Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular senescence: the good, the bad and the unknown

Abstract

Cellular senescence is a ubiquitous process with roles in tissue remodelling, including wound repair and embryogenesis. However, prolonged senescence can be maladaptive, leading to cancer development and age-related diseases. Cellular senescence involves cell-cycle arrest and the release of inflammatory cytokines with autocrine, paracrine and endocrine activities. Senescent cells also exhibit morphological alterations, including flattened cell bodies, vacuolization and granularity in the cytoplasm and abnormal organelles. Several biomarkers of cellular senescence have been identified, including SA-βgal, p16 and p21; however, few markers have high sensitivity and specificity. In addition to driving ageing, senescence of immune and parenchymal cells contributes to the development of a variety of diseases and metabolic disorders. In the kidney, senescence might have beneficial roles during development and recovery from injury, but can also contribute to the progression of acute kidney injury and chronic kidney disease. Therapies that target senescence, including senolytic and senomorphic drugs, stem cell therapies and other interventions, have been shown to extend lifespan and reduce tissue injury in various animal models. Early clinical trials confirm that senotherapeutic approaches could be beneficial in human disease. However, larger clinical trials are needed to translate these approaches to patient care.

Key points

  • Cellular senescence regulates physiological and homeostatic processes, particularly during embryonic development and wound healing, but can also be a pathological process that contributes to ageing, various diseases and metabolic disorders.

  • Senescent cells are characterized by morphological alterations including large, flat bodies and organelle abnormalities, as well as loss of physiological functions, an inability to proliferate and the senescence-associated secretory phenotype.

  • SABG, p21 and p16 are the most commonly used senescence markers but have limitations; novel non-invasive approaches are needed to detect cellular senescence with high sensitivity and specificity in vitro.

  • Cellular senescence is involved in the pathogenesis of chronic kidney disease and acute kidney injury, but also seems to have a protective role in the early stages of acute kidney injury.

  • Senescence-targeting interventions, including senolytic drugs conjugated to antibodies against β2-microglobulin, chimeric antigen receptor T cells and anti-ageing vaccines, show promise for clinical application.

  • Clinical trials are needed to assess the safety and efficacy of senotherapeutic approaches, optimize treatment regimens and develop more individualized and standardized treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of cellular senescence and the SASP.
Fig. 2: Cellular senescence in cancer.
Fig. 3: Cellular senescence in kidney diseases.
Fig. 4: Mechanisms of cellular senescence in chronic kidney disease.

Similar content being viewed by others

References

  1. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).

    Article  PubMed  Google Scholar 

  3. Gire, V. & Dulic, V. Senescence from G2 arrest, revisited. Cell Cycle 14, 297–304 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun, D. & Buttitta, L. States of G0 and the proliferation-quiescence decision in cells, tissues and during development. Int. J. Dev. Biol. 61, 357–366 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Herranz, N. & Gil, J. Mitochondria and senescence: new actors for an old play. EMBO J. 35, 701–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

    Article  PubMed  CAS  Google Scholar 

  7. Rossiello, F., Herbig, U., Longhese, M. P., Fumagalli, M. & d’Adda di Fagagna, F. Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr. Opin. Genet. Dev. 26, 89–95 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumari, R. & Jat, P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front. Cell Dev. Biol. 9, 645593 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Petrova, N. V., Velichko, A. K., Razin, S. V. & Kantidze, O. L. Small molecule compounds that induce cellular senescence. Aging Cell 15, 999–1017 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dulić, V., Beney, G. E., Frebourg, G., Drullinger, L. F. & Stein, G. H. Uncoupling between phenotypic senescence and cell cycle arrest in aging p21-deficient fibroblasts. Mol. Cell Biol. 20, 6741–6754 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Terlecki-Zaniewicz, L. et al. Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype. Aging 10, 1103–1132 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Özcan, S. et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging 8, 1316–1329 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim, S. H. et al. Upregulation of chicken p15INK4b at senescence and in the developing brain. J. Cell Sci. 119, 2435–2443 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Favetta, L. A. et al. The oxidative stress adaptor p66Shc is required for permanent embryo arrest in vitro. BMC Dev. Biol. 7, 132 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  PubMed  CAS  Google Scholar 

  18. Da Silva-Álvarez, S. et al. Developmentally-programmed cellular senescence is conserved and widespread in zebrafish. Aging 12, 17895–17901 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rawlings, T. M. et al. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. Elife 10, e69603 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jun, J. I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, X. et al. Induction of fibroblast senescence during mouse corneal wound healing. Invest. Ophthalmol. Vis. Sci. 60, 3669–3679 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Younis, L. T., Abu Hassan, M. I., Taiyeb Ali, T. B. & Bustami, T. J. 3D TECA hydrogel reduces cellular senescence and enhances fibroblasts migration in wound healing. Asian J. Pharm. Sci. 13, 317–325 (2018).

    Article  PubMed  Google Scholar 

  23. Bang, M. et al. Tenovin-1 induces senescence and decreases wound-healing activity in cultured rat primary astrocytes. Biomol. Ther. 27, 283–289 (2019).

    Article  Google Scholar 

  24. Blokland, K. E. C. et al. Senescence of IPF lung fibroblasts disrupt alveolar epithelial cell proliferation and promote migration in wound healing. Pharmaceutics 12, 389 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  25. Xu, M. et al. Hydrogen peroxide-induced senescence reduces the wound healing-promoting effects of mesenchymal stem cell-derived exosomes partially via miR-146a. Aging Dis. 12, 102–115 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bitar, M. S., Abdel-Halim, S. M. & Al-Mulla, F. Caveolin-1/PTRF upregulation constitutes a mechanism for mediating p53-induced cellular senescence: implications for evidence-based therapy of delayed wound healing in diabetes. Am. J. Physiol. Endocrinol. Metab. 305, E951–E963 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Wilkinson, H. N. et al. Elevated local senescence in diabetic wound healing is linked to pathological repair via CXCR2. J. Invest. Dermatol. 139, 1171–1181 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Trost, T. M. et al. Premature senescence is a primary fail-safe mechanism of ERBB2-driven tumorigenesis in breast carcinoma cells. Cancer Res. 65, 840–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Alimonti, A. et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest. 120, 681–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsujimoto, I., Yoshida, A., Yoneda-Kato, N. & Kato, J. Y. Depletion of CSN5 inhibits Ras-mediated tumorigenesis by inducing premature senescence in p53-null cells. FEBS Lett. 586, 4326–4331 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Yasaei, H. et al. Carcinogen-specific mutational and epigenetic alterations in INK4A, INK4B and p53 tumour-suppressor genes drive induced senescence bypass in normal diploid mammalian cells. Oncogene 32, 171–179 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Guo, X. et al. TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat. Cell Biol. 11, 1451–1457 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jin, X. et al. Inactivation of heat shock factor Hsf4 induces cellular senescence and suppresses tumorigenesis in vivo. Mol. Cancer Res. 10, 523–534 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Osanai, M. et al. Occludin-mediated premature senescence is a fail-safe mechanism against tumorigenesis in breast carcinoma cells. Cancer Sci. 98, 1027–1034 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Y. et al. HBP1-mediated regulation of p21 protein through the Mdm2/p53 and TCF4/EZH2 pathways and its impact on cell senescence and tumorigenesis. J. Biol. Chem. 291, 12688–12705 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiong, J., Jiang, P., Zhong, L. & Wang, Y. The novel tumor suppressor gene ZNF24 induces THCA cells senescence by regulating wnt signaling pathway, resulting in inhibition of THCA tumorigenesis and invasion. Front. Oncol. 11, 646511 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tront, J. S., Hoffman, B. & Liebermann, D. A. Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res. 66, 8448–8454 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Georgilis, A. et al. PTBP1-mediated alternative splicing regulates the inflammatory secretome and the pro-tumorigenic effects of senescent cells. Cancer Cell 34, 85–102 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, G. et al. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc. Natl Acad. Sci. USA 103, 16472–16477 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alimirah, F. et al. Cellular senescence promotes skin carcinogenesis through p38MAPK and p44/42MAPK signaling. Cancer Res. 80, 3606–3619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alspach, E. et al. p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov. 4, 716–729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruhland, M. K. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat. Commun. 7, 11762 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Okamura, K., Suzuki, T. & Nohara, K. Gestational arsenite exposure augments hepatic tumors of C3H mice by promoting senescence in F1 and F2 offspring via different pathways. Toxicol. Appl. Pharmacol. 408, 115259 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Flanagan, K. C. et al. c-Myb and C/EBPβ regulate OPN and other senescence-associated secretory phenotype factors. Oncotarget 9, 21–36 (2018).

    Article  PubMed  Google Scholar 

  46. Muñoz-Galván, S. et al. Tumor cell-secreted PLD increases tumor stemness by senescence-mediated communication with microenvironment. Oncogene 38, 1309–1323 (2019).

    Article  PubMed  CAS  Google Scholar 

  47. Guccini, I. et al. Senescence reprogramming by TIMP1 deficiency promotes prostate cancer metastasis. Cancer Cell 39, 68–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Gonçalves, S. et al. COX2 regulates senescence secretome composition and senescence surveillance through PGE2. Cell Rep. 34, 108860 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Vindrieux, D. et al. Repression of PLA2R1 by c-MYC and HIF-2alpha promotes cancer growth. Oncotarget 5, 1004–1013 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yan, W. et al. Mice deficient in poly(C)-binding protein 4 are susceptible to spontaneous tumors through increased expression of ZFP871 that targets p53 for degradation. Genes Dev. 30, 522–534 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xie, H. et al. Cell-cycle arrest and senescence in TP53-wild type renal carcinoma by enhancer RNA-P53-bound enhancer regions 2 (p53BER2) in a p53-dependent pathway. Cell Death Dis. 12, 1 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Q. et al. Higher expression of XPF is a critical factor in intrinsic chemotherapy resistance of human renal cell carcinoma. Int. J. Cancer 139, 2827–2837 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Hu, J. et al. Endoglin is essential for the maintenance of self-renewal and chemoresistance in renal cancer stem cells. Stem Cell Rep. 9, 464–477 (2017).

    Article  CAS  Google Scholar 

  54. Kamal, Y., Cheng, C., Frost, H. R. & Amos, C. I. Predictors of disease aggressiveness influence outcome from immunotherapy treatment in renal clear cell carcinoma. Oncoimmunology 8, e1500106 (2019).

    Article  PubMed  Google Scholar 

  55. Sarkisian, C. J. et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol. 9, 493–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Ou, H. L. et al. Cellular senescence in cancer: from mechanisms to detection. Mol. Oncol. 15, 2634–2671 (2021).

    Article  PubMed  Google Scholar 

  57. Rubelt, F. et al. Onset of immune senescence defined by unbiased pyrosequencing of human immunoglobulin mRNA repertoires. PLoS One 7, e49774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, H., Puleston, D. J. & Simon, A. K. Autophagy and immune senescence. Trends Mol. Med. 22, 671–686 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Sato, Y. & Yanagita, M. Immunology of the ageing kidney. Nat. Rev. Nephrol. 15, 625–640 (2019).

    Article  PubMed  Google Scholar 

  60. Chiu, Y. L. et al. Emergence of T cell immunosenescence in diabetic chronic kidney disease. Immun. Ageing 17, 31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lioulios, G., Fylaktou, A., Papagianni, A. & Stangou, M. T cell markers recount the course of immunosenescence in healthy individuals and chronic kidney disease. Clin. Immunol. 225, 108685 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Trzonkowski, P. et al. Immunosenescence increases the rate of acceptance of kidney allotransplants in elderly recipients through exhaustion of CD4+ T-cells. Mech. Ageing Dev. 131, 96–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Rodriguez, I. J. et al. Immunosenescence study of T cells: a systematic review. Front. Immunol. 11, 604591 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Alonso-Arias, R. et al. NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system. Age 33, 591–-605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pellicanò, M. et al. Evidence for less marked potential signs of T-cell immunosenescence in centenarian offspring than in the general age-matched population. J. Gerontol. A Biol. Sci. Med. Sci. 69, 495–504 (2014).

    Article  PubMed  CAS  Google Scholar 

  66. Song, Y. et al. T-cell immunoglobulin and ITIM domain contributes to CD8+ T-cell immunosenescence. Aging Cell 17, e12716 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  67. Listì, F. et al. A study of serum immunoglobulin levels in elderly persons that provides new insights into B cell immunosenescence. Ann. NY Acad. Sci. 1089, 487–495 (2006).

    Article  PubMed  CAS  Google Scholar 

  68. de Bourcy, C. F. et al. Phylogenetic analysis of the human antibody repertoire reveals quantitative signatures of immune senescence and aging. Proc. Natl Acad. Sci. USA 114, 1105–1110 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lescale, C. et al. Reduced EBF expression underlies loss of B-cell potential of hematopoietic progenitors with age. Aging Cell 9, 410–419 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Ratliff, M., Alter, S., Frasca, D., Blomberg, B. B. & Riley, R. L. In senescence, age-associated B cells secrete TNFα and inhibit survival of B-cell precursors. Aging Cell 12, 303–311 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Lutz, C. T. & Quinn, L. S. Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism. Aging 4, 535–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sadhu, S. et al. Radiation-induced macrophage senescence impairs resolution programs and drives cardiovascular inflammation. J. Immunol. 207, 1812–1823 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Li, H. et al. Using ROS as a second messenger, NADPH oxidase 2 mediates macrophage senescence via interaction with NF-κB during Pseudomonas aeruginosa infection. Oxid. Med. Cell Longev. 2018, 9741838 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhao, Q. et al. Activating transcription factor 3 involved in Pseudomonas aeruginosa PAO1-induced macrophage senescence. Mol. Immunol. 133, 122–127 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, H. et al. BRD4 contributes to LPS-induced macrophage senescence and promotes progression of atherosclerosis-associated lipid uptake. Aging 12, 9240–9259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Behmoaras, J. & Gil, J. Similarities and interplay between senescent cells and macrophages. J. Cell Biol. 220, e202010162 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Hall, B. M. et al. p16Ink4a and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 9, 1867–1884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tonnessen-Murray, C. A. et al. Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. J. Cell Biol. 218, 3827–3844 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hickson, L. J., Eirin, A. & Lerman, L. O. Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int. 89, 767–778 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Malaise, O. et al. Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging 11, 9128–9146 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, P. M. et al. c-Maf regulates pluripotency genes, proliferation/self-renewal, and lineage commitment in ROS-mediated senescence of human mesenchymal stem cells. Oncotarget 6, 35404–35418 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fan, C. et al. TGF‑β induces periodontal ligament stem cell senescence through increase of ROS production. Mol. Med. Rep. 20, 3123–3130 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gu, S., Ran, S., Liu, B. & Liang, J. miR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression. FEBS Lett. 590, 1123–1131 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Xiao, Y. Z. et al. Reducing hypothalamic stem cell senescence protects against aging-associated physiological decline. Cell Metab. 31, 534–548 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Cho, J. et al. Ewing sarcoma gene Ews regulates hematopoietic stem cell senescence. Blood 117, 1156–1166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pi, C. et al. Nicotinamide phosphoribosyltransferase postpones rat bone marrow mesenchymal stem cell senescence by mediating NAD+-Sirt1 signaling. Aging 11, 3505–3522 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Son, M. J., Kwon, Y., Son, T. & Cho, Y. S. Restoration of mitochondrial NAD+ levels delays stem cell senescence and facilitates reprogramming of aged somatic cells. Stem Cell 34, 2840–2851 (2016).

    Article  CAS  Google Scholar 

  88. Zhai, X. Y. et al. Knockdown of SIRT6 enables human bone marrow mesenchymal stem cell senescence. Rejuvenation Res. 19, 373–384 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, F. et al. NANOG attenuates hair follicle-derived mesenchymal stem cell senescence by upregulating PBX1 and activating AKT signaling. Oxid. Med. Cell Longev. 2019, 4286213 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Iwata, T. et al. Functional regulatory mechanisms underlying bone marrow mesenchymal stem cell senescence during cell passages. Cell Biochem. Biophys. 79, 321–336 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Gannon, H. S., Donehower, L. A., Lyle, S. & Jones, S. N. Mdm2-p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin. Dev. Biol. 353, 1–9 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dong, X. Y. et al. Downregulation of ROR2 promotes dental pulp stem cell senescence by inhibiting STK4-FOXO1/SMS1 axis in sphingomyelin biosynthesis. Aging Cell 20, e13430 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cho, A. et al. An endogenous anti-aging factor, sonic hedgehog, suppresses endometrial stem cell aging through SERPINB2. Mol. Ther. 27, 1286–1298 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, D. et al. Autophagy inhibits the mesenchymal stem cell aging induced by D-galactose through ROS/JNK/p38 signalling. Clin. Exp. Pharmacol. Physiol. 47, 466–477 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Chang, T. C., Hsu, M. F. & Wu, K. K. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLoS ONE 10, e0126537 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Conley, S. M. et al. Human obesity induces dysfunction and early senescence in adipose tissue-derived mesenchymal stromal/stem cells. Front. Cell Dev. Biol. 8, 197 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hickson, L. J. et al. Diabetic kidney disease alters the transcriptome and function of human adipose-derived mesenchymal stromal cells but maintains immunomodulatory and paracrine activities important for renal repair. Diabetes 70, 1561–1574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Davalli, P., Mitic, T., Caporali, A., Lauriola, A. & D’Arca, D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid. Med. Cell Longev. 2016, 3565127 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Zhang, C. F. et al. Suppression of autophagy dysregulates the antioxidant response and causes premature senescence of melanocytes. J. Invest. Dermatol. 135, 1348–1357 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Song, X. et al. Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo. Redox Biol. 11, 219–230 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Xing, S. et al. Lactose induced redox-dependent senescence and activated Nrf2 pathway. Int. J. Clin. Exp. Pathol. 12, 2034–2045 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Su, S. et al. Lowering endogenous cathepsin d abundance results in reactive oxygen species accumulation and cell senescence. Mol. Cell Proteom. 16, 1217–1232 (2017).

    Article  CAS  Google Scholar 

  103. Volonte, D. & Galbiati, F. Inhibition of thioredoxin reductase 1 by caveolin 1 promotes stress-induced premature senescence. EMBO Rep. 10, 1334–1340 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dasari, A., Bartholomew, J. N., Volonte, D. & Galbiati, F. Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res. 66, 10805–10814 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Uraoka, M. et al. Loss of Bcl-2 during the senescence exacerbates the impaired angiogenic functions in endothelial cells by deteriorating the mitochondrial redox state. Hypertension 58, 254–263 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Sakai, T., Kurokawa, R., Hirano, S. I. & Imai, J. Hydrogen indirectly suppresses increases in hydrogen peroxide in cytoplasmic hydroxyl radical-induced cells and suppresses cellular senescence. Int. J. Mol. Sci. 20, 456 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  107. Xu, X. et al. Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. J. Mol. Med. 96, 1095–1106 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Kurz, D. J. et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J. Cell Sci. 117, 2417–2426 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Barascu, A. et al. Oxydative stress alters nuclear shape through lamins dysregulation: a route to senescence. Nucleus 3, 411–417 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chandrasekaran, A. et al. Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype. Exp. Biol. Med. 245, 1560–1570 (2020).

    Article  CAS  Google Scholar 

  111. McCarthy, D. A., Clark, R. R., Bartling, T. R., Trebak, M. & Melendez, J. A. Redox control of the senescence regulator interleukin-1α and the secretory phenotype. J. Biol. Chem. 288, 32149–32159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mancini, O. K. et al. Oxidative stress-induced senescence mediates inflammatory and fibrotic phenotypes in fibroblasts from systemic sclerosis patients. Rheumatology 61, 1265–1275 (2021).

    Article  Google Scholar 

  113. Bourdens, M. et al. Short exposure to cold atmospheric plasma induces senescence in human skin fibroblasts and adipose mesenchymal stromal cells. Sci. Rep. 9, 8671 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Tsai, C. H. et al. Up-regulation of cofilin-1 in cell senescence associates with morphological change and p27kip1-mediated growth delay. Aging Cell 20, e13288 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Oliva, J. L., Caino, M. C., Senderowicz, A. M. & Kazanietz, M. G. S-Phase-specific activation of PKC alpha induces senescence in non-small cell lung cancer cells. J. Biol. Chem. 283, 5466–5476 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang, H. et al. Reactive oxygen species and nitric oxide induce senescence of rudimentary leaves and the expression profiles of the related genes in Litchi chinensis. Hortic. Res. 5, 23 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Gewirtz, D. A., Holt, S. E. & Elmore, L. W. Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem. Pharmacol. 76, 947–957 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Liu, J. et al. Senescence as a consequence of ginsenoside rg1 response on k562 human leukemia cell line. Asian Pac. J. Cancer Prev. 13, 6191–6196 (2012).

    Article  PubMed  Google Scholar 

  120. Druelle, C. et al. ATF6α regulates morphological changes associated with senescence in human fibroblasts. Oncotarget 7, 67699–67715 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chen, Q. M. et al. Involvement of Rb family proteins, focal adhesion proteins and protein synthesis in senescent morphogenesis induced by hydrogen peroxide. J. Cell Sci. 113, 4087–4097 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Rivas-Chacón, L. D. M. et al. Role of oxidative stress in the senescence pattern of auditory cells in age-related hearing loss. Antioxidants 10, 1497 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Shaerzadeh, F. et al. Microglia senescence occurs in both substantia nigra and ventral tegmental area. Glia 68, 2228–2245 (2020).

    PubMed  PubMed Central  Google Scholar 

  124. Ridzuan, N., Al Abbar, A., Yip, W. K., Maqbool, M. & Ramasamy, R. Characterization and expression of senescence marker in prolonged passages of rat bone marrow-derived mesenchymal stem cells. Stem Cell Int. 2016, 8487264 (2016).

    Google Scholar 

  125. Berkenkamp, B. et al. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells. PLoS ONE 9, e88071 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Cohen, C. et al. Glomerular endothelial cell senescence drives age-related kidney disease through PAI-1. EMBO Mol. Med. 13, e14146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Karin, O. & Alon, U. Senescent cell accumulation mechanisms inferred from parabiosis. Geroscience 43, 329–341 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, A. S. & Dreesen, O. Biomarkers of cellular senescence and skin aging. Front. Genet. 9, 247 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Netti, G. S. et al. Role of complement in regulating inflammation processes in renal and prostate cancers. Cells 10, 2426 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kawagoe, Y. et al. CXCL5-CXCR2 signaling is a senescence-associated secretory phenotype in preimplantation embryos. Aging Cell 19, e13240 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mosteiro, L., Pantoja, C., de Martino, A. & Serrano, M. Senescence promotes in vivo reprogramming through p16INK4a and IL-6. Aging Cell 17, e12711 (2018).

    Article  CAS  Google Scholar 

  134. Iannello, A., Thompson, T. W., Ardolino, M., Lowe, S. W. & Raulet, D. H. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J. Exp. Med. 210, 2057–2069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Alimbetov, D. et al. Suppression of the senescence-associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2. Biogerontology 17, 305–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Rana, T. et al. PAI-1 regulation of TGF-β1-induced alveolar type II cell senescence, SASP secretion, and SASP-mediated activation of alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 62, 319–330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu, D. & Hornsby, P. J. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 67, 3117–3126 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Barinda, A. J. et al. Endothelial progeria induces adipose tissue senescence and impairs insulin sensitivity through senescence associated secretory phenotype. Nat. Commun. 11, 481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zuccolo, E. et al. The microRNA-34a-induced senescence-associated secretory phenotype (SASP) favors vascular smooth muscle cells calcification. Int. J. Mol. Sci. 21, 4454 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  141. Salotti, J. & Johnson, P. F. Regulation of senescence and the SASP by the transcription factor C/EBPβ. Exp. Gerontol. 128, 110752 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Takahashi, A. et al. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat. Commun. 9, 1249 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. En, A., Takauji, Y., Ayusawa, D. & Fujii, M. The role of lamin B receptor in the regulation of senescence-associated secretory phenotype (SASP). Exp. Cell Res. 390, 111927 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Tripathi, U. et al. SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging 13, 21838–21854 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J. & Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4, 1798–1806 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. de Mera-Rodríguez, J. A. et al. Is senescence-associated β-galactosidase a reliable in vivo marker of cellular senescence during embryonic development? Front. Cell Dev. Biol. 9, 623175 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Severino, J., Allen, R. G., Balin, S., Balin, A. & Cristofalo, V. J. Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp. Cell Res. 257, 162–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Palmer, A. et al. Expression of p16 within myenteric neurons of the aged colon: a potential marker of declining function. Front. Neurosci. 15, 747067 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. López-Domínguez, J. A. et al. Cdkn1a transcript variant 2 is a marker of aging and cellular senescence. Aging 13, 13380–13392 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Boichuck, M., Zorea, J., Elkabets, M., Wolfson, M. & Fraifeld, V. E. c-Met as a new marker of cellular senescence. Aging 11, 2889–2897 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kwak, I. H., Kim, H. S., Choi, O. R., Ryu, M. S. & Lim, I. K. Nuclear accumulation of globular actin as a cellular senescence marker. Cancer Res. 64, 572–580 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Bernadotte, A., Mikhelson, V. M. & Spivak, I. M. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging 8, 3–11 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Turinetto, V. & Giachino, C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 43, 2489–2498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Corpet, A. & Stucki, M. Chromatin maintenance and dynamics in senescence: a spotlight on SAHF formation and the epigenome of senescent cells. Chromosoma 123, 423–436 (2014).

    Article  PubMed  Google Scholar 

  155. Olivieri, F. et al. MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling. Age 35, 1157–1172 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Zhou, R. et al. Cytosolic dsDNA is a novel senescence marker associated with pyroptosis activation. Tissue Cell 72, 101554 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Thorin-Trescases, N., Labbé, P., Mury, P., Lambert, M. & Thorin, E. Angptl2 is a marker of cellular senescence: the physiological and pathophysiological impact of Angptl2-related senescence. Int. J. Mol. Sci. 22, 12232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Walter, R., Murasko, D. M. & Sierra, F. T-kininogen is a biomarker of senescence in rats. Mech. Ageing Dev. 106, 129–144 (1998).

    Article  CAS  PubMed  Google Scholar 

  160. Gan, W. et al. Age-dependent increases in the oxidative damage of DNA, RNA, and their metabolites in normal and senescence-accelerated mice analyzed by LC-MS/MS: urinary 8-oxoguanosine as a novel biomarker of aging. Free Radic. Biol. Med. 52, 1700–1707 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Bian, X. et al. Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy. BMJ Open. Diabetes Res. Care 7, e000720 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Santelli, A. et al. Senescent kidney cells in hypertensive patients release urinary extracellular vesicles. J. Am. Heart Assoc. 8, e012584 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tresini, M., Pignolo, R. J., Allen, R. G. & Cristofalo, V. J. Effects of donor age on the expression of a marker of replicative senescence (EPC-1) in human dermal fibroblasts. J. Cell Physiol. 179, 11–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Parish, S. T., Wu, J. E. & Effros, R. B. Sustained CD28 expression delays multiple features of replicative senescence in human CD8 T lymphocytes. J. Clin. Immunol. 30, 798–805 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Henson, S. M. & Akbar, A. N. KLRG1-more than a marker for T cell senescence. Age 31, 285–291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Günther, J. et al. Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. Kidney Int. 91, 1447–1463 (2017).

    Article  PubMed  CAS  Google Scholar 

  167. Snyder, L. M. et al. Irreversible spectrin-haemoglobin crosslinking in vivo: a marker for red cell senescence. Br. J. Haematol. 53, 379–384 (1983).

    Article  CAS  PubMed  Google Scholar 

  168. Blanco, F. J. & Bernabéu, C. The splicing factor SRSF1 as a marker for endothelial senescence. Front. Physiol. 3, 54 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bascones-Martínez, A. et al. Differences in the expression of five senescence markers in oral cancer, oral leukoplakia and control samples in humans. Oncol. Lett. 3, 1319–1325 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Bertolo, A., Baur, M., Guerrero, J., Pötzel, T. & Stoyanov, J. Autofluorescence is a reliable in vitro marker of cellular senescence in human mesenchymal stromal cells. Sci. Rep. 9, 2074 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Yamagishi, S. et al. Upregulation of cannabinoid receptor type 2, but not TSPO, in senescence-accelerated neuroinflammation in mice: a positron emission tomography study. J. Neuroinflammation 16, 208 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Khandjian, E. W., Salomon, C., Léonard, N., Tremblay, S. & Türler, H. Fibronectin gene expression in proliferating, quiescent, and SV40-infected mouse kidney cells. Exp. Cell Res. 202, 464–470 (1992).

    Article  CAS  PubMed  Google Scholar 

  173. Chen, C. et al. Lipoxin A4 restores septic renal function via blocking crosstalk between inflammation and premature senescence. Front. Immunol. 12, 637753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bae, E. et al. Paricalcitol attenuates contrast-induced acute kidney injury by regulating mitophagy and senescence. Oxid. Med. Cell Longev. 2020, 7627934 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Khan, S., Loi, V. & Rosner, M. H. Drug-induced kidney injury in the elderly. Drugs Aging 34, 729–741 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Marquez-Exposito, L. et al. Acute kidney injury is aggravated in aged mice by the exacerbation of proinflammatory processes. Front. Pharmacol. 12, 662020 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Li, Y. & Lerman, L. O. Cellular senescence: a new player in kidney injury. Hypertension 76, 1069–1075 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Johnson, A. C. & Zager, R. A. Plasma and urinary p21: potential biomarkers of AKI and renal aging. Am. J. Physiol. Renal Physiol. 315, F1329–F1335 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Castellano, G. et al. Complement component C5a induces aberrant epigenetic modifications in renal tubular epithelial cells accelerating senescence by Wnt4/βcatenin signaling after ischemia/reperfusion injury. Aging 11, 4382–4406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rodrigues, C. E. et al. Human umbilical cord-derived mesenchymal stromal cells protect against premature renal senescence resulting from oxidative stress in rats with acute kidney injury. Stem Cell Res. Ther. 8, 19 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Westhoff, J. H. et al. Telomere shortening reduces regenerative capacity after acute kidney injury. J. Am. Soc. Nephrol. 21, 327–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cheng, H., Fan, X., Lawson, W. E., Paueksakon, P. & Harris, R. C. Telomerase deficiency delays renal recovery in mice after ischemia-reperfusion injury by impairing autophagy. Kidney Int. 88, 85–94 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sari, F. T., Sari, F. T., Sari, F. T., Arfian, N. & Sari, D. C. R. Effect of kidney ischemia/reperfusion injury on proliferation, apoptosis, and cellular senescence in acute kidney injury in mice. Med. J. Malays. 75, 20–23 (2020).

    CAS  Google Scholar 

  184. Jia, Y. et al. Nicotinamide mononucleotide attenuates renal interstitial fibrosis after AKI by suppressing tubular DNA damage and senescence. Front. Physiol. 12, 649547 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. DiRocco, D. P. et al. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am. J. Physiol. Renal Physiol. 306, F379–F388 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Kim, S. R. et al. Progressive cellular senescence mediates renal dysfunction in ischemic nephropathy. J. Am. Soc. Nephrol. 32, 1987–2004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Schroth, J., Thiemermann, C. & Henson, S. M. Senescence and the aging immune system as major drivers of chronic kidney disease. Front. Cell Dev. Biol. 8, 564461 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Carracedo, J. et al. Mechanisms of cardiovascular disorders in patients with chronic kidney disease: a process related to accelerated senescence. Front. Cell Dev. Biol. 8, 185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Crépin, T. et al. Uraemia-induced immune senescence and clinical outcomes in chronic kidney disease patients. Nephrol. Dial. Transpl. 35, 624–632 (2020).

    Article  Google Scholar 

  190. Sosa, P. et al. Hyperphosphatemia promotes senescence of myoblasts by impairing autophagy through Ilk overexpression, a possible mechanism involved in sarcopenia. Aging Dis. 9, 769–784 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Olmos, G. et al. Hyperphosphatemia induces senescence in human endothelial cells by increasing endothelin-1 production. Aging Cell 16, 1300–1312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Troyano, N. et al. Hyperphosphatemia induces cellular senescence in human aorta smooth muscle cells through integrin linked kinase (ILK) up-regulation. Mech. Ageing Dev. 152, 43–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Okada, A. et al. D-serine, a novel uremic toxin, induces senescence in human renal tubular cells via GCN2 activation. Sci. Rep. 7, 11168 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Dong, D. et al. Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling. Oncotarget 8, 16109–16121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Gong, W. et al. Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis. Clin. Sci. 135, 1873–1895 (2021).

    Article  CAS  Google Scholar 

  196. Luo, C. et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J. Am. Soc. Nephrol. 29, 1238–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhou, L., Li, Y., Zhou, D., Tan, R. J. & Liu, Y. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. 24, 771–785 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Li, C., Shen, Y., Huang, L., Liu, C. & Wang, J. Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence. FASEB J. 35, e21229 (2021).

    CAS  PubMed  Google Scholar 

  199. Zhang, L. et al. C/EBPα deficiency in podocytes aggravates podocyte senescence and kidney injury in aging mice. Cell Death Dis. 10, 684 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Juvet, C. et al. Renal programming by transient postnatal overfeeding: the role of senescence pathways. Front. Physiol. 11, 511 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Liu, J. et al. Impact of ER stress-regulated ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic nephropathy. Am. J. Physiol. Cell Physiol. 308, C621–C630 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Yu, S. et al. M1 macrophages accelerate renal glomerular endothelial cell senescence through reactive oxygen species accumulation in streptozotocin-induced diabetic mice. Int. Immunopharmacol. 81, 106294 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Shi, M. et al. The RAGE/STAT5/autophagy axis regulates senescence in mesangial cells. Cell Signal. 62, 109334 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Kim, S. R., Eirin, A., Zhang, X., Lerman, A. & Lerman, L. O. Mitochondrial protection partly mitigates kidney cellular senescence in swine atherosclerotic renal artery stenosis. Cell Physiol. Biochem. 52, 617–632 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Chen, X. J. et al. Renovascular disease induces senescence in renal scattered tubular-like cells and impairs their reparative potency. Hypertension 77, 507–518 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Liu, J. et al. Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl. Res. 159, 454–463 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Tilman, G. et al. High p16INK4a, a marker of cellular senescence, is associated with renal injury, impairment and outcome in lupus nephritis. RMD Open 7, e001844 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Kim, S. R. et al. Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Transl Res. 213, 112–123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sis, B. et al. Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. Kidney Int. 71, 218–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  210. Kim, D. Y., Lee, M. & Kim, E. J. Involvement of Klotho, TNF‑α; and ADAMs in radiation‑induced senescence of renal epithelial cells. Mol. Med. Rep. 23, 22 (2021).

    CAS  PubMed  Google Scholar 

  211. Eleftheriadis, T., Pissas, G., Filippidis, G., Liakopoulos, V. & Stefanidis, I. The role of indoleamine 2,3-dioxygenase in renal tubular epithelial cells senescence under anoxia or reoxygenation. Biomolecules 11, 1522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Troyano-Suárez, N. et al. Glucose oxidase induces cellular senescence in immortal renal cells through ILK by downregulating Klotho gene expression. Oxid. Med. Cell Longev. 2015, 416738 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Ferlicot, S. et al. The role of replicative senescence in chronic allograft nephropathy. Hum. Pathol. 34, 924–928 (2003).

    Article  PubMed  Google Scholar 

  214. Pesce, F. et al. DelCFHR3-1 influences graft survival in transplant patients with IgA nephropathy via complement-mediated cellular senescence. Am. J. Transpl. 21, 838–845 (2021).

    Article  CAS  Google Scholar 

  215. Lee, D. H., Wolstein, J. M., Pudasaini, B. & Plotkin, M. INK4a deletion results in improved kidney regeneration and decreased capillary rarefaction after ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 302, F183–F191 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kim, S. G., Sung, J. Y., Kim, J. R. & Choi, H. C. Quercetin-induced apoptosis ameliorates vascular smooth muscle cell senescence through AMP-activated protein kinase signaling pathway. Korean J. Physiol. Pharmacol. 24, 69–79 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Jiang, Y. H., Jiang, L. Y., Wang, Y. C., Ma, D. F. & Li, X. Quercetin attenuates atherosclerosis via modulating oxidized LDL-induced endothelial cellular senescence. Front. Pharmacol. 11, 512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Liu, T. et al. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sci. 257, 118116 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Shao, Z. et al. Senolytic agent quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis. Osteoarthritis Cartilage 29, 413–422 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Yu, S. et al. Quercetin reverses cardiac systolic dysfunction in mice fed with a high-fat diet: role of angiogenesis. Oxid. Med. Cell Longev. 2021, 8875729 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36, 18–28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Zhu, Y. et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging 9, 955–963 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Xu, Q. et al. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat. Metab. 3, 1706–1726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wang, Z. et al. Ginsenoside Rg1 prevents bone marrow mesenchymal stem cell senescence via NRF2 and PI3K/Akt signaling. Free Radic. Biol. Med. 174, 182–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Yokozawa, T., Satoh, A. & Cho, E. J. Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice. J. Pharm. Pharmacol. 56, 107–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  227. Hou, J., Cui, C., Kim, S., Sung, C. & Choi, C. Ginsenoside F1 suppresses astrocytic senescence-associated secretory phenotype. Chem. Biol. Interact. 283, 75–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Ogrodnik, M. et al. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 20, e13296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Adams, J. M. & Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 25, 27–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Mylonas, K. J. et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci. Transl Med. 13, eabb0203 (2021).

    Article  CAS  PubMed  Google Scholar 

  233. Fuhrmann-Stroissnigg, H. et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Rinaldi, S. et al. Stem cell senescence. Effects of REAC technology on telomerase-independent and telomerase-dependent pathways. Sci. Rep. 4, 6373 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Poblocka, M. et al. Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci. Rep. 11, 20358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Arora, S. et al. Invariant natural killer T cells coordinate removal of senescent cells. Med 2, 938–950 (2021).

    Article  CAS  PubMed  Google Scholar 

  237. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Mendelsohn, A. R. & Larrick, J. W. Antiaging vaccines targeting senescent cells. Rejuvenation Res. 25, 39–45 (2022).

    Article  CAS  PubMed  Google Scholar 

  239. Soukas, A. A., Hao, H. & Wu, L. Metformin as anti-aging therapy: is it for everyone? Trends Endocrinol. Metab. 30, 745–755 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12, 489–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  241. Zhang, E. et al. Metformin and resveratrol inhibited high glucose-induced metabolic memory of endothelial senescence through SIRT1/p300/p53/p21 pathway. PLoS ONE 10, e0143814 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Menendez, J. A. et al. Metformin and the ATM DNA damage response (DDR): accelerating the onset of stress-induced senescence to boost protection against cancer. Aging 3, 1063–1077 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, E6301–E6310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Sasaki, N., Itakura, Y. & Toyoda, M. Rapamycin promotes endothelial-mesenchymal transition during stress-induced premature senescence through the activation of autophagy. Cell Commun. Signal. 18, 43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Wang, R. et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16, 564–574 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Correia-Melo, C. et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 35, 724–742 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Menicacci, B. et al. Chronic resveratrol treatment inhibits MRC5 fibroblast SASP-related protumoral effects on melanoma cells. J. Gerontol. A Biol. Sci. Med. Sci. 72, 1187–1195 (2017).

    Article  CAS  PubMed  Google Scholar 

  248. Zhang, B. et al. KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype. Nat. Aging 1, 454–472 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Pazolli, E. et al. Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res. 72, 2251–2261 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Yu, S. et al. Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells. J. Pineal Res. 63, 12405 (2017).

    Article  CAS  Google Scholar 

  251. Yoo, Y. M., Jang, S. K., Kim, G. H., Park, J. Y. & Joo, S. S. Pharmacological advantages of melatonin in immunosenescence by improving activity of T lymphocytes. J. Biomed. Res. 30, 314–321 (2016).

    PubMed  PubMed Central  Google Scholar 

  252. Rodríguez, M. I. et al. Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radic. Res. 41, 15–24 (2007).

    Article  PubMed  CAS  Google Scholar 

  253. Han, Y. S., Kim, S. M. & Lee, J. H. Melatonin protects chronic kidney disease mesenchymal stem cells against senescence via PrPC-dependent enhancement of the mitochondrial function. J. Pineal Res. 66, e12535 (2019).

    Article  PubMed  CAS  Google Scholar 

  254. Rais, M., Wilson, R. M., Urbanski, H. F. & Messaoudi, I. Androgen supplementation improves some but not all aspects of immune senescence in aged male macaques. Geroscience 39, 373–384 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Toillon, R. A. et al. Estrogens decrease gamma-ray-induced senescence and maintain cell cycle progression in breast cancer cells independently of p53. Int. J. Radiat. Oncol. Biol. Phys. 67, 1187–1200 (2007).

    Article  CAS  PubMed  Google Scholar 

  256. Engelmann, F. et al. Accelerated immune senescence and reduced response to vaccination in ovariectomized female rhesus macaques. Age 33, 275–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  257. Poulsen, R. C. et al. Glucocorticoids induce senescence in primary human tenocytes by inhibition of sirtuin 1 and activation of the p53/p21 pathway: in vivo and in vitro evidence. Ann. Rheum. Dis. 73, 1405–1413 (2014).

    Article  CAS  PubMed  Google Scholar 

  258. Zhang, M. et al. Bone marrow mesenchymal stem cell transplantation retards the natural senescence of rat hearts. Stem Cell Transl Med. 4, 494–502 (2015).

    Article  CAS  Google Scholar 

  259. Zhang, Y. et al. Rat induced pluripotent stem cells protect H9C2 cells from cellular senescence via a paracrine mechanism. Cardiology 128, 43–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  260. Kim, S. R. et al. Increased cellular senescence in the murine and human stenotic kidney: effect of mesenchymal stem cells. J. Cell Physiol. 236, 1332–1344 (2021).

    Article  CAS  PubMed  Google Scholar 

  261. Cheng, T., Ding, S., Liu, S., Li, Y. & Sun, L. Human umbilical cord-derived mesenchymal stem cell therapy ameliorates lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis. Theranostics 11, 893–905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Xiao, X. et al. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal. Transduct. Target. Ther. 6, 354 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Zhang, L. et al. Selective intrarenal delivery of mesenchymal stem cell-derived extracellular vesicles attenuates myocardial injury in experimental metabolic renovascular disease. Basic. Res. Cardiol. 115, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Dong, J. et al. Dental pulp stem cell-derived small extracellular vesicle in irradiation-induced senescence. Biochem. Biophys. Res. Commun. 575, 28–35 (2021).

    Article  CAS  PubMed  Google Scholar 

  265. Lei, J. et al. Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein Cell 13, 220–226 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Carroll, J. E. et al. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. Brain Behav. Immun. 51, 223–229 (2016).

    Article  CAS  PubMed  Google Scholar 

  267. Sun, L. et al. Alterations in mitochondrial biogenesis and respiratory activity, inflammation of the senescence-associated secretory phenotype, and lipolysis in the perirenal fat and liver of rats following lifelong exercise and detraining. FASEB J. 35, e21890 (2021).

    Article  CAS  PubMed  Google Scholar 

  268. Tylutka, A., Morawin, B., Gramacki, A. & Zembron-Lacny, A. Lifestyle exercise attenuates immunosenescence; flow cytometry analysis. BMC Geriatr. 21, 200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Bianchi, A. et al. Moderate exercise inhibits age-related inflammation, liver steatosis, senescence, and tumorigenesis. J. Immunol. 206, 904–916 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Yzydorczyk, C. et al. Transient postnatal overfeeding causes liver stress-induced premature senescence in adult mice. Sci. Rep. 7, 12911 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Greeley, E. H., Spitznagel, E., Lawler, D. F., Kealy, R. D. & Segre, M. Modulation of canine immunosenescence by life-long caloric restriction. Vet. Immunol. Immunopathol. 111, 287–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  272. List, E. O. et al. Diet-induced weight loss is sufficient to reduce senescent cell number in white adipose tissue of weight-cycled mice. Nutr. Healthy Aging 4, 95–99 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Mafra, D. et al. Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nat. Rev. Nephrol. 17, 153–171 (2021).

    Article  PubMed  Google Scholar 

  274. Shiels, P. G. et al. Manipulating the exposome to enable better ageing. Biochem. J. 478, 2889–2898 (2021).

    Article  CAS  PubMed  Google Scholar 

  275. Lee, Y. I. & Kim, E. Synergistic effect of 300 μm needle-depth fractional microneedling radiofrequency on the treatment of senescence-induced aging hyperpigmentation of the skin. Int. J. Mol. Sci. 22, 7480 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Torres, B. et al. Impact of switching to raltegravir and/or adding losartan in lymphoid tissue fibrosis and inflammation in people living with HIV. A randomized clinical trial. HIV Med. 22, 674–681 (2021).

    Article  CAS  PubMed  Google Scholar 

  278. Wong, G. C. L. et al. Horticultural therapy reduces biomarkers of immunosenescence and inflammaging in community-dwelling older adults: a feasibility pilot randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 76, 307–317 (2021).

    Article  CAS  PubMed  Google Scholar 

  279. Sharma, A. K. et al. The senolytic drug navitoclax (ABT-263) causes trabecular bone loss and impaired osteoprogenitor function in aged mice. Front. Cell Dev. Biol. 8, 354 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Puglisi, M. et al. A phase I study of the safety, pharmacokinetics and efficacy of navitoclax plus docetaxel in patients with advanced solid tumors. Future Oncol. 17, 2747–2758 (2021).

    Article  CAS  PubMed  Google Scholar 

  281. Rodríguez, J. A. et al. Antagonistic pleiotropy and mutation accumulation influence human senescence and disease. Nat. Ecol. Evol. 1, 55 (2017).

    Article  PubMed  Google Scholar 

  282. Lei, J., Jiang, X., Li, W. & Ren, J. Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein Cell 13, 220–226 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by National Institutes of Health grant numbers DK120292, DK122734, AG062104, AG013925 and AG61456, the Connor Fund, Robert P. and Arlene R. Kogod, Robert J. and Theresa W. Ryan, and the Noaber Foundation.

Author information

Authors and Affiliations

Authors

Contributions

W.H. researched the data for the article and wrote the text. W.H. and L.O.L contributed substantially to discussion of the content. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Lilach O. Lerman.

Ethics declarations

Competing interests

L.O.L. is an adviser to AstraZeneca, CureSpec, Beren, Ribocure Pharmaceuticals and Butterfly Biosciences. Patents on senolytic drugs and their uses are held by the Mayo Clinic. This research has been reviewed by the Mayo Clinic Conflict of Interest Review Board and was conducted in compliance with Mayo Clinic Conflict of Interest policies. The other authors declare no conflicts of interest.

Peer review

Peer review information

Nature Reviews Nephrology thanks Giuseppe Castellano and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

DREAM complex

A multisubunit complex formed by the assembly of p130 and p107 with their dimerization partner, E2F4/5, and a multi-vulva class-B core complex.

Somatic hypermutation

A programmed process of adaptation to new foreign elements (such as microbes) whereby changes are introduced to the nucleotide sequences of immunoglobulin genes during B cell development.

Efferocytosis

The process by which apoptotic cells are removed by phagocytic cells.

Ramified

Used to describe cells that have long branch-like processes.

Geroprotective protein

A protein that has anti-ageing effects.

Radio-electric asymmetric conveyer technology

A technology delivering very low-intensity radio-electric emission to generate microcurrents in tissues or culture media and thereby produce biological effects.

Metabolic memory

The durable effect of prior hyperglycaemia on the initiation and progression of diabetic complications.

Tenocytes

Elongated fibroblasts and fibrocytes that reside between collagen fibres.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Hickson, L.J., Eirin, A. et al. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 18, 611–627 (2022). https://doi.org/10.1038/s41581-022-00601-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-022-00601-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research