Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trained immunity — basic concepts and contributions to immunopathology

Abstract

Trained immunity is a functional state of the innate immune response and is characterized by long-term epigenetic reprogramming of innate immune cells. This concept originated in the field of infectious diseases — training of innate immune cells, such as monocytes, macrophages and/or natural killer cells, by infection or vaccination enhances immune responses against microbial pathogens after restimulation. Although initially reported in circulating monocytes and tissue macrophages (termed peripheral trained immunity), subsequent findings indicate that immune progenitor cells in the bone marrow can also be trained (that is, central trained immunity), which explains the long-term innate immunity-mediated protective effects of vaccination against heterologous infections. Although trained immunity is beneficial against infections, its inappropriate induction by endogenous stimuli can also lead to aberrant inflammation. For example, in systemic lupus erythematosus and systemic sclerosis, trained immunity might contribute to inflammatory activity, which promotes disease progression. In organ transplantation, trained immunity has been associated with acute rejection and suppression of trained immunity prolonged allograft survival. This novel concept provides a better understanding of the involvement of the innate immune response in different pathological conditions, and provides a new framework for the development of therapies and treatment strategies that target epigenetic and metabolic pathways of the innate immune system.

Key points

  • Trained immunity is a functional state of the innate immune system that is characterized by long-term epigenetic and metabolic reprogramming of cells associated with potent immune responses.

  • Experimental and clinical studies have demonstrated that exogenous pathogen-associated molecular patterns and endogenous danger-associated molecular patterns induce trained immunity.

  • Trained immunity is a functional adaptation of the innate immune system against secondary infections, but can lead to aberrant inflammatory activity in conditions such as autoimmunity.

  • Sterile inflammation owing to ischaemia–reperfusion injury and organ transplantation induces trained immunity and precipitates allograft rejection.

  • Therapeutic inhibition of trained immunity (for example, in autoimmunity or transplantation) or its induction (for example, in infections or cancer) are promising strategies for treating immunity-related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differences between innate immune cell activation, priming, training and tolerance.
Fig. 2: Cellular, molecular, metabolic and epigenetic approaches to studying trained immunity.
Fig. 3: Proposed role of trained immunity in SLE.
Fig. 4: Trained immunity in kidney transplantation.
Fig. 5: Therapeutic targeting of trained immunity.

Similar content being viewed by others

References

  1. Janeway, C. A. Jr. & Medzhitov, R. Introduction: the role of innate immunity in the adaptive immune response. Semin. Immunol. 10, 349–350 (1998).

    Article  Google Scholar 

  2. Murphy, K. & Weaver, C. Janeway’s Immunobiology (Garland Science, 2016).

  3. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  Google Scholar 

  4. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  Google Scholar 

  5. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    Article  CAS  Google Scholar 

  6. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  CAS  Google Scholar 

  7. Netea, M. G., Schlitzer, A., Placek, K., Joosten, L. A. B. & Schultze, J. L. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe 25, 13–26 (2019).

    Article  CAS  Google Scholar 

  8. Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS One 12, e0189577 (2017).

    Article  Google Scholar 

  9. Kurtz, J. & Franz, K. Innate defence: evidence for memory in invertebrate immunity. Nature 425, 37–38 (2003).

    Article  CAS  Google Scholar 

  10. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  Google Scholar 

  11. Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    Article  CAS  Google Scholar 

  12. Divangahi, M. et al. Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nat. Immunol. 22, 2–6 (2021).

    Article  CAS  Google Scholar 

  13. Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190 e119 (2018).

    Article  CAS  Google Scholar 

  14. Bekkering, S., Dominguez-Andres, J., Joosten, L. A. B., Riksen, N. P. & Netea, M. G. Trained immunity: reprogramming innate immunity in health and disease. Annu. Rev. Immunol. 39, 667–693 (2021).

    Article  CAS  Google Scholar 

  15. Kleinnijenhuis, J. et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 109, 17537–17542 (2012).

    Article  CAS  Google Scholar 

  16. Ochando, J., Fayad, Z. A., Madsen, J. C., Netea, M. G. & Mulder, W. J. M. Trained immunity in organ transplantation. Am. J. Transpl. 20, 10–18 (2020).

    Article  Google Scholar 

  17. Zhao, S. et al. H3K4 methylation regulates LPS-induced proinflammatory cytokine expression and release in macrophages. Shock 51, 401–406 (2019).

    Article  CAS  Google Scholar 

  18. Jamieson, A. M. et al. Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science 340, 1230–1234 (2013).

    Article  CAS  Google Scholar 

  19. Aegerter, H. et al. Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nat. Immunol. 21, 145–157 (2020).

    Article  CAS  Google Scholar 

  20. Cheng, S. C. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 17, 406–413 (2016).

    Article  CAS  Google Scholar 

  21. Roquilly, A. et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat. Immunol. 21, 636–648 (2020).

    Article  CAS  Google Scholar 

  22. Novakovic, B. et al. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167, 1354–1368 e1314 (2016).

    Article  CAS  Google Scholar 

  23. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

    Article  Google Scholar 

  24. Quintin, J. et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12, 223–232 (2012).

    Article  CAS  Google Scholar 

  25. Fanucchi, S., Dominguez-Andres, J., Joosten, L. A. B., Netea, M. G. & Mhlanga, M. M. The intersection of epigenetics and metabolism in trained immunity. Immunity 54, 32–43 (2021).

    Article  CAS  Google Scholar 

  26. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  Google Scholar 

  27. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  Google Scholar 

  28. Arts, R. J. W. et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 17, 2562–2571 (2016).

    Article  CAS  Google Scholar 

  29. Abubakar, I. et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guerin vaccination against tuberculosis. Health Technol. Assess. 17, 1–372 (2013).

    Article  CAS  Google Scholar 

  30. Nguipdop-Djomo, P., Heldal, E., Rodrigues, L. C., Abubakar, I. & Mangtani, P. Duration of BCG protection against tuberculosis and change in effectiveness with time since vaccination in Norway: a retrospective population-based cohort study. Lancet Infect. Dis. 16, 219–226 (2016).

    Article  Google Scholar 

  31. Giamarellos-Bourboulis, E. J. et al. Activate: randomized clinical trial of BCG vaccination against infection in the elderly. Cell 183, 315–323.e9 (2020).

    Article  CAS  Google Scholar 

  32. Tsilika, M. et al. ACTIVATE-2: a double-blind randomized trial of BCG vaccination against COVID-19 in individuals at risk. Front. Immunol. 13, 873067 (2022).

    Article  CAS  Google Scholar 

  33. Kleinnijenhuis, J. et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J. Innate Immun. 6, 152–158 (2014).

    Article  CAS  Google Scholar 

  34. Cirovic, B. et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe 28, 322–334.e5 (2020).

    Article  CAS  Google Scholar 

  35. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e12 (2018).

    Article  CAS  Google Scholar 

  36. Brown, G. D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006).

    Article  CAS  Google Scholar 

  37. Kalafati, L. et al. Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183, 771–785.e12 (2020).

    Article  CAS  Google Scholar 

  38. Moorlag, S. et al. BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Rep. 33, 108387 (2020).

    Article  CAS  Google Scholar 

  39. Kleinnijenhuis, J. et al. BCG-induced trained immunity in NK cells: role for non-specific protection to infection. Clin. Immunol. 155, 213–219 (2014).

    Article  CAS  Google Scholar 

  40. Placek, K., Schultze, J. L. & Netea, M. G. Immune memory characteristics of innate lymphoid cells. Curr. Opin. Infect. Dis. 32, 196–203 (2019).

    Article  CAS  Google Scholar 

  41. Hamada, A., Torre, C., Drancourt, M. & Ghigo, E. Trained immunity carried by non-immune cells. Front. Microbiol. 9, 3225 (2018).

    Article  Google Scholar 

  42. Shao, Y. et al. Vascular endothelial cells and innate immunity. Arterioscler. Thromb. Vasc. Biol. 40, e138–e152 (2020).

    Article  CAS  Google Scholar 

  43. Bigot, J. et al. Respiratory epithelial cells can remember infection: a proof-of-concept study. J. Infect. Dis. 221, 1000–1005 (2020).

    Google Scholar 

  44. Babel, N., Hugo, C. & Westhoff, T. H. Vaccination in patients with kidney failure: lessons from COVID-19. Nat. Rev. Nephrol. https://doi.org/10.1038/s41581-022-00617-5 (2022).

    Article  Google Scholar 

  45. Yu, F., Haas, M., Glassock, R. & Zhao, M. H. Redefining lupus nephritis: clinical implications of pathophysiologic subtypes. Nat. Rev. Nephrol. 13, 483–495 (2017).

    Article  Google Scholar 

  46. Tsokos, G. C., Lo, M. S., Costa Reis, P. & Sullivan, K. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).

    Article  CAS  Google Scholar 

  47. Ma, W. T., Gao, F., Gu, K. & Chen, D. K. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front. Immunol. 10, 1140 (2019).

    Article  CAS  Google Scholar 

  48. Baumann, I. et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 46, 191–201 (2002).

    Article  Google Scholar 

  49. Frank, M. M., Hamburger, M. I., Lawley, T. J., Kimberly, R. P. & Plotz, P. H. Defective reticuloendothelial system Fc-receptor function in systemic lupus erythematosus. N. Engl. J. Med. 300, 518–523 (1979).

    Article  CAS  Google Scholar 

  50. Labonte, A. C. et al. Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus. PLoS One 13, e0208132 (2018).

    Article  Google Scholar 

  51. Aringer, M. et al. Increased bioactive TNF in human systemic lupus erythematosus: associations with cell death. Lupus 11, 102–108 (2002).

    Article  CAS  Google Scholar 

  52. Umare, V. et al. Effect of proinflammatory cytokines (IL-6, TNF-α, and IL-1β) on clinical manifestations in Indian SLE patients. Mediators Inflamm. 2014, 385297 (2014).

    Article  Google Scholar 

  53. Hill, G. S. et al. Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int. 59, 304–316 (2001).

    Article  CAS  Google Scholar 

  54. Jing, C. et al. Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proc. Natl Acad. Sci. USA 117, 15160–15171 (2020).

    Article  CAS  Google Scholar 

  55. Sullivan, K. E. et al. The TNFα locus is altered in monocytes from patients with systemic lupus erythematosus. Clin. Immunol. 123, 74–81 (2007).

    Article  CAS  Google Scholar 

  56. Leung, Y. T. et al. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus. Epigenetics 10, 191–199 (2015).

    Article  Google Scholar 

  57. Zhang, Z., Maurer, K., Perin, J. C., Song, L. & Sullivan, K. E. Cytokine-induced monocyte characteristics in SLE. J. Biomed. Biotechnol. 2010, 507475 (2010).

    Article  Google Scholar 

  58. Zhang, Z., Song, L., Maurer, K., Petri, M. A. & Sullivan, K. E. Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes. Immun. 11, 124–133 (2010).

    Article  CAS  Google Scholar 

  59. Zhang, Z. et al. Interferon regulatory factor 1 marks activated genes and can induce target gene expression in systemic lupus erythematosus. Arthritis Rheumatol. 67, 785–796 (2015).

    Article  CAS  Google Scholar 

  60. Kamada, R. et al. Interferon stimulation creates chromatin marks and establishes transcriptional memory. Proc. Natl Acad. Sci. USA 115, E9162–E9171 (2018).

    Article  CAS  Google Scholar 

  61. Grigoriou, M. et al. Transcriptome reprogramming and myeloid skewing in haematopoietic stem and progenitor cells in systemic lupus erythematosus. Ann. Rheum. Dis. 79, 242–253 (2020).

    Article  CAS  Google Scholar 

  62. Kokkinopoulos, I. et al. Patrolling human SLE haematopoietic progenitors demonstrate enhanced extramedullary colonisation; implications for peripheral tissue injury. Sci. Rep. 11, 15759 (2021).

    Article  CAS  Google Scholar 

  63. Nakou, M. et al. Gene expression in systemic lupus erythematosus: bone marrow analysis differentiates active from inactive disease and reveals apoptosis and granulopoiesis signatures. Arthritis Rheum. 58, 3541–3549 (2008).

    Article  CAS  Google Scholar 

  64. Mishra, N., Reilly, C. M., Brown, D. R., Ruiz, P. & Gilkeson, G. S. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111, 539–552 (2003).

    Article  CAS  Google Scholar 

  65. Rother, N. et al. Hydroxychloroquine inhibits the trained innate immune response to interferons. Cell Rep. Med. 1, 100146 (2020).

    Article  CAS  Google Scholar 

  66. Jeljeli, M. et al. Trained immunity modulates inflammation-induced fibrosis. Nat. Commun. 10, 5670 (2019).

    Article  Google Scholar 

  67. Betjes, M. G. Immune cell dysfunction and inflammation in end-stage renal disease. Nat. Rev. Nephrol. 9, 255–265 (2013).

    Article  CAS  Google Scholar 

  68. Kara, I. H., Yilmaz, M. E., Suner, A., Kadiroglu, A. K. & Isikoglu, B. The evaluation of immune responses that occur after HBV infection and HBV vaccination in hemodialysis patients. Vaccine 22, 3963–3967 (2004).

    Article  Google Scholar 

  69. Garcia, P. et al. COVID-19 vaccine type and humoral immune response in patients receiving dialysis. J. Am. Soc. Nephrol. 33, 33–37 (2022).

    Article  CAS  Google Scholar 

  70. Council, E.-E. & Group, E. W. Chronic kidney disease is a key risk factor for severe COVID-19: a call to action by the ERA-EDTA. Nephrol. Dial. Transpl. 36, 87–94 (2021).

    Article  Google Scholar 

  71. Hilbrands, L. B. et al. COVID-19-related mortality in kidney transplant and dialysis patients: results of the ERACODA collaboration. Nephrol. Dial. Transpl. 35, 1973–1983 (2020).

    Article  CAS  Google Scholar 

  72. Akar, H., Akar, G. C., Carrero, J. J., Stenvinkel, P. & Lindholm, B. Systemic consequences of poor oral health in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 6, 218–226 (2011).

    Article  Google Scholar 

  73. Sarnak, M. J. & Jaber, B. L. Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. Kidney Int. 58, 1758–1764 (2000).

    Article  CAS  Google Scholar 

  74. Stewart, J. H. et al. The pattern of excess cancer in dialysis and transplantation. Nephrol. Dial. Transpl. 24, 3225–3231 (2009).

    Article  Google Scholar 

  75. Yeun, J. Y., Levine, R. A., Mantadilok, V. & Kaysen, G. A. C-reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am. J. Kidney Dis. 35, 469–476 (2000).

    Article  CAS  Google Scholar 

  76. Himmelfarb, J., Stenvinkel, P., Ikizler, T. A. & Hakim, R. M. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 62, 1524–1538 (2002).

    Article  CAS  Google Scholar 

  77. Samouilidou, E. C. et al. Lipid abnormalities and oxidized LDL in chronic kidney disease patients on hemodialysis and peritoneal dialysis. Ren. Fail. 34, 160–164 (2012).

    Article  CAS  Google Scholar 

  78. Diepeveen, S. H. et al. Oxidative stress in patients with end-stage renal disease prior to the start of renal replacement therapy. Nephron Clin. Pract. 98, c3–c7 (2004).

    Article  CAS  Google Scholar 

  79. Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114, 1852–1866 (2014).

    Article  CAS  Google Scholar 

  80. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article  CAS  Google Scholar 

  81. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  Google Scholar 

  82. Rogacev, K. S. et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur. Heart J. 32, 84–92 (2011).

    Article  CAS  Google Scholar 

  83. Pertosa, G., Grandaliano, G., Gesualdo, L. & Schena, F. P. Clinical relevance of cytokine production in hemodialysis. Kidney Int. Suppl. 76, S104–S111 (2000).

    Article  CAS  Google Scholar 

  84. de Cal, M. et al. Oxidative stress and ‘monocyte reprogramming’ after kidney transplant: a longitudinal study. Blood Purif. 26, 105–110 (2008).

    Article  Google Scholar 

  85. Sela, S. et al. Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2431–2438 (2005).

    Article  CAS  Google Scholar 

  86. Zawada, A. M. et al. SuperTAG methylation-specific digital karyotyping reveals uremia-induced epigenetic dysregulation of atherosclerosis-related genes. Circ. Cardiovasc. Genet. 5, 611–620 (2012).

    Article  Google Scholar 

  87. Li, X. et al. Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities. Cell 185, 1709–1727 e1718 (2022).

    Article  CAS  Google Scholar 

  88. Bekkering, S. et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler. Thromb. Vasc. Biol. 34, 1731–1738 (2014).

    Article  CAS  Google Scholar 

  89. Crisan, T. O. et al. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann. Rheum. Dis. 75, 755–762 (2016).

    Article  CAS  Google Scholar 

  90. Cabau, G., Crisan, T. O., Kluck, V., Popp, R. A. & Joosten, L. A. B. Urate-induced immune programming: consequences for gouty arthritis and hyperuricemia. Immunol. Rev. 294, 92–105 (2020).

    Article  CAS  Google Scholar 

  91. Joosten, L. A. B., Crisan, T. O., Bjornstad, P. & Johnson, R. J. Asymptomatic hyperuricaemia: a silent activator of the innate immune system. Nat. Rev. Rheumatol. 16, 75–86 (2020).

    Article  CAS  Google Scholar 

  92. Zawada, A. M. et al. Serum uric acid and mortality risk among hemodialysis patients. Kidney Int. Rep. 5, 1196–1206 (2020).

    Article  Google Scholar 

  93. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion–from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    Article  CAS  Google Scholar 

  94. Fernandez, A. R., Sanchez-Tarjuelo, R., Cravedi, P., Ochando, J. & Lopez-Hoyos, M. Review: ischemia reperfusion injury-a translational perspective in organ transplantation. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21228549 (2020).

    Article  Google Scholar 

  95. Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA 106, 20388–20393 (2009).

    Article  CAS  Google Scholar 

  96. McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).

    Article  CAS  Google Scholar 

  97. Amores-Iniesta, J. et al. Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection. Cell Rep. 21, 3414–3426 (2017).

    Article  CAS  Google Scholar 

  98. Barbera-Cremades, M. et al. P2X7 receptor induces tumor necrosis factor-alpha converting enzyme activation and release to boost TNF-α production. Front. Immunol. 8, 862 (2017).

    Article  Google Scholar 

  99. Vergani, A. et al. Long-term heart transplant survival by targeting the ionotropic purinergic receptor P2X7. Circulation 127, 463–475 (2013).

    Article  CAS  Google Scholar 

  100. Isenberg, J. S., Frazier, W. A. & Roberts, D. D. Thrombospondin-1: a physiological regulator of nitric oxide signaling. Cell Mol. Life Sci. 65, 728–742 (2008).

    Article  CAS  Google Scholar 

  101. Thakar, C. V. et al. Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia. J. Clin. Invest. 115, 3451–3459 (2005).

    Article  CAS  Google Scholar 

  102. Li, Y., Qi, X., Tong, X. & Wang, S. Thrombospondin 1 activates the macrophage Toll-like receptor 4 pathway. Cell Mol. Immunol. 10, 506–512 (2013).

    Article  CAS  Google Scholar 

  103. Stein, E. V., Miller, T. W., Ivins-O’Keefe, K., Kaur, S. & Roberts, D. D. Secreted thrombospondin-1 regulates macrophage interleukin-1β production and activation through CD47. Sci. Rep. 6, 19684 (2016).

    Article  CAS  Google Scholar 

  104. Yamauchi, Y. et al. Thrombospondin-1 differentially regulates release of IL-6 and IL-10 by human monocytic cell line U937. Biochem. Biophys. Res. Commun. 290, 1551–1557 (2002).

    Article  CAS  Google Scholar 

  105. Batal, I. et al. The mechanisms of up-regulation of dendritic cell activity by oxidative stress. J. Leukoc. Biol. 96, 283–293 (2014).

    Article  Google Scholar 

  106. Jong, W. M. et al. Reduced acute myocardial ischemia-reperfusion injury in IL-6-deficient mice employing a closed-chest model. Inflamm. Res. 65, 489–499 (2016).

    Article  CAS  Google Scholar 

  107. Uehara, M. et al. Ischemia augments alloimmune injury through IL-6-driven CD4+ alloreactivity. Sci. Rep. 8, 2461 (2018).

    Article  Google Scholar 

  108. Solhjou, Z. et al. Novel application of localized nanodelivery of anti-interleukin-6 protects organ transplant from ischemia-reperfusion injuries. Am. J. Transpl. 17, 2326–2337 (2017).

    Article  CAS  Google Scholar 

  109. Zhao, H., Alam, A., Soo, A. P., George, A. J. T. & Ma, D. Ischemia-reperfusion injury reduces long term renal graft survival: mechanism and beyond. EBioMedicine 28, 31–42 (2018).

    Article  Google Scholar 

  110. Fagenson, A. M. et al. Liver ischemia reperfusion injury, enhanced by trained immunity, is attenuated in caspase 1/caspase 11 double gene knockout mice. Pathogens https://doi.org/10.3390/pathogens9110879 (2020).

    Article  Google Scholar 

  111. Tammaro, A., Kers, J., Scantlebery, A. M. L. & Florquin, S. Metabolic flexibility and innate immunity in renal ischemia reperfusion injury: the fine balance between adaptive repair and tissue degeneration. Front. Immunol. 11, 1346 (2020).

    Article  CAS  Google Scholar 

  112. Nankivell, B. J. & Alexander, S. I. Rejection of the kidney allograft. N. Engl. J. Med. 363, 1451–1462 (2010).

    Article  CAS  Google Scholar 

  113. Ochando, J., Ordikhani, F., Boros, P. & Jordan, S. The innate immune response to allotransplants: mechanisms and therapeutic potentials. Cell Mol. Immunol. 16, 350–356 (2019).

    Article  CAS  Google Scholar 

  114. Poggio, E. D., Augustine, J. J., Arrigain, S., Brennan, D. C. & Schold, J. D. Long-term kidney transplant graft survival-making progress when most needed. Am. J. Transpl. 21, 2824–2832 (2021).

    Article  Google Scholar 

  115. Garcia, M. R. et al. Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J. Clin. Invest. 120, 2486–2496 (2010).

    Article  CAS  Google Scholar 

  116. Zecher, D., van Rooijen, N., Rothstein, D. M., Shlomchik, W. D. & Lakkis, F. G. An innate response to allogeneic nonself mediated by monocytes. J. Immunol. 183, 7810–7816 (2009).

    Article  CAS  Google Scholar 

  117. Dai, H. et al. Donor SIRPα polymorphism modulates the innate immune response to allogeneic grafts. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aam6202 (2017).

    Article  Google Scholar 

  118. Dai, H. et al. PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science 368, 1122–1127 (2020).

    Article  CAS  Google Scholar 

  119. Braza, M. S. et al. Inhibiting inflammation with myeloid cell-specific nanobiologics promotes organ transplant acceptance. Immunity 49, 819–828 e816 (2018).

    Article  CAS  Google Scholar 

  120. Thiagarajan, P. S. et al. Vimentin is an endogenous ligand for the pattern recognition receptor Dectin-1. Cardiovasc. Res. 99, 494–504 (2013).

    Article  CAS  Google Scholar 

  121. Yang, H. et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc. Natl Acad. Sci. USA 107, 11942–11947 (2010).

    Article  CAS  Google Scholar 

  122. Azimzadeh, A. M. et al. Humoral immunity to vimentin is associated with cardiac allograft injury in nonhuman primates. Am. J. Transpl. 5, 2349–2359 (2005).

    Article  CAS  Google Scholar 

  123. Huang, Y. et al. Extracellular hmgb1 functions as an innate immune-mediator implicated in murine cardiac allograft acute rejection. Am. J. Transpl. 7, 799–808 (2007).

    Article  CAS  Google Scholar 

  124. Fishman, J. A. Infection in organ transplantation. Am. J. Transpl. 17, 856–879 (2017).

    Article  CAS  Google Scholar 

  125. Salehi, S. & Reed, E. F. The divergent roles of macrophages in solid organ transplantation. Curr. Opin. Organ. Transpl. 20, 446–453 (2015).

    Article  CAS  Google Scholar 

  126. Jiang, X., Tian, W., Sung, Y. K., Qian, J. & Nicolls, M. R. Macrophages in solid organ transplantation. Vasc. Cell 6, 5 (2014).

    Article  Google Scholar 

  127. Ahmed, E. B., Wang, T., Daniels, M., Alegre, M. L. & Chong, A. S. IL-6 induced by Staphylococcus aureus infection prevents the induction of skin allograft acceptance in mice. Am. J. Transpl. 11, 936–946 (2011).

    Article  CAS  Google Scholar 

  128. Kapetanovic, R. et al. Contribution of phagocytosis and intracellular sensing for cytokine production by Staphylococcus aureus-activated macrophages. Infect. Immun. 75, 830–837 (2007).

    Article  CAS  Google Scholar 

  129. Wang, T. et al. Infection with the intracellular bacterium, Listeria monocytogenes, overrides established tolerance in a mouse cardiac allograft model. Am. J. Transpl. 10, 1524–1533 (2010).

    Article  CAS  Google Scholar 

  130. Wang, T. et al. Prevention of allograft tolerance by bacterial infection with Listeria monocytogenes. J. Immunol. 180, 5991–5999 (2008).

    Article  CAS  Google Scholar 

  131. Shen, H. & Goldstein, D. R. IL-6 and TNF-α synergistically inhibit allograft acceptance. J. Am. Soc. Nephrol. 20, 1032–1040 (2009).

    Article  CAS  Google Scholar 

  132. Kaminski, H. & Fishman, J. A. The cell biology of cytomegalovirus: implications for transplantation. Am. J. Transpl. 16, 2254–2269 (2016).

    Article  CAS  Google Scholar 

  133. Kapoor, A., Forman, M. & Arav-Boger, R. Activation of nucleotide oligomerization domain 2 (NOD2) by human cytomegalovirus initiates innate immune responses and restricts virus replication. PLoS One 9, e92704 (2014).

    Article  Google Scholar 

  134. Mitchell, B. M., Leung, A. & Stevens, J. G. Murine cytomegalovirus DNA in peripheral blood of latently infected mice is detectable only in monocytes and polymorphonuclear leukocytes. Virology 223, 198–207 (1996).

    Article  CAS  Google Scholar 

  135. Pulliam, L., Moore, D. & West, D. C. Human cytomegalovirus induces IL-6 and TNF α from macrophages and microglial cells: possible role in neurotoxicity. J. Neurovirol. 1, 219–227 (1995).

    Article  CAS  Google Scholar 

  136. Hargett, D. & Shenk, T. E. Experimental human cytomegalovirus latency in CD14+ monocytes. Proc. Natl Acad. Sci. USA 107, 20039–20044 (2010).

    Article  CAS  Google Scholar 

  137. Smith, P. D. et al. Cytomegalovirus enhances macrophage TLR expression and MyD88-mediated signal transduction to potentiate inducible inflammatory responses. J. Immunol. 193, 5604–5612 (2014).

    Article  CAS  Google Scholar 

  138. Sen, P. et al. Linking indirect effects of cytomegalovirus in transplantation to modulation of monocyte innate immune function. Sci. Adv. 6, eaax9856 (2020).

    Article  CAS  Google Scholar 

  139. Cook, C. H. et al. Disruption of murine cardiac allograft acceptance by latent cytomegalovirus. Am. J. Transpl. 9, 42–53 (2009).

    Article  CAS  Google Scholar 

  140. Zuhair, M. et al. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev. Med. Virol. 29, e2034 (2019).

    Article  Google Scholar 

  141. Brown, G. D. et al. Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med. 197, 1119–1124 (2003).

    Article  CAS  Google Scholar 

  142. Tang, C. et al. Inhibition of Dectin-1 signaling ameliorates colitis by inducing lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 18, 183–197 (2015).

    Article  CAS  Google Scholar 

  143. Xie, J. et al. Laminarin-mediated targeting to Dectin-1 enhances antigen-specific immune responses. Biochem. Biophys. Res. Commun. 391, 958–962 (2010).

    Article  CAS  Google Scholar 

  144. Wang, J. E. et al. Peptidoglycan primes for LPS-induced release of proinflammatory cytokines in whole human blood. Shock 16, 178–182 (2001).

    Article  CAS  Google Scholar 

  145. Wray, G. M., Foster, S. J., Hinds, C. J. & Thiemermann, C. A cell wall component from pathogenic and non-pathogenic gram-positive bacteria (peptidoglycan) synergises with endotoxin to cause the release of tumour necrosis factor-α, nitric oxide production, shock, and multiple organ injury/dysfunction in the rat. Shock 15, 135–142 (2001).

    Article  CAS  Google Scholar 

  146. Juarez-Verdayes, M. A., Rodriguez-Martinez, S., Cancino-Diaz, M. E. & Cancino-Diaz, J. C. Peptidoglycan and muramyl dipeptide from Staphylococcus aureus induce the expression of VEGF-A in human limbal fibroblasts with the participation of TLR2-NFB and NOD2-EGFR. Graefes Arch. Clin. Exp. Ophthalmol. 251, 53–62 (2013).

    Article  CAS  Google Scholar 

  147. Ogawa, C., Liu, Y. J. & Kobayashi, K. S. Muramyl dipeptide and its derivatives: peptide adjuvant in immunological disorders and cancer therapy. Curr. Bioact. Compd. 7, 180–197 (2011).

    Article  CAS  Google Scholar 

  148. Rickard, D. J. et al. Identification of benzimidazole diamides as selective inhibitors of the nucleotide-binding oligomerization domain 2 (NOD2) signaling pathway. PLoS One 8, e69619 (2013).

    Article  CAS  Google Scholar 

  149. Lenis, A. T., Lec, P. M., Chamie, K. & Mshs, M. D. Bladder cancer: a review. JAMA 324, 1980–1991 (2020).

    Article  CAS  Google Scholar 

  150. Lobo, N. et al. 100 years of Bacillus Calmette-Guerin immunotherapy: from cattle to COVID-19. Nat. Rev. Urol. 18, 611–622 (2021).

    Article  CAS  Google Scholar 

  151. Bisiaux, A. et al. Molecular analyte profiling of the early events and tissue conditioning following intravesical bacillus Calmette-Guerin therapy in patients with superficial bladder cancer. J. Urol. 181, 1571–1580 (2009).

    Article  CAS  Google Scholar 

  152. Priem, B. et al. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183, 786–801 e719 (2020).

    Article  CAS  Google Scholar 

  153. Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 116, 180–183 (1976).

    Article  CAS  Google Scholar 

  154. Patard, J. J. et al. Intravesical Bacillus Calmette-Guerin treatment improves patient survival in T1G3 bladder tumours. Eur. Urol. 41, 635–641 (2002).

    Article  Google Scholar 

  155. Moorlag, S., Arts, R. J. W., van Crevel, R. & Netea, M. G. Non-specific effects of BCG vaccine on viral infections. Clin. Microbiol. Infect. 25, 1473–1478 (2019).

    Article  CAS  Google Scholar 

  156. Teufel, L. U., Arts, R. J. W., Netea, M. G., Dinarello, C. A. & Joosten, L. A. B. IL-1 family cytokines as drivers and inhibitors of trained immunity. Cytokine 150, 155773 (2022).

    Article  CAS  Google Scholar 

  157. Dinarello, C. A., Simon, A. & van der Meer, J. W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 633–652 (2012).

    Article  CAS  Google Scholar 

  158. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  Google Scholar 

  159. Dinarello, C. A., Koch, K. M. & Shaldon, S. Interleukin-1 and its relevance in patients treated with hemodialysis. Kidney Int. Suppl. 24, S21–S26 (1988).

    CAS  Google Scholar 

  160. Hung, A. M., Ellis, C. D., Shintani, A., Booker, C. & Ikizler, T. A. IL-1β receptor antagonist reduces inflammation in hemodialysis patients. J. Am. Soc. Nephrol. 22, 437–442 (2011).

    Article  CAS  Google Scholar 

  161. Nowak, K. L. et al. IL-1 inhibition and vascular function in CKD. J. Am. Soc. Nephrol. 28, 971–980 (2017).

    Article  CAS  Google Scholar 

  162. Mulder, W. J. M., Ochando, J., Joosten, L. A. B., Fayad, Z. A. & Netea, M. G. Therapeutic targeting of trained immunity. Nat. Rev. Drug. Discov. 18, 553–566 (2019).

    Article  CAS  Google Scholar 

  163. Lawrence, R. E. & Zoncu, R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 21, 133–142 (2019).

    Article  CAS  Google Scholar 

  164. Bekkering, S. et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell 172, 135–146 e139 (2018).

    Article  CAS  Google Scholar 

  165. Sohrabi, Y. et al. LXR activation induces a proinflammatory trained innate immunity-phenotype in human monocytes. Front. Immunol. 11, 353 (2020).

    Article  CAS  Google Scholar 

  166. van der Heijden, C. et al. Aldosterone induces trained immunity: the role of fatty acid synthesis. Cardiovasc. Res. 116, 317–328 (2020).

    Google Scholar 

  167. Kiefer, J. et al. An unbiased flow cytometry-based approach to assess subset-specific circulating monocyte activation and cytokine profile in whole blood. Front. Immunol. 12, 641224 (2021).

    Article  CAS  Google Scholar 

  168. Arts, R. J. W. et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23, 89–100 e105 (2018).

    Article  CAS  Google Scholar 

  169. Dos Santos, J. C. et al. β-Glucan-induced trained immunity protects against Leishmania braziliensis infection: a crucial role for IL-32. Cell Rep. 28, 2659–2672 e2656 (2019).

    Article  Google Scholar 

  170. Arts, R. J. et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 24, 807–819 (2016).

    Article  CAS  Google Scholar 

  171. Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011).

    Article  CAS  Google Scholar 

  172. Chacko, B. K. et al. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab. Invest. 93, 690–700 (2013).

    Article  CAS  Google Scholar 

  173. Nicholls, D. G. et al. Bioenergetic profile experiment using C2C12 myoblast cells. J. Vis. Exp. https://doi.org/10.3791/2511 (2010).

    Article  Google Scholar 

  174. Mourits, V. P. et al. Lysine methyltransferase G9a is an important modulator of trained immunity. Clin. Transl. Immunol. 10, e1253 (2021).

    Article  CAS  Google Scholar 

  175. van der Heijden, C. et al. Catecholamines induce trained immunity in monocytes in vitro and in vivo. Circ. Res. 127, 269–283 (2020).

    Article  Google Scholar 

  176. Rodriguez-Ubreva, J. & Ballestar, E. Chromatin immunoprecipitation. Methods Mol. Biol. 1094, 309–318 (2014).

    Article  CAS  Google Scholar 

  177. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  Google Scholar 

  178. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  Google Scholar 

  179. Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

    Article  CAS  Google Scholar 

  180. de Almeida, M. C., Silva, A. C., Barral, A. & Barral Netto, M. A simple method for human peripheral blood monocyte isolation. Mem. Inst. Oswaldo Cruz 95, 221–223 (2000).

    Article  Google Scholar 

  181. Meital, L. T. et al. A simple and effective method for the isolation and culture of human monocytes from small volumes of peripheral blood. J. Immunol. Methods 472, 75–78 (2019).

    Article  CAS  Google Scholar 

  182. Ziegler-Heitbrock, L. et al. Nomenclature of monocytes and dendritic cells in blood. Blood 116, e74–e80 (2010).

    Article  CAS  Google Scholar 

  183. Llitjos, J. F. et al. Assessing the functional heterogeneity of monocytes in human septic shock: a proof-of-concept microfluidic assay of TNFα secretion. Front. Immunol. 12, 686111 (2021).

    Article  CAS  Google Scholar 

  184. Marimuthu, R. et al. Characterization of human monocyte subsets by whole blood flow cytometry analysis. J. Vis. Exp. https://doi.org/10.3791/57941 (2018).

    Article  Google Scholar 

  185. Ong, S. M. et al. A novel, five-marker alternative to CD16-CD14 gating to identify the three human monocyte subsets. Front. Immunol. 10, 1761 (2019).

    Article  CAS  Google Scholar 

  186. Garaude, J. et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat. Immunol. 17, 1037–1045 (2016).

    Article  CAS  Google Scholar 

  187. Monteiro, L. B., Davanzo, G. G., de Aguiar, C. F. & Moraes-Vieira, P. M. M. Using flow cytometry for mitochondrial assays. MethodsX 7, 100938 (2020).

    Article  CAS  Google Scholar 

  188. Geng, J. et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat. Immunol. 16, 1142–1152 (2015).

    Article  CAS  Google Scholar 

  189. Kauffman, M. E. et al. MitoSOX-based flow cytometry for detecting mitochondrial ROS. React. Oxyg. Species 2, 361–370 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by National Institutes of Health grants R01 AI139623AI (J.O.); Vici grant from the Dutch Research Council (NWO) and European Research Council Advanced Grant (TOLERANCE) (W.J.M.M.); European Research Council Consolidator Grant (310372) and Spinoza Grant of the Netherlands Organization for Scientific Research (M.G.N.); P01 HL158504 (J.C.M.); and Hypatia grant by the Radboud University Medical Center and Senior Kolff grant by the Dutch Kidney Foundation (R.D.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding authors

Correspondence to Jordi Ochando or Raphaël Duivenvoorden.

Ethics declarations

Competing interests

J.O., W.J.M.M., and M.G.N. declare that they are scientific founders of Trained Therapeutics Discovery. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks C. Kurts, X. Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochando, J., Mulder, W.J.M., Madsen, J.C. et al. Trained immunity — basic concepts and contributions to immunopathology. Nat Rev Nephrol 19, 23–37 (2023). https://doi.org/10.1038/s41581-022-00633-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-022-00633-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing