Jo, C. & Wesson, D. E. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 81, 86–93 (2012).

    Article  PubMed  CAS  Google Scholar 

  127. Mahajan, A. et al. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int. 78, 303–309 (2010).

    Article  PubMed  CAS  Google Scholar 

  128. Lin, J., Fung, T. T., Hu, F. B. & Curhan, G. C. Association of dietary patterns with albuminuria and kidney function decline in older white women: a subgroup analysis from the nurses’ health study. Am. J. Kidney Dis. 57, 245–254 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Frassetto, L. A., Morris, R. C. & Sebastian, A. Dietary sodium chloride intake independently predicts the degree of hyperchloremic metabolic acidosis in healthy humans consuming a net acid-producing diet. Am. J. Physiol. Renal Physiol. 293, F521–F525 (2007).

    Article  PubMed  CAS  Google Scholar 

  130. Bailey, R. L. et al. Estimating sodium and potassium intakes and their ratio in the American diet: data from the 2011–2012 NHANES. J. Nutr. 146, 745–750 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  131. US Institute of Medicine. Strategies to Reduce Sodium Intake in the United States (eds Henney, J. E., Taylor, C. L. & Boon, C. S.) (National Academies, 2010).

  132. Cordain, L. et al. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81, 341–354 (2005).

    Article  PubMed  CAS  Google Scholar 

  133. Qian, Q. Salt, water and nephron: mechanisms of action and link to hypertension and chronic kidney disease. Nephrology 23, 44–49 (2018).

    Article  PubMed  CAS  Google Scholar 

  134. Liu, N. et al. Association between sodium intakes with the risk of chronic kidney disease: evidence from a meta-analysis. Int. J. Clin. Exp. Med. 8, 20939–20945 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Ji, W. et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. 40, 592–599 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Welling, P. A. Rare mutations in renal sodium and potassium transporter genes exhibit impaired transport function. Curr. Opin. Nephrol. Hypertens. 23, 1–8 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Rossier, B. C., Bochud, M. & Devuyst, O. The hypertension pandemic: an evolutionary perspective. Physiology 32, 112–125 (2017).

    Article  CAS  Google Scholar 

  138. Young, J. H. et al. Differential susceptibility to hypertension is due to selection during the out-of-Africa expansion. PLoS Genet. 1, e82 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Gurdasani, D. et al. The African Genome Variation Project shapes medical genetics in Africa. Nature 517, 327–332 (2015).

    Article  PubMed  CAS  Google Scholar 

  140. Ji, L. D., Tang, N. L. & Xu, J. AGTR1 has undergone natural selection in Euro-Asian populations in relation to ambient temperature that predisposes Chinese populations to essential hypertension. Int. J. Cardiol. 209, 278–280 (2016).

    Article  PubMed  Google Scholar 

  141. Thompson, E. E. et al. CYP3A variation and the evolution of salt-sensitivity variants. Am. J. Hum. Genet. 75, 1059–1069 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Cabrera, S. E., Mindell, J. S., Toledo, M., Alvo, M. & Ferro, C. J. Associations of blood pressure with geographical latitude, solar radiation, and ambient temperature: results from the Chilean health survey, 2009–2010. Am. J. Epidemiol. 183, 1071–1073 (2016).

    Article  PubMed  Google Scholar 

  144. Garcia-Trabanino, R. et al. Heat stress, dehydration, and kidney function in sugarcane cutters in El Salvador — a cross-shift study of workers at risk of Mesoamerican nephropathy. Env. Res. 142, 746–755 (2015).

    Article  CAS  Google Scholar 

  145. Johnson, R. J., Wesseling, C. & Newman, L. S. Chronic kidney disease of unknown cause in agricultural communities. N. Engl. J. Med. 380, 1843–1852 (2019).

    Article  PubMed  Google Scholar 

  146. Wesseling, C. et al. The epidemic of chronic kidney disease of unknown etiology in Mesoamerica: a call for interdisciplinary research and action. Am. J. Public Health 103, 1927–1930 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wesseling, C. et al. Mesoamerican nephropathy: geographical distribution and time trends of chronic kidney disease mortality between 1970 and 2012 in Costa Rica. Occup. Env. Med. 72, 714–721 (2015).

    Article  Google Scholar 

  148. Correa-Rotter, R., Wesseling, C. & Johnson, R. J. CKD of unknown origin in Central America: the case for a Mesoamerican nephropathy. Am. J. Kidney Dis. 63, 506–520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wesseling, C. et al. Resolving the enigma of the Mesoamerican nephropathy: a research workshop summary. Am. J. Kidney Dis. 63, 396–404 (2014).

    Article  PubMed  Google Scholar 

  150. De Broe, M. E. & Vervaet, B. A. Is an environmental nephrotoxin the primary cause of CKDu (Mesoamerican nephropathy)? PRO. Kidney360 1, 591–595 (2020).

    Article  Google Scholar 

  151. Wesseling, C. et al. Heat stress, hydration and uric acid: a cross-sectional study in workers of three occupations in a hotspot of Mesoamerican nephropathy in Nicaragua. BMJ Open 6, e011034 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wesseling, C. et al. Kidney function in sugarcane cutters in Nicaragua — a longitudinal study of workers at risk of Mesoamerican nephropathy. Env. Res. 147, 125–132 (2016).

    Article  CAS  Google Scholar 

  153. Hoy, W. E., Hughson, M. D., Singh, G. R., Douglas-Denton, R. & Bertram, J. F. Reduced nephron number and glomerulomegaly in Australian Aborigines: a group at high risk for renal disease and hypertension. Kidney Int. 70, 104–110 (2006).

    Article  CAS  Google Scholar 

  154. Hoy, W. Renal disease in Australian Aborigines. Nephrol. Dial. Transpl. 15, 1293–1297 (2000).

    Article  CAS  Google Scholar 

  155. Hoy, W. E. et al. CKD in aboriginal Australians. Am. J. Kidney Dis. 56, 983–993 (2010).

    Article  PubMed  Google Scholar 

  156. Hoy, W. E. et al. Renal biopsy findings among Indigenous Australians: a nationwide review. Kidney Int. 82, 1321–1331 (2012).

    Article  PubMed  Google Scholar 

  157. Freedman, B. I., Limou, S., Ma, L. & Kopp, J. B. APOL1-associated nephropathy: a key contributor to racial disparities in CKD. Am. J. Kidney Dis. 72, S8–S16 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Muntinghe, F. L. et al. CCR5 deletion protects against inflammation-associated mortality in dialysis patients. J. Am. Soc. Nephrol. 20, 1641–1649 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02741323 (2019).

  160. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Sullivan, K. M. & Susztak, K. Unravelling the complex genetics of common kidney diseases: from variants to mechanisms. Nat. Rev. Nephrol. 16, 628–640 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  162. van Zuydam, N. R. et al. A genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes 67, 1414–1427 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kottgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Wuttke, M. et al. Genetic loci associated with renal function measures and chronic kidney disease in children: the pediatric investigation for genetic factors linked with renal progression consortium. Nephrol. Dial. Transpl. 31, 262–269 (2016).

    CAS  Google Scholar 

  165. Langefeld, C. D. et al. Genome-wide association studies suggest that APOL1-environment interactions more likely trigger kidney disease in African Americans with nondiabetic nephropathy than strong APOL1-second gene interactions. Kidney Int. 94, 599–607 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Sandholm, N. et al. Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes. Diabetologia 57, 1143–1153 (2014).

    Article  PubMed  CAS  Google Scholar 

  167. Teixeira, J. C. et al. Widespread Denisovan ancestry in Island Southeast Asia but no evidence of substantial super-archaic hominin admixture. Nat. Ecol. Evol. 5, 616–624 (2021).

    Article  PubMed  Google Scholar 

  168. Hajdinjak, M. et al. Reconstructing the genetic history of late Neanderthals. Nature 555, 652–656 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–412 (2019).

    Article  PubMed  CAS  Google Scholar 

  170. Kuhlwilm, M. et al. Ancient gene flow from early modern humans into Eastern Neanderthals. Nature 530, 429–433 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561, 113–116 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Vernot, B. & Akey, J. M. Resurrecting surviving Neandertal lineages from modern human genomes. Science 343, 1017–1021 (2014).

    Article  PubMed  CAS  Google Scholar 

  175. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  176. Thomson, R. et al. Evolution of the primate trypanolytic factor APOL1. Proc. Natl Acad. Sci. USA 111, E2130–E2139 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Adebowale A. Adeyemo or Charles N. Rotimi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks P. O’Connell, who co-reviewed with J. Li, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Pleistocene epoch

A period from about 2.58 million years ago to 11,700 years ago. It is sometimes referred to as the Ice Age because it spanned the world’s most recent period of repeated glaciations.

Populations

In the context of this manuscript, groups of individuals with historical limitations to gene flow, for example, imposed by geography, such that they can now be distinguished genetically from other groups.

Genetic admixture

Interbreeding between individuals from two or more previously isolated populations, typically referred to as hybridization in non-human species.

Genetic linkage

Tendency of DNA sequences that are physically close on a chromosome to be inherited together owing to a low probability of recombination during meiosis.

Haplotypes

Sets of alleles in a region of DNA that are tightly linked and likely to be inherited together.

Archaic humans

A grouping of genus Homo excluding anatomically modern Homo sapiens sapiens.

Ancient human

Homo sapiens sapiens predating modern populations.

Adaptation

Genetically determined trait that has evolved by natural selection to maintain or increase fitness in response to environment.

Ancestry

Genetic similarity of individuals to previously isolated populations.

Introgression

Transfer of alleles from one species to another when matings produce fertile hybrids.

Ancestral haplotype

Haplotype prior to a specific mutational event.

Derived haplotype

Haplotype after a specific mutational event.

Admixture mapping

A technique for finding regions of the genome associated with diseases or traits that show differential risk by ancestry.

Bottlenecks

An event in which the census population size is greatly reduced, resulting in a loss of low-frequency alleles.

Population expansions

An event in which the census population size is increased, resulting in an excess of low-frequency alleles.

O-acetyl-l-serine (OAS) cluster

A cluster of genes involved in the de novo biosynthesis of l-cysteine that are responsive to sulfur starvation.

Vasomotor nephropathy

Decrease in glomerular capillary pressure that leads to acute kidney failure.

Acclimatization

Physiological, anatomical or morphological changes within an individual made in response to environmental change.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeyemo, A.A., Shriner, D., Bentley, A.R. et al. Evolutionary genetics and acclimatization in nephrology. Nat Rev Nephrol 17, 827–839 (2021). https://doi.org/10.1038/s41581-021-00483-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-021-00483-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research