Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in CRISPR therapeutics

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR) renaissance was catalysed by the discovery that RNA-guided prokaryotic CRISPR-associated (Cas) proteins can create targeted double-strand breaks in mammalian genomes. This finding led to the development of CRISPR systems that harness natural DNA repair mechanisms to repair deficient genes more easily and precisely than ever before. CRISPR has been used to knock out harmful mutant genes and to fix errors in coding sequences to rescue disease phenotypes in preclinical studies and in several clinical trials. However, most genetic disorders result from combinations of mutations, deletions and duplications in the coding and non-coding regions of the genome and therefore require sophisticated genome engineering strategies beyond simple gene knockout. To overcome this limitation, the toolbox of natural and engineered CRISPR–Cas systems has been dramatically expanded to include diverse tools that function in human cells for precise genome editing and epigenome engineering. The application of CRISPR technology to edit the non-coding genome, modulate gene regulation, make precise genetic changes and target infectious diseases has the potential to lead to curative therapies for many previously untreatable diseases.

Key points

  • CRISPR systems are RNA-guided ribonucleoproteins that function as both sequence-specific nucleic acid-targeting proteins and nucleases; these systems are being developed as therapies for simple Mendelian disorders.

  • Novel approaches using newly discovered CRISPR systems and Cas protein engineering have expanded the available genome engineering toolbox, enabling the development of potentially curative therapies for diseases with complex drivers.

  • Targeting and altering the non-coding genome with CRISPR could potentially ameliorate disease by changing the transcription or translation of target genes.

  • The use of CRISPR systems with nuclease-dead Cas proteins fused to transcriptional or epigenetic modulators enables targeted gene regulation without inducing DNA damage or altering the genetic code.

  • CRISPR base editors and prime editors can be used to create precise genome edits such as therapeutic mutations, insertions or deletions that are difficult to achieve using wild-type CRISPR–Cas nucleases.

  • In addition to genome engineering, the CRISPR toolbox could potentially be used to prevent and treat infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The CRISPR–Cas9 system.
Fig. 2: Natural Cas systems.
Fig. 3: Genome engineering using engineered Cas proteins.
Fig. 4: Editing non-coding regions of the genome.

Similar content being viewed by others

References

  1. Cooper, M. D. & Alder, M. N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    Article  CAS  Google Scholar 

  2. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987).

    Article  CAS  Google Scholar 

  3. Mojica, F. J. M., Díez-Villaseñor, C., Soria, E. & Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36, 244–246 (2000).

    Article  CAS  Google Scholar 

  4. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).

    Article  CAS  Google Scholar 

  5. Jansen, R., Embden, J. D. Av, Gaastra, W. & Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002).

    Article  CAS  Google Scholar 

  6. Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 1, e60 (2005).

    Article  Google Scholar 

  7. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  Google Scholar 

  8. Jiang, F. & Doudna, J. A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    Article  CAS  Google Scholar 

  9. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  10. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  11. Konishi, C. T. & Long, C. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases. J. Biomed. Res. 35, 148–162 (2020).

    Article  Google Scholar 

  12. Wu, S. S., Li, Q. C., Yin, C. Q., Xue, W. & Song, C. Q. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics 10, 4374–4382 (2020).

    Article  CAS  Google Scholar 

  13. Kotagama, O. W., Jayasinghe, C. D. & Abeysinghe, T. Era of genomic medicine: a narrative review on CRISPR technology as a potential therapeutic tool for human diseases. BioMed. Res. Int. 2019, 1369682 (2019).

    Article  Google Scholar 

  14. Hirakawa, M. P., Krishnakumar, R., Timlin, J. A., Carney, J. P. & Butler, K. S. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci. Rep. 40, BSR20200127 (2020).

    Article  CAS  Google Scholar 

  15. Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).

    Article  CAS  Google Scholar 

  16. Davis, A. J. & Chen, D. J. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2, 130–143 (2013).

    CAS  Google Scholar 

  17. Gaj, T., Gersbach, C. A. & Barbas, C. F. 3rd ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    Article  CAS  Google Scholar 

  18. Gupta, R. M. & Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Invest. 124, 4154–4161 (2014).

    Article  Google Scholar 

  19. Khan, S. H. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol. Ther. Nucleic Acids 16, 326–334 (2019).

    Article  CAS  Google Scholar 

  20. Adams, D., Koike, H., Slama, M. & Coelho, T. Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat. Rev. Neurol. 15, 387–404 (2019).

    Article  CAS  Google Scholar 

  21. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  Google Scholar 

  22. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04601051 (2021).

  23. Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).

    Article  CAS  Google Scholar 

  24. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  CAS  Google Scholar 

  25. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  Google Scholar 

  26. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385–397 (2015).

    Article  CAS  Google Scholar 

  27. Yan, W. X. et al. Functionally diverse type V CRISPR-Cas systems. Science 363, 88–91 (2019).

    Article  CAS  Google Scholar 

  28. Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).

    Article  CAS  Google Scholar 

  29. Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018).

    Article  CAS  Google Scholar 

  30. Pausch, P. et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    Article  CAS  Google Scholar 

  31. Strecker, J. et al. Engineering of CRISPR-Cas12b for human genome editing. Nat. Commun. 10, 212 (2019).

    Article  CAS  Google Scholar 

  32. Liu, J.-J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019).

    Article  CAS  Google Scholar 

  33. Xu, X. et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345 (2021).

    Article  CAS  Google Scholar 

  34. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676 (2018).

    Article  CAS  Google Scholar 

  35. Zheng, Y. et al. Endogenous type I CRISPR-Cas: from foreign DNA defense to prokaryotic engineering. Front. Bioeng. Biotechnol. 8, 62 (2020).

    Article  Google Scholar 

  36. Dolan, A. E. et al. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. Mol. Cell 74, 936–950 (2019).

    Article  CAS  Google Scholar 

  37. Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).

    Article  CAS  Google Scholar 

  38. Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).

    Article  CAS  Google Scholar 

  39. Liu, R., Liang, L., Freed, E. F. & Gill, R. T. Directed evolution of CRISPR/Cas systems for precise gene editing. Trends Biotechnol. 39, 262–273 (2021).

    Article  CAS  Google Scholar 

  40. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  CAS  Google Scholar 

  41. DeWeirdt, P. C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39, 94–104 (2021).

    Article  CAS  Google Scholar 

  42. Guo, L. Y. et al. Multiplexed genome regulation in vivo with hyper-efficient Cas12a. Nat. Cell Biol. 24, 590–600 (2022).

    Article  CAS  Google Scholar 

  43. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  Google Scholar 

  44. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  Google Scholar 

  45. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  Google Scholar 

  46. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  Google Scholar 

  47. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  Google Scholar 

  48. Nakamura, M., Gao, Y., Dominguez, A. A. & Qi, L. S. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 23, 11–22 (2021).

    Article  CAS  Google Scholar 

  49. Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D. & Platt, R. J. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat. Methods 16, 887–893 (2019).

    Article  CAS  Google Scholar 

  50. Kempton, H. R., Goudy, L. E., Love, K. S. & Qi, L. S. Multiple input sensing and signal integration using a split Cas12a system. Mol. Cell 78, 184–191 (2020).

    Article  CAS  Google Scholar 

  51. Tang, T., Han, Y., Wang, Y., Huang, H. & Qian, P. Programmable system of Cas13-mediated RNA modification and its biological and biomedical applications. Front. Cell Dev. Biol. 9, 677587 (2021).

    Article  Google Scholar 

  52. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  Google Scholar 

  53. Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).

    Article  Google Scholar 

  54. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9–cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  Google Scholar 

  55. Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).

    Article  CAS  Google Scholar 

  56. Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463–480 (2020).

    Article  CAS  Google Scholar 

  57. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  Google Scholar 

  58. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  Google Scholar 

  59. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    Article  CAS  Google Scholar 

  60. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).

    Article  CAS  Google Scholar 

  61. Grünewald, J. et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. 38, 861–864 (2020).

    Article  Google Scholar 

  62. Zhang, X. et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. 38, 856–860 (2020).

    Article  CAS  Google Scholar 

  63. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  Google Scholar 

  64. Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

    Article  CAS  Google Scholar 

  65. Leroy, B. P. et al. Leber congenital amaurosis due to CEP290 mutations-severe vision impairment with a high unmet medical need: a review. Retina 41, 898–907 (2021).

    Article  CAS  Google Scholar 

  66. Maeder, M. L. et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 25, 229–233 (2019).

    Article  CAS  Google Scholar 

  67. Cheng, T. C. et al. β-Thalassemia in Chinese: use of in vivo RNA analysis and oligonucleotide hybridization in systematic characterization of molecular defects. Proc. Natl Acad. Sci. USA 81, 2821–2825 (1984).

    Article  CAS  Google Scholar 

  68. Xu, P. et al. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C>T) mutation in β-thalassemia-derived iPSCs. Sci. Rep. 5, 12065 (2015).

    Article  Google Scholar 

  69. Hanses, U. et al. Intronic CRISPR repair in a preclinical model of noonan syndrome-associated cardiomyopathy. Circulation 142, 1059–1076 (2020).

    Article  CAS  Google Scholar 

  70. Sanz, D. J., Hollywood, J. A., Scallan, M. F. & Harrison, P. T. Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA. PLoS ONE 12, e0184009 (2017).

    Article  Google Scholar 

  71. Bladen, C. L. et al. The TREAT-NMD DMD global database: analysis of more than 7000 Duchenne muscular dystrophy mutations. Hum. Mutat. 36, 395–402 (2015).

    Article  CAS  Google Scholar 

  72. Ousterout, D. G. et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun. 6, 6244 (2015).

    Article  CAS  Google Scholar 

  73. Amoasii, L. et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci. Transl Med. 9, eaan8081 (2017).

    Article  Google Scholar 

  74. Martinez-Lage, M. et al. In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat. Commun. 11, 5060 (2020).

    Article  CAS  Google Scholar 

  75. Ranum, L. P. W. & Cooper, T. A. RNA-mediated neuromuscular disorders. Annu. Rev. Neurosci. 29, 259–277 (2006).

    Article  CAS  Google Scholar 

  76. Wang, Y. et al. Therapeutic genome editing for myotonic dystrophy type 1 using CRISPR/Cas9. Mol. Ther. 26, 2617–2630 (2018).

    Article  CAS  Google Scholar 

  77. Sengupta, K. et al. Genome editing-mediated utrophin upregulation in Duchenne muscular dystrophy stem cells. Mol. Ther. Nucleic Acids 22, 500–509 (2020).

    Article  CAS  Google Scholar 

  78. Kolli, N., Lu, M., Maiti, P., Rossignol, J. & Dunbar, G. L. CRISPR-Cas9 mediated gene-silencing of the mutant huntingtin gene in an in vitro model of Huntington’s disease. Int. J. Mol. Sci. 18, 754 (2017).

    Article  Google Scholar 

  79. Nagata, K. et al. Generation of App knock-in mice reveals deletion mutations protective against Alzheimer’s disease-like pathology. Nat. Commun. 9, 1800 (2018).

    Article  Google Scholar 

  80. Piel, F. B., Steinberg, M. H. & Rees, D. C. Sickle cell disease. N. Engl. J. Med. 376, 1561–1573 (2017).

    Article  CAS  Google Scholar 

  81. Galanello, R. & Origa, R. Beta-thalassemia. Orphanet J. Rare Dis. 5, 11 (2010).

    Article  Google Scholar 

  82. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  Google Scholar 

  83. Luc, S. et al. Bcl11a deficiency leads to hematopoietic stem cell defects with an aging-like phenotype. Cell Rep. 16, 3181–3194 (2016).

    Article  CAS  Google Scholar 

  84. Yu, Y. et al. Bcl11a is essential for lymphoid development and negatively regulates p53. J. Exp. Med. 209, 2467–2483 (2012).

    Article  CAS  Google Scholar 

  85. Robinson, J., Holmes, K. & Carroll, J. FOXA1 mutations in hormone-dependent cancers. Front. Oncol. 3, 20 (2013).

    Article  Google Scholar 

  86. Zhou, S. et al. Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer. Nat. Commun. 11, 441 (2020).

    Article  CAS  Google Scholar 

  87. Shin, J. W. et al. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum. Mol. Genet. 25, 4566–4576 (2016).

    CAS  Google Scholar 

  88. Monteys, A. M., Ebanks, S. A., Keiser, M. S. & Davidson, B. L. CRISPR/Cas9 editing of the mutant Huntingtin allele in vitro and in vivo. Mol. Ther. 25, 12–23 (2017).

    Article  CAS  Google Scholar 

  89. Slack, F. J. & Chinnaiyan, A. M. The role of non-coding RNAs in oncology. Cell 179, 1033–1055 (2019).

    Article  CAS  Google Scholar 

  90. Buiting, K., Williams, C. & Horsthemke, B. Angelman syndrome — insights into a rare neurogenetic disorder. Nat. Rev. Neurol. 12, 584–593 (2016).

    Article  CAS  Google Scholar 

  91. Wolter, J. M. et al. Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA. Nature 587, 281–284 (2020).

    Article  CAS  Google Scholar 

  92. Schmid, R. S. et al. CRISPR/Cas9 directed to the Ube3a antisense transcript improves Angelman syndrome phenotype in mice. J. Clin. Invest. 131, e142574 (2021).

    Article  CAS  Google Scholar 

  93. Singh, R. et al. Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis. 7, e2262 (2016).

    Article  CAS  Google Scholar 

  94. Koirala, P. et al. LncRNA AK023948 is a positive regulator of AKT. Nat. Commun. 8, 14422 (2017).

    Article  CAS  Google Scholar 

  95. Peng, W. X., Huang, J. G., Yang, L., Gong, A. H. & Mo, Y. Y. Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer. Mol. Cancer 16, 161 (2017).

    Article  Google Scholar 

  96. Zhen, S. et al. Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer. Oncotarget 8, 9634–9646 (2017).

    Article  Google Scholar 

  97. Yu, Y., Nangia-Makker, P., Farhana, L. & Majumdar, A. P. N. A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells. Mol. Cancer 16, 155 (2017).

    Article  Google Scholar 

  98. Ye, X.-T., Huang, H., Huang, W.-P. & Hu, W.-L. LncRNA THOR promotes human renal cell carcinoma cell growth. Biochem. Biophys. Res. Commun. 501, 661–667 (2018).

    Article  CAS  Google Scholar 

  99. Zhuo, W. et al. Long noncoding RNA GMAN, up-regulated in gastric cancer tissues, is associated with metastasis in patients and promotes translation of ephrin A1 by competitively binding GMAN-AS. Gastroenterology 156, 676–691 (2019).

    Article  CAS  Google Scholar 

  100. Li, C. et al. CRISPR-CasRx targeting LncRNA LINC00341 inhibits tumor cell growth in vitro and in vivo. Front. Mol. Biosci. 8, 638995 (2021).

    Article  CAS  Google Scholar 

  101. Li, J. et al. miR-29b contributes to multiple types of muscle atrophy. Nat. Commun. 8, 15201 (2017).

    Article  CAS  Google Scholar 

  102. Li, J. et al. CRISPR/Cas9-mediated miR-29b editing as a treatment of different types of muscle atrophy in mice. Mol. Ther. 28, 1359–1372 (2020).

    Article  CAS  Google Scholar 

  103. Jing, W. et al. CRISPR/CAS9-mediated genome editing of miRNA-155 inhibits proinflammatory cytokine production by RAW264.7 cells. BioMed. Res. Int. 2015, 326042 (2015).

    Article  Google Scholar 

  104. Nguyen, D.-D. & Chang, S. Development of novel therapeutic agents by inhibition of oncogenic microRNAs. Int. J. Mol. Sci. 19, 65 (2018).

    Article  Google Scholar 

  105. Huo, W. et al. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells. J. Cancer 8, 57–64 (2017).

    Article  CAS  Google Scholar 

  106. Yi, B. et al. CRISPR interference and activation of the microRNA-3662-HBP1 axis control progression of triple-negative breast cancer. Oncogene 41, 268–279 (2022).

    Article  CAS  Google Scholar 

  107. Hannafon, B. N. et al. miR-23b and miR-27b are oncogenic microRNAs in breast cancer: evidence from a CRISPR/Cas9 deletion study. BMC Cancer 19, 642 (2019).

    Article  Google Scholar 

  108. El Fatimy, R., Subramanian, S., Uhlmann, E. J. & Krichevsky, A. M. Genome editing reveals glioblastoma addiction to microRNA-10b. Mol. Ther. 25, 368–378 (2017).

    Article  CAS  Google Scholar 

  109. Nakamura, M., Ivec, A. E., Gao, Y. & Qi, L. S. Durable CRISPR-based epigenetic silencing. BioDesign Res. 2021, 9815820 (2021).

    Article  Google Scholar 

  110. Cox, J. J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).

    Article  CAS  Google Scholar 

  111. Moreno, A. M. et al. Long-lasting analgesia via targeted in situ repression of Na(V)1.7 in mice. Sci. Transl Med. 13, eaay9056 (2021).

    Article  CAS  Google Scholar 

  112. Limpitikul, W. B. et al. A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circ. Res. 120, 39–48 (2017).

    Article  CAS  Google Scholar 

  113. Moreno, A. M. et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol. Ther. 26, 1818–1827 (2018).

    Article  CAS  Google Scholar 

  114. Himeda, C. L., Jones, T. I. & Jones, P. L. CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Mol. Ther. 24, 527–535 (2016).

    Article  CAS  Google Scholar 

  115. Himeda, C. L., Jones, T. I. & Jones, P. L. Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. Mol. Ther. Methods Clin. Dev. 20, 298–311 (2021).

    Article  CAS  Google Scholar 

  116. Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).

    Article  CAS  Google Scholar 

  117. Kemaladewi, D. U. et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 572, 125–130 (2019).

    Article  CAS  Google Scholar 

  118. Perrin, A., Rousseau, J. & Tremblay, J. P. Increased expression of laminin subunit alpha 1 chain by dCas9-VP160. Mol. Ther. Nucleic Acids 6, 68–79 (2017).

    Article  CAS  Google Scholar 

  119. Wojtal, D. et al. Spell checking nature: versatility of CRISPR/Cas9 for developing treatments for inherited disorders. Am. J. Hum. Genet. 98, 90–101 (2016).

    Article  CAS  Google Scholar 

  120. Liao, H.-K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e1415 (2017).

    Article  CAS  Google Scholar 

  121. Giménez, C. A. et al. CRISPR-on system for the activation of the endogenous human INS gene. Gene Ther. 23, 543–547 (2016).

    Article  Google Scholar 

  122. Chen, C.-D., Zeldich, E., Li, Y., Yuste, A. & Abraham, C. R. Activation of the anti-aging and cognition-enhancing gene Klotho by CRISPR-dCas9 transcriptional effector complex. J. Mol. Neurosci. 64, 175–184 (2018).

    Article  CAS  Google Scholar 

  123. Heman-Ackah, S. M., Bassett, A. R. & Wood, M. J. A. Precision modulation of neurodegenerative disease-related gene expression in human iPSC-derived neurons. Sci. Rep. 6, 28420 (2016).

    Article  CAS  Google Scholar 

  124. Moses, C. et al. Activating PTEN tumor suppressor expression with the CRISPR/dCas9 system. Mol. Ther. Nucleic Acids 14, 287–300 (2019).

    Article  CAS  Google Scholar 

  125. Xu, X. et al. CRISPR-ON-mediated KLF4 overexpression inhibits the proliferation, migration and invasion of urothelial bladder cancer in vitro and in vivo. Oncotarget 8, 102078–102087 (2017).

    Article  Google Scholar 

  126. Poondla, N., Chandrasekaran, A. P., Heese, K., Kim, K. S. & Ramakrishna, S. CRISPR-mediated upregulation of DR5 and downregulation of cFLIP synergistically sensitize HeLa cells to TRAIL-mediated apoptosis. Biochem. Biophys. Res. Commun. 512, 60–65 (2019).

    Article  CAS  Google Scholar 

  127. Kardooni, H. et al. CRISPR-mediated reactivation of DKK3 expression attenuates TGF-β signaling in prostate cancer. Cancers 10, 165 (2018).

    Article  Google Scholar 

  128. Nguyen, N. T. K. et al. CRISPR activation of long non-coding RNA DANCR promotes bone regeneration. Biomaterials 275, 120965 (2021).

    Article  CAS  Google Scholar 

  129. Hsu, M. N. et al. CRISPR-based activation of endogenous neurotrophic genes in adipose stem cell sheets to stimulate peripheral nerve regeneration. Theranostics 9, 6099–6111 (2019).

    Article  CAS  Google Scholar 

  130. Lawrence, M., Daujat, S. & Schneider, R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 32, 42–56 (2016).

    Article  CAS  Google Scholar 

  131. Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519 (2021).

    Article  Google Scholar 

  132. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232 (2016).

    Article  CAS  Google Scholar 

  133. Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    Article  CAS  Google Scholar 

  134. Stepper, P. et al. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res. 45, 1703–1713 (2017).

    Article  CAS  Google Scholar 

  135. Kantor, B. et al. Downregulation of SNCA expression by targeted editing of DNA methylation: a potential strategy for precision therapy in PD. Mol. Ther. 26, 2638–2649 (2018).

    Article  CAS  Google Scholar 

  136. Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).

    Article  CAS  Google Scholar 

  137. Morita, S. et al. Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060–1065 (2016).

    Article  CAS  Google Scholar 

  138. de Esch, C. E. F. et al. Epigenetic characterization of the FMR1 promoter in induced pluripotent stem cells from human fibroblasts carrying an unmethylated full mutation. Stem Cell Rep. 3, 548–555 (2014).

    Article  Google Scholar 

  139. Liu, X. S. et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172, 979–992 (2018).

    Article  CAS  Google Scholar 

  140. Choudhury, S. R., Cui, Y., Lubecka, K., Stefanska, B. & Irudayaraj, J. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7, 46545–46556 (2016).

    Article  Google Scholar 

  141. Wang, Q. et al. Targeted demethylation of the SARI promotor impairs colon tumour growth. Cancer Lett. 448, 132–143 (2019).

    Article  CAS  Google Scholar 

  142. Xu, X. et al. High-fidelity CRISPR/Cas9-based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nat. Commun. 9, 3509 (2018).

    Article  Google Scholar 

  143. Marx, N. et al. CRISPR-based targeted epigenetic editing enables gene expression modulation of the silenced beta-galactoside alpha-2,6-sialyltransferase 1 in CHO cells. Biotechnol. J. 13, 1700217 (2018).

    Article  Google Scholar 

  144. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  Google Scholar 

  145. Gemberling, M. P. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965–974 (2021).

    Article  CAS  Google Scholar 

  146. Okada, M., Kanamori, M., Someya, K., Nakatsukasa, H. & Yoshimura, A. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Epigenetics Chromatin 10, 24 (2017).

    Article  Google Scholar 

  147. Liu, J., Sun, M., Cho, K. B., Gao, X. & Guo, B. A CRISPR-Cas9 repressor for epigenetic silencing of KRAS. Pharmacol. Res. 164, 105304 (2021).

    Article  CAS  Google Scholar 

  148. Wang, H. et al. Epigenetic targeting of granulin in hepatoma cells by synthetic CRISPR dCas9 Epi-suppressors. Mol. Ther. Nucleic Acids 11, 23–33 (2018).

    Article  CAS  Google Scholar 

  149. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    Article  CAS  Google Scholar 

  150. Lim, C. K. W. et al. Treatment of a mouse model of ALS by in vivo base editing. Mol. Ther. 28, 1177–1189 (2020).

    Article  CAS  Google Scholar 

  151. Ryu, S.-M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539 (2018).

    Article  CAS  Google Scholar 

  152. Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    Article  CAS  Google Scholar 

  153. Newby, G. A. et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295–302 (2021).

    Article  CAS  Google Scholar 

  154. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05456880 (2022).

  155. Antoniou, P., Miccio, A. & Brusson, M. Base and prime editing technologies for blood disorders. Front. Genome Ed. 3, 618406 (2021).

    Article  Google Scholar 

  156. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

    Article  CAS  Google Scholar 

  157. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  Google Scholar 

  158. Liu, P. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121 (2021).

    Article  CAS  Google Scholar 

  159. Zhi, S. et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol. Ther. 30, 283–294 (2022).

    Article  CAS  Google Scholar 

  160. Chemello, F. et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci. Adv. 7, eabg4910 (2021).

    Article  CAS  Google Scholar 

  161. Yin, D. et al. Targeting herpes simplex virus with CRISPR–Cas9 cures herpetic stromal keratitis in mice. Nat. Biotechnol. 39, 567–577 (2021).

    Article  CAS  Google Scholar 

  162. Yuen, K.-S. et al. CRISPR/Cas9-mediated genome editing of Epstein–Barr virus in human cells. J. Gen. Virol. 96, 626–636 (2015).

    Article  CAS  Google Scholar 

  163. Wang, J. & Quake, S. R. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc. Natl Acad. Sci. USA 111, 13157–13162 (2014).

    Article  CAS  Google Scholar 

  164. Ebina, H., Misawa, N., Kanemura, Y. & Koyanagi, Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 3, 2510 (2013).

    Article  Google Scholar 

  165. Kaminski, R. et al. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci. Rep. 6, 22555 (2016).

    Article  CAS  Google Scholar 

  166. Gao, Z., Fan, M., Das, A. T., Herrera-Carrillo, E. & Berkhout, B. Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA. Nucleic Acids Res. 48, 5527–5539 (2020).

    Article  CAS  Google Scholar 

  167. Hu, W. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl Acad. Sci. USA 111, 11461–11466 (2014).

    Article  CAS  Google Scholar 

  168. Zhu, W. et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12, 22 (2015).

    Article  Google Scholar 

  169. Zhen, S. et al. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther. 22, 404–412 (2015).

    Article  CAS  Google Scholar 

  170. Song, J. et al. CRISPR/Cas9-mediated knockout of HBsAg inhibits proliferation and tumorigenicity of HBV-positive hepatocellular carcinoma cells. J. Cell Biochem. 119, 8419–8431 (2018).

    Article  CAS  Google Scholar 

  171. Dong, C. et al. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antivir. Res. 118, 110–117 (2015).

    Article  CAS  Google Scholar 

  172. Ramanan, V. et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci. Rep. 5, 10833 (2015).

    Article  CAS  Google Scholar 

  173. Seeger, C. & Sohn, J. A. Targeting hepatitis B virus with CRISPR/Cas9. Mol. Ther. Nucleic Acids 3, e216 (2014).

    Article  CAS  Google Scholar 

  174. Seeger, C. & Sohn, J. A. Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA. Mol. Ther. 24, 1258–1266 (2016).

    Article  CAS  Google Scholar 

  175. Kennedy, E. M. et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J. Virol. 88, 11965–11972 (2014).

    Article  Google Scholar 

  176. Hu, Z. et al. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed. Res. Int. 2014, 612823 (2014).

    Article  Google Scholar 

  177. Zhen, S. et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun. 450, 1422–1426 (2014).

    Article  CAS  Google Scholar 

  178. Price, A. A., Sampson, T. R., Ratner, H. K., Grakoui, A. & Weiss, D. S. Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc. Natl Acad. Sci. USA 112, 6164–6169 (2015).

    Article  CAS  Google Scholar 

  179. Mancuso, P. et al. CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nat. Commun. 11, 6065 (2020).

    Article  CAS  Google Scholar 

  180. Abbott, T. R. et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell 181, 865–876 (2020).

    Article  CAS  Google Scholar 

  181. Zeng, L. et al. Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro. Nat. Commun. 13, 2766 (2022).

    Article  CAS  Google Scholar 

  182. Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

    Article  CAS  Google Scholar 

  183. Park, J. Y. et al. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci. Rep. 7, 44929 (2017).

    Article  CAS  Google Scholar 

  184. Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

    Article  CAS  Google Scholar 

  185. Cobb, L. H. et al. CRISPR-Cas9 modified bacteriophage for treatment of Staphylococcus aureus induced osteomyelitis and soft tissue infection. PLoS ONE 14, e0220421 (2019).

    Article  CAS  Google Scholar 

  186. Selle, K. et al. In vivo targeting of clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials. mBio 11, e00019–e00020 (2020).

    Article  Google Scholar 

  187. Yip, B. H. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules 10, 839 (2020).

    Article  CAS  Google Scholar 

  188. Lino, C. A., Harper, J. C., Carney, J. P. & Timlin, J. A. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 25, 1234–1257 (2018).

    Article  CAS  Google Scholar 

  189. Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 185, 2806–2827 (2022).

    Article  CAS  Google Scholar 

  190. Wei, T. et al. Delivery of tissue-targeted scalpels: opportunities and challenges for in vivo CRISPR/Cas-based genome editing. ACS Nano 14, 9243–9262 (2020).

    Article  CAS  Google Scholar 

  191. Hamilton, J. R. et al. Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering. Cell Rep. 35, 109207 (2021).

    Article  CAS  Google Scholar 

  192. Ling, S. et al. Lentiviral delivery of co-packaged Cas9 mRNA and a VEGFA-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat. Biomed. Eng. 5, 144–156 (2021).

    Article  CAS  Google Scholar 

  193. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265.e216 (2022).

    Article  CAS  Google Scholar 

  194. Naeem, M., Majeed, S., Hoque, M. Z. & Ahmad, I. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 9, 1608 (2020).

    Article  CAS  Google Scholar 

  195. Manghwar, H. et al. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv. Sci. 7, 1902312 (2020).

    Article  CAS  Google Scholar 

  196. Kimberland, M. L. et al. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J. Biotechnol. 284, 91–101 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.C. acknowledges support from the National Science Foundation Graduate Research Fellowship Program, the ARCS Foundation Scholarship, the Ruth L. Kirschstein National Research Service Awards for Individual Predoctoral Fellowship (F31AI164936), Siebel Scholar award, and Stanford Maternal and Child Health Research Institute (MCHRI). X.C. acknowledges support from the Stanford Bio-X SIGF Fellowship Program. P.B.F. acknowledges support from California Institute of Regenerative Medicine (CIRM). L.S.Q. acknowledges support from National Science Foundation CAREER award (Award #2046650), NIH (Grant # 1U01DK127405, 1R01CA266470, 1R21CA270609), Stanford MCHRI through the Uytengsu-Hamilton 22q11 Neuropsychiatry Research Award Program, and CIRM (DISC2-12669). L.S.Q. is a Chan Zuckerberg Biohub investigator.

Author information

Authors and Affiliations

Authors

Contributions

L.S.Q., M.C. and X.C. researched the data for the article and wrote the text. All authors made substantial contributions to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Lei S. Qi.

Ethics declarations

Competing interests

L.S.Q. is a founder and scientific adviser of Epic Bio, and a scientific adviser of Laboratory of Genomics Research (LGR). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Aron Geurts and Susanna Tomasoni, who co-reviewed with Piera Trionfini, for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Trans-activating CRISPR RNA

(tracrRNA). RNA that partially base pairs with a CRISPR RNA (crRNA) to form a crRNA–tracrRNA hybrid that binds to and acts as a guide for Cas protein to cleave the targeted DNA sequence.

Non-homologous end joining

(NHEJ). A pathway that repairs DNA double-strand breaks by ligating the break ends without the need for a homologous template.

Homology-directed repair

(HDR). A pathway that repairs DNA double-strand breaks guided by a homologous DNA template.

Mendelian diseases

Genetic disorders caused by mutation in single genes.

Zinc finger nucleases

(ZFNs). Artificial endonucleases that can target and alter specific DNA sequences in the genome. They are generated by fusing a zinc finger DNA-binding domain to a DNA-cleavage domain.

Transcription activator-like effector nucleases

(TALENs). Artificial endonucleases that can target and alter specific DNA sequences in the genome. They are generated by fusing a TAL effector DNA-binding domain to a DNA-cleavage domain.

Logic-gated gene regulation

A process used to control the timing and intensity of gene expression by performing a Boolean operation on multiple biological signals and executing a functional response when appropriate.

Off-target effects

Effects that can occur when CRISPR molecules bind to and alter genomic sites that they were not intended to target, usually as a result of the presence of a similar sequence to the desired target site.

Complementary DNA

(cDNA). DNA synthesized from a single-stranded RNA template that is usually used to express a protein in a cell that does not normally express the protein.

MicroRNAs

(miRNAs). A class of single-stranded non-coding RNAs that can silence RNA and regulate gene expression by base pairing with complementary sequences in mRNA molecules.

Long non-coding RNAs

(lncRNAs). A class of RNAs longer than 200 nucleotides that are not translated into protein and have roles in regulation of gene expression.

Inteins

Protein segments that are capable of excising themselves and joining the flanking protein portions together through a peptide bond during protein splicing.

Anti-CRISPRs

Proteins found in phages that inactivate CRISPR systems, enabling control over CRISPR tools.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavez, M., Chen, X., Finn, P.B. et al. Advances in CRISPR therapeutics. Nat Rev Nephrol 19, 9–22 (2023). https://doi.org/10.1038/s41581-022-00636-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-022-00636-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research