Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kidney disease and reproductive health

Abstract

Understanding the relationship between reproductive health and kidney function is important to provide holistic care for people living with kidney disease. Chronic kidney disease (CKD) has negative impacts on both male and female fertility owing to factors including inflammation, hormonal dysregulation, reduced ovarian reserve, reduced sperm quality and sexual dysfunction. However, pregnancy is achievable for most cisgender women with kidney disease, including kidney transplant recipients and patients on dialysis. CKD in pregnancy is associated with health risks to the mother and child, including increased risk of progression of kidney disease, hypertensive complications of pregnancy, and neonatal complications including fetal growth restriction, preterm birth and stillbirth. However, with appropriate pre-pregnancy counselling, fertility assessment and support, health optimization, and evidence-based antenatal care, the majority of patients will achieve a good outcome. Medication safety should be reviewed before and during pregnancy and lactation, weighing the risk of disease flare against potential adverse effects on the offspring. Important areas for further research include the optimal timing of delivery and the short- and long-term cardiovascular and renal impacts of pregnancy in patients with CKD, as well as long-term kidney and cardiovascular outcomes in their offspring.

Key points

  • Reproductive health care is an essential component of the management of chronic kidney disease (CKD).

  • In women, CKD is associated with hormonal dysregulation, menstrual irregularities, premature menopause, reduced ovarian reserve and reduced libido, which negatively impact fertility.

  • In men, CKD is associated with hormonal dysregulation, hypogonadism and reduced sperm quality with substantial negative impacts on fertility, libido and sexual function.

  • Pregnancy is possible for the majority of women with CKD but is associated with increased maternal and fetal health risks; pre-pregnancy counselling, optimization of blood pressure control and proteinuria, planned timing of pregnancy and specialist antenatal care can help to mitigate these risks and optimize pregnancy outcomes.

  • The offspring of patients with CKD, particularly those with preterm delivery or fetal growth restriction, might be at increased risk of kidney and cardiovascular disease in later life; increased health surveillance is required to enable early identification and management of these diseases.

  • Targeted research is needed to improve understanding of the impact of CKD on fertility and pregnancy outcomes as well as the long-term impact of CKD during pregnancy on the offspring with the aim of enabling advances in evidence-based care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of reduced fertility in CKD.
Fig. 2: Reduced AMH concentrations in women with CKD.
Fig. 3: Proposed antenatal, peripartum and postpartum care pathway for patients with kidney disease.

Similar content being viewed by others

References

  1. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 395, 709–733 (2020).

  2. Dumanski, S. M. & Ahmed, S. B. Fertility and reproductive care in chronic kidney disease. J. Nephrol. 32, 39–50 (2019).

    Article  PubMed  Google Scholar 

  3. Mills, K. T. et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 88, 950–957 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Feig, D. S. Epidemiology and therapeutic strategies for women with preexisting diabetes in pregnancy: how far have we come? The 2021 Norbert Freinkel Award Lecture. Diabetes Care 45, 2484–2491 (2022).

    Article  PubMed  Google Scholar 

  5. Mackin, S. T. et al. Diabetes and pregnancy: national trends over a 15 year period. Diabetologia 61, 1081–1088 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Wang, M. C. et al. Trends in prepregnancy obesity and association with adverse pregnancy outcomes in the United States, 2013 to 2018. J. Am. Heart Assoc. 10, e020717 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Strauss, A. et al. Obesity in pregnant women: a 20-year analysis of the German experience. Eur. J. Clin. Nutr. 75, 1757–1763 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Poston, L. et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. 4, 1025–1036 (2016).

    Article  PubMed  Google Scholar 

  9. Ananth, C. V. et al. Changes in the prevalence of chronic hypertension in pregnancy, United States, 1970 to 2010. Hypertension 74, 1089–1095 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Care of pregnant women. Boston Med. Surg. J. 166:292–293 (1912).

  11. Jesudason, S. & Tong, A. The patient experience of kidney disease and pregnancy. Best. Pract. Res. Clin. Obstet. Gynaecol. 57, 77–88 (2019).

    Article  PubMed  Google Scholar 

  12. Ralston, E. R. et al. Exploring biopsychosocial correlates of pregnancy risk and pregnancy intention in women with chronic kidney disease. J. Nephrol. 36, 1361–1372 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pregnancy and renal disease. Lancet. 2:801–802 (1975).

  14. Mc Laughlin, L. et al. Feminizing care pathways: mixed-methods study of reproductive options, decision making, pregnancy, post-natal care and parenting amongst women with kidney disease. J. Adv. Nurs. 79, 3127–3146 (2023).

    Article  Google Scholar 

  15. Garlanda, C., Bottazzi, B., Bastone, A. & Mantovani, A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu. Rev. Immunol. 23, 337–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Camaioni A., Klinger F. G., Campagnolo L., Salustri A. The influence of pentraxin 3 on the ovarian function and its impact on fertility. Front. Immunol. 9, 2808 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rojas, R., Clegg, D. J. & Palmer, B. F. Amenorrhea and estrogen disorders in kidney disease. Semin. Nephrol. 41, 126–132 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Wiles, K. et al. Anti-Müllerian hormone concentrations in women with chronic kidney disease. Clin. Kidney J. 14, 537–542 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Gupta, J. et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. 7, 1938–1946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holley, J. L., Schmidt, R. J., Bender, F. H., Dumler, F. & Schiff, M. Gynecologic and reproductive issues in women on dialysis. Am. J. Kidney Dis. 29, 685–690 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Hou, S. Pregnancy in chronic renal insufficiency and end-stage renal disease. Am. J. Kidney Dis. 33, 235–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Hewawasam, E. et al. Factors influencing fertility rates in Australian women receiving kidney replacement therapy: analysis of linked Australia and New Zealand Dialysis and Transplant Registry and perinatal data over 22 years. Nephrol. Dial. Transpl. 37, 1152–1161 (2022).

    Article  Google Scholar 

  23. Vrijlandt, W. A. L. et al. Prevalence of chronic kidney disease in women of reproductive age and observed birth rates. J. Nephrol. 36, 1341–1347 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Uldall, P. R., Kerr, D. N. & Tacchi, D. Sterility and cyclophosphamide. Lancet. 1, 693–694 (1972).

    Article  CAS  PubMed  Google Scholar 

  25. Gajjar, R., Miller, S. D., Meyers, K. E. & Ginsberg, J. P. Fertility preservation in patients receiving cyclophosphamide therapy for renal disease. Pediatr. Nephrol. 30, 1099–1106 (2015).

    Article  PubMed  Google Scholar 

  26. Kidney Disease: Improving Global Outcomes (KDIGO) glomerular diseases work group. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 100, S1–S276 (2021).

  27. Dines, V. A., Garovic, V. D., Parashuram, S., Cosio, F. G. & Kattah, A. G. Pregnancy, contraception, and menopause in advanced chronic kidney disease and kidney transplant. Womens Health Rep. 2, 488–496 (2021).

    Google Scholar 

  28. Rytz, C. L. et al. Menstrual abnormalities and reproductive lifespan in females with CKD: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 17, 1742–1753 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dines, V. A. & Garovic, V. D. Menopause and chronic kidney disease. Nat. Rev. Nephrol. 20, 4–5 (2023).

    Article  Google Scholar 

  30. Vellanki, K. & Hou, S. Menopause in CKD. Am. J. Kidney Dis. 71, 710–719 (2018).

    Article  PubMed  Google Scholar 

  31. Iwase, A. et al. Anti‐Müllerian hormone as a marker of ovarian reserve: what have we learned, and what should we know? Reprod. Med. Biol. 15, 127–136 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Seifer, D. B., Baker, V. L. & Leader, B. Age-specific serum anti-Müllerian hormone values for 17,120 women presenting to fertility centers within the United States. Fertil. Steril. 95, 747–750 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Şenateş, E. et al. Serum anti-Müllerian hormone levels are lower in reproductive-age women with Crohn’s disease compared to healthy control women. J. Crohns Colitis 7, e29–e34 (2013).

    Article  PubMed  Google Scholar 

  34. Cakmak, E., Karakus, S., Demirpence, O. & Coskun, B. D. Ovarian reserve assessment in celiac patients of reproductive age. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 24, 1152–1157 (2018).

    CAS  Google Scholar 

  35. Karampatou, A. et al. Premature ovarian senescence and a high miscarriage rate impair fertility in women with HCV. J. Hepatol. https://doi.org/10.1016/j.jhep.2017.08.019 (2017).

  36. Aydogan Mathyk, B., Aslan Cetin, B., Bilici, S., Fasse, J. & Avci, P. Evaluation of ovarian reserve in women with psoriasis. Gynecol. Endocrinol. 35, 608–611 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Lin, C. et al. The value of anti-Müllerian hormone in the prediction of spontaneous pregnancy: a systematic review and meta-analysis. Front. Endocrinol. 12, 695157 (2021).

    Article  Google Scholar 

  38. Steiner, A. Z. et al. Association between biomarkers of ovarian reserve and infertility among older women of reproductive age. JAMA 318, 1367–1376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Venturella, R. et al. OvAge: a new methodology to quantify ovarian reserve combining clinical, biochemical and 3D-ultrasonographic parameters. J. Ovarian Res. 8, 21 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ding, T. et al. Assessment and quantification of ovarian reserve on the basis of machine learning models. Front. Endocrinol. 14, 1087429 (2023).

    Article  Google Scholar 

  41. Shah, W. et al. The molecular mechanism of sex hormones on Sertoli cell development and proliferation. Front. Endocrinol. 12, 648141 (2021).

    Article  Google Scholar 

  42. Bhattacharya, I. et al. Testosterone augments FSH signaling by upregulating the expression and activity of FSH-Receptor in Pubertal Primate Sertoli cells. Mol. Cell Endocrinol. 482, 70–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Scarabelli, L., Caviglia, D., Bottazzi, C. & Palmero, S. Prolactin effect on pre-pubertal Sertoli cell proliferation and metabolism. J. Endocrinol. Invest. 26, 718–722 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Guillaumot, P., Tabone, E. & Benahmed, M. Sertoli cells as potential targets of prolactin action in the testis. Mol. Cell Endocrinol. 122, 199–206 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Petersen, C. & Soder, O. The Sertoli cell — a hormonal target and ‘super’ nurse for germ cells that determines testicular size. Horm. Res. 66, 153–161 (2006).

    CAS  PubMed  Google Scholar 

  46. Palmer, B. F. Sexual dysfunction in men and women with chronic kidney disease and end-stage kidney disease. Adv. Ren. Replace. Ther. 10, 48–60 (2003).

    Article  PubMed  Google Scholar 

  47. Eckersten, D., Giwercman, A. & Christensson, A. Male patients with terminal renal failure exhibit low serum levels of antimüllerian hormone. Asian J. Androl. 17, 149–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Gill-Sharma, M. K. Prolactin and male fertility: the long and short feedback regulation. Int. J. Endocrinol. 2009, 687259 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Romejko, K., Rymarz, A., Sadownik, H. & Niemczyk, S. Testosterone deficiency as one of the major endocrine disorders in chronic kidney disease. Nutrients 14, 3438 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khurana, K. K. et al. Serum testosterone levels and mortality in men with CKD stages 3–4. Am. J. Kidney Dis. 64, 367–374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fantus, R. J. et al. Serum total testosterone and premature mortality among men in the USA. Eur. Urol. Open. Sci. 29, 89–92 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ros, S. & Carrero, J. J. Endocrine alterations and cardiovascular risk in CKD: is there a link? Nefrol. Engl. Ed. 33, 181–187 (2013).

    Google Scholar 

  53. Guay, A., Seftel, A. D. & Traish, A. Hypogonadism in men with erectile dysfunction may be related to a host of chronic illnesses. Int. J. Impot. Res. 22, 9–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Bass, A. et al. The impact of nocturnal hemodialysis on sexual function. BMC Nephrol. 13, 67 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Van Eps, C. et al. Changes in serum prolactin, sex hormones and thyroid function with alternate nightly nocturnal home haemodialysis. Nephrology 17, 42–47 (2012).

    Article  PubMed  Google Scholar 

  56. Kuczera, P., Więcek, A. & Adamczak, M. Impaired fertility in women and men with chronic kidney disease. Adv. Clin. Exp. Med. 31, 187–195 (2022).

    Article  PubMed  Google Scholar 

  57. Eckersten, D., Giwercman, A., Pihlsgård, M., Bruun, L. & Christensson, A. Impact of kidney transplantation on reproductive hormone levels in males: a longitudinal study. Nephron 138, 192–201 (2017).

    Article  PubMed  Google Scholar 

  58. Zhang, Y. et al. Kidney transplantation improve semen quality in patients with dialysis: a systematic review and meta-analysis. Andrologia 53, e14158 (2021).

    Article  PubMed  Google Scholar 

  59. Lehtihet, M. & Hylander, B. Semen quality in men with chronic kidney disease and its correlation with chronic kidney disease stages. Andrologia 47, 1103–1108 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Boitrelle, F. et al. The sixth edition of the WHO manual for human semen analysis: a critical review and SWOT analysis. Life 11, 1368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bonde, J. P. et al. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet Lond. Engl. 352, 1172–1177 (1998).

    Article  CAS  Google Scholar 

  62. Slama, R. et al. Time to pregnancy and semen parameters: a cross-sectional study among fertile couples from four European cities. Hum. Reprod. Oxf. Engl. 17, 503–515 (2002).

    Article  CAS  Google Scholar 

  63. Björndahl, L. A paradigmatic shift in the care of male factor infertility: how can the recommendations for basic semen examination in the sixth edition of the WHO manual and the ISO 23162:2021 standard help? Reprod. Biomed. Online 45, 731–736 (2022).

    Article  PubMed  Google Scholar 

  64. Esteves, S. C. Evolution of the World Health Organization semen analysis manual: where are we? Nat. Rev. Urol. 19, 439–446 (2022).

    Article  PubMed  Google Scholar 

  65. Haddock, L. et al. Sperm DNA fragmentation is a novel biomarker for early pregnancy loss. Reprod. Biomed. Online 42, 175–184 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Dai, Y. Relationship among traditional semen parameters, sperm DNA fragmentation, and unexplained recurrent miscarriage: a systematic review and meta-analysis. Front. Endocrinol. 12, 802632 (2021).

    Article  Google Scholar 

  67. Borges, E. et al. Sperm DNA fragmentation is correlated with poor embryo development, lower implantation rate, and higher miscarriage rate in reproductive cycles of non-male factor infertility. Fertil. Steril. 112, 483–490 (2019).

    Article  PubMed  Google Scholar 

  68. Homa, S. T. et al. A comparison between two assays for measuring seminal oxidative stress and their relationship with sperm DNA fragmentation and semen parameters. Genes 10, 236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aitken, R. J. & De Iuliis, G. N. On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 16, 3–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Duni, A., Liakopoulos, V., Roumeliotis, S., Peschos, D. & Dounousi, E. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne’s thread. Int. J. Mol. Sci. 20, 3711 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Javadneia, A. et al. Sperm DNA damage before and after kidney transplantation. Nephro-Urol. Mon. 11, e86990 (2019).

    Google Scholar 

  72. Colombijn, J. M. et al. Antioxidants for adults with chronic kidney disease. Cochrane Database Syst. Rev. 11, CD008176 (2023).

    PubMed  Google Scholar 

  73. de Ligny, W. et al. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 5, CD007411 (2022).

    PubMed  Google Scholar 

  74. Pyrgidis, N. et al. Prevalence of erectile dysfunction in patients with end-stage renal disease: a systematic review and meta-analysis. J. Sex. Med. 18, 113–120 (2021).

    Article  PubMed  Google Scholar 

  75. Edey, M. M. Male sexual dysfunction and chronic kidney disease. Front. Med. 4, 32 (2017).

    Article  Google Scholar 

  76. Lotti, F. & Maggi, M. Sexual dysfunction and male infertility. Nat. Rev. Urol. 15, 287–307 (2018).

    Article  PubMed  Google Scholar 

  77. Vecchio, M. et al. Interventions for treating sexual dysfunction in patients with chronic kidney disease. Cochrane Database Syst. Rev. 8, CD007747 (2010).

  78. Lundy, S. D. & Vij, S. C. Male infertility in renal failure and transplantation. Transl. Androl. Urol. 8, 173–181 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mondal, S., Sinha Roy, P. P. & Pal, D. K. Sexual well-being and fertility in male renal transplant recipients: a study in a tertiary care centre. Urol. J. 89, 636–640 (2022).

    Article  Google Scholar 

  80. Tainio, J. et al. Testicular function, semen quality, and fertility in young men after renal transplantation during childhood or adolescence. Transplantation 98, 987–993 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Bearak, J. et al. Unintended pregnancy and abortion by income, region, and the legal status of abortion: estimates from a comprehensive model for 1990–2019. Lancet Glob. Health 8, e1152–e1161 (2020).

    Article  PubMed  Google Scholar 

  82. Ghazizadeh, S. et al. Unwanted pregnancy among kidney transplant recipients in Iran. Transpl. Proc. 37, 3085–3086 (2005).

    Article  CAS  Google Scholar 

  83. Lessan-Pezeshki, M. et al. Fertility and contraceptive issues after kidney transplantation in women. Transpl. Proc. 36, 1405–1406 (2004).

    Article  CAS  Google Scholar 

  84. Shah, S., Christianson, A. L., Bumb, S. & Verma, P. Contraceptive use among women with kidney transplants in the United States. J. Nephrol. 35, 629–638 (2022).

    Article  PubMed  Google Scholar 

  85. Britton, L. Unintended pregnancy: a systematic review of contraception use and counseling in women with cancer. Clin. J. Oncol. Nurs. 21, 189–196 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Phillips-Bell, G. S., Sappenfield, W., Robbins, C. L. & Hernandez, L. Chronic diseases and use of contraception among women at risk of unintended pregnancy. J. Womens Health 25, 1262–1269 (2016).

    Article  Google Scholar 

  87. Harris, M. L. et al. Patterns of contraceptive use among young Australian women with chronic disease: findings from a prospective cohort study. Reprod. Health 19, 111 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Baker, R. J., Mark, P. B., Patel, R. K., Stevens, K. K. & Palmer, N. Renal association clinical practice guideline in post-operative care in the kidney transplant recipient. BMC Nephrol. 18, 174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wiles, K. et al. Clinical practice guideline on pregnancy and renal disease. BMC Nephrol. 20, 401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Brynhildsen, J. Combined hormonal contraceptives: prescribing patterns, compliance, and benefits versus risks. Ther. Adv. Drug. Saf. 5, 201–213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Attini, R. et al. Contraception in chronic kidney disease: a best practice position statement by the Kidney and Pregnancy Group of the Italian Society of Nephrology. J. Nephrol. 33, 1343–1359 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Browne, H., Manipalviratn, S. & Armstrong, A. Using an intrauterine device in immunocompromised women. Obstet. Gynecol. 112, 667–669 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Balbach, M. et al. On-demand male contraception via acute inhibition of soluble adenylyl cyclase. Nat. Commun. 14, 637 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Koilpillai, J. N., Nunan, E., Butler, L., Pinaffi, F. & Butcher, J. T. Reversible contraception in males: an obtainable target? Biology 13, 291 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thirumalai, A. & Page, S. T. Recent developments in male contraception. Drugs 79, 11–20 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Trussell, J. Contraceptive failure in the United States. Contraception 83, 397–404 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Abbe, C. R., Page, S. T. & Thirumalai, A. Male contraception. Yale J. Biol. Med. 93, 603–613 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Berer, M. Abortion law and policy around the world. Health Hum. Rights 19, 13–27 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Qi, A. & Hladunewich, M. A. Nephrology and women’s health post-Roe v. Wade: we must do better. Nat. Rev. Nephrol. 18, 741–742 (2022).

    Article  PubMed  Google Scholar 

  100. Rizzolo, K., Faucett, A. & Kendrick, J. Implications of antiabortion laws on patients with kidney disease in pregnancy. Clin. J. Am. Soc. Nephrol. 18, 276–278 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Robinson, G. E. et al. The mental and physical health impacts of overturning Roe v Wade. J. Nerv. Ment. Dis. 210, 891–893 (2022).

    Article  PubMed  Google Scholar 

  102. Piccoli, G. B. et al. The children of dialysis: live-born babies from on-dialysis mothers in Italy — an epidemiological perspective comparing dialysis, kidney transplantation and the overall population. Nephrol. Dial. Transpl. 29, 1578–1586 (2014).

    Article  Google Scholar 

  103. Ahmed, S. B., Vitek, W. S. & Holley, J. L. Fertility, contraception, and novel reproductive technologies in chronic kidney disease. Semin. Nephrol. 37, 327–336 (2017).

    Article  PubMed  Google Scholar 

  104. Tangren, J., Nadel, M. & Hladunewich, M. A. Pregnancy and end-stage renal disease. Blood Purif. 45, 194–200 (2018).

    Article  PubMed  Google Scholar 

  105. Horsey K. The future of surrogacy: a review of current global trends and national landscapes. Reprod Biomed Online. 48, 103764.

  106. Madej, A., Mazanowska, N., Cyganek, A., Pazik, J. & Pietrzak, B. Neonatal and maternal outcomes among women with glomerulonephritis. Am. J. Nephrol. 51, 534–541 (2020).

    Article  PubMed  Google Scholar 

  107. Sifontis, N. M. et al. Pregnancy outcomes in solid organ transplant recipients with exposure to mycophenolate mofetil or sirolimus. Transplantation 82, 1698–1702 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Drugs and Lactation Database (LactMed). National Center for Biotechnology Information https://www.ncbi.nlm.nih.gov/books/NBK501922/ (2006).

  109. Flint, J. et al. BSR and BHPR guideline on prescribing drugs in pregnancy and breastfeeding-Part I: standard and biologic disease modifying anti-rheumatic drugs and corticosteroids. Rheumatol. Oxf. Engl. 55, 1693–1697 (2016).

    Article  CAS  Google Scholar 

  110. Wallace, D. J., Gudsoorkar, V. S., Weisman, M. H. & Venuturupalli, S. R. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat. Rev. Rheumatol. 8, 522–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Zemlickis, D. et al. Fetal outcome after in utero exposure to cancer chemotherapy. Arch. Intern. Med. 152, 573–576 (1992).

    Article  CAS  PubMed  Google Scholar 

  112. Boulay, H. et al. Maternal, foetal and child consequences of immunosuppressive drugs during pregnancy in women with organ transplant: a review. Clin. Kidney J. 14, 1871–1878 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Perrotta, K., Kiernan, E., Bandoli, G., Manaster, R. & Chambers, C. Pregnancy outcomes following maternal treatment with rituximab prior to or during pregnancy: a case series. Rheumatol. Adv. Pract. 5, rkaa074 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kao, J. H. et al. Pregnancy outcomes in patients treated with belimumab: report from real-world experience. Semin. Arthritis Rheum. 51, 963–968 (2021).

    Article  PubMed  Google Scholar 

  115. FDA. Rapamune. (sirolimus) drug information sheet. https://www.accessdata.fda.gov/drugsatfda_docs/label/2003/021083s006lbl.pdf.

  116. Ponticelli, C. & Moroni, G. Fetal toxicity of immunosuppressive drugs in pregnancy. J. Clin. Med. 7, 552 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tshering, S., Dorji, N., Youden, S. & Wangchuk, D. Maternal sirolimus therapy and fetal growth restriction. Arch. Clin. Cases 8, 19–24 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lip, G. Y., Churchill, D., Beevers, M., Auckett, A. & Beevers, D. G. Angiotensin-converting-enzyme inhibitors in early pregnancy. Lancet. 350, 1446–1447 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Centers for Disease Control and Prevention (CDC). Postmarketing surveillance for angiotensin-converting enzyme inhibitor use during the first trimester of pregnancy — United States, Canada, and Israel, 1987–1995. MMWR Morb. Mortal. Wkly. Rep. 46, 240–242 (1997).

    Google Scholar 

  120. Bar, J., Hod, M. & Merlob, P. Angiotensin converting enzyme inhibitors use in the first trimester of pregnancy. Int. J. Risk Saf. Med. 10, 23–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Steffensen, F. H., Nielsen, G. L., Sørensen, H. T., Olesen, C. & Olsen, J. Pregnancy outcome with ACE-inhibitor use in early pregnancy. Lancet Lond. Engl. 351, 596 (1998).

    Article  CAS  Google Scholar 

  122. Li, D. K., Yang, C., Andrade, S., Tavares, V. & Ferber, J. R. Maternal exposure to angiotensin converting enzyme inhibitors in the first trimester and risk of malformations in offspring: a retrospective cohort study. BMJ 343, d5931 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hünseler, C. et al. Angiotensin II receptor blocker induced fetopathy: 7 cases. Klin. Pädiatr. 223, 10–14 (2011).

    Article  PubMed  Google Scholar 

  124. Mosley, J. F., Smith, L., Everton, E. & Fellner, C. Sodium-glucose linked transporter 2 (SGLT2) inhibitors in the management of type-2 diabetes: a drug class overview. Pharm. Ther. 40, 451–462 (2015).

    Google Scholar 

  125. Tangren, J. et al. Pre-Pregnancy eGFR and the risk of adverse maternal and fetal outcomes: a population-based study. J. Am. Soc. Nephrol. 34, 656–667 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bramham, K. Diabetic nephropathy and pregnancy. Semin. Nephrol. 37, 362–369 (2017).

    Article  PubMed  Google Scholar 

  127. Al Khalaf, S. et al. Impact of chronic hypertension and antihypertensive treatment on adverse perinatal outcomes: systematic review and meta-analysis. J. Am. Heart Assoc. 10, e018494 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wiles, K. et al. The impact of chronic kidney disease stages 3–5 on pregnancy outcomes. Nephrol. Dial. Transpl. 36, 2008–2017 (2021).

    Article  Google Scholar 

  129. Piccoli, G. B. et al. Risk of adverse pregnancy outcomes in women with CKD. J. Am. Soc. Nephrol. 26, 2011–2022 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  130. EMA recommends additional measures to prevent use of mycophenolate in pregnancy. 2015. Available: http://www.ema.europa.eu/ema/index.jsp?curl=pages/ (2015).

  131. Damkier, P., Passier, A., Bo Petersen, L., Havnen, G. & Thestrup Pedersen, A. J. Changing of the guards: EMA warning on paternal use of mycophenolate mofetil: an unnecessary and insufficiently substantiated precaution. Birth Defects Res. A Clin. Mol. Teratol. 106, 860–861 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Midtvedt, K., Bergan, S., Reisæter, A. V., Vikse, B. E. & Åsberg, A. Exposure to mycophenolate and fatherhood. Transplantation 101, e214–e217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Le, H. L. et al. Usage of tacrolimus and mycophenolic acid during conception, pregnancy, and lactation, and its implications for therapeutic drug monitoring: a systematic critical review. Ther. Drug. Monit. 42, 518–531 (2020).

    Article  PubMed  Google Scholar 

  134. Boyer, A. et al. Paternity in male kidney transplant recipients: a French national survey, the PATeRNAL study. BMC Nephrol. 21, 483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jesudason, S. et al. Fatherhood and kidney replacement therapy: analysis of the Australian and New Zealand dialysis and transplant (ANZDATA) registry. Am. J. Kidney Dis. 76, 444–446 (2020).

    Article  PubMed  Google Scholar 

  136. Jones, D. C. & Hayslett, J. P. Outcome of pregnancy in women with moderate or severe renal insufficiency. N. Engl. J. Med. 335, 226–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Bramham, K. et al. Pregnancy outcome in women with chronic kidney disease: a prospective cohort study. Reprod. Sci. 18, 623–630 (2011).

    Article  PubMed  Google Scholar 

  138. Bramham, K. et al. Diagnostic and predictive biomarkers for pre-eclampsia in patients with established hypertension and chronic kidney disease. Kidney Int. 89, 874–885 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. He, Y. et al. The pregnancy outcomes in patients with stage 3–4 chronic kidney disease and the effects of pregnancy in the long-term kidney function. J. Nephrol. 31, 953–960 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Reynolds, M. L. et al. Pregnancy history and kidney disease progression among women enrolled in cure glomerulonephropathy. Kidney Int. Rep. 8, 805–817 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Major, R. W. et al. The Kidney Failure Risk Equation for prediction of end stage renal disease in UK primary care: an external validation and clinical impact projection cohort study. PLoS Med. 16, e1002955 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ralston, E. et al. POS-234 pregnancy-associated progression of chronic kidney disease: development of a clinical predictive tool. Kidney Int. Rep. 6, S99 (2021).

    Article  Google Scholar 

  143. Ralston, E. et al. Pregnancy-associated progression of chronic kidney disease: a study protocol for the development and validation of a clinical predictive tool (PREDICT). J. Nephrol. 3, 773–776 https://clinicaltrials.gov/study/NCT05793346 (2024).

  144. Smith, P. et al. ORCHARD: a model for conducting pragmatic randomised trials in pregnancy. J. Nephrol. 37, 1411—1413 (2024).

  145. Webb, A. J. et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51, 784–790 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Kemmner, S. et al. Dietary nitrate load lowers blood pressure and renal resistive index in patients with chronic kidney disease: a pilot study. Nitric Oxide Biol. Chem. 64, 7–15 (2017).

    Article  CAS  Google Scholar 

  147. Ormesher, L. et al. Effects of dietary nitrate supplementation, from beetroot juice, on blood pressure in hypertensive pregnant women: a randomised, double-blind, placebo-controlled feasibility trial. Nitric Oxide 80, 37–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. ORCHARD: Study to prevent progression of kidney disease in pregnancy. https://www.isrctn.com/ISRCTN91211980.

  149. Cabiddu, G. et al. A best practice position statement on pregnancy in chronic kidney disease: the Italian Study Group on Kidney and Pregnancy. J. Nephrol. 29, 277–303 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Jong, M. F. C., de, Hamersvelt, H. W., van, Empel, I. W. H., van, Nijkamp, E. J. W. & Lely, A. T. Summary of the Dutch practice guideline on pregnancy wish and pregnancy in CKD. Kidney Int. Rep. 7, 2575–2588 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Henderson, J. T. et al. Low-dose aspirin for prevention of morbidity and mortality from preeclampsia: a systematic evidence review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 160, 695–703 (2014).

    Article  PubMed  Google Scholar 

  152. Rolnik, D. L. et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N. Engl. J. Med. 377, 613–622 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Gordon, C. et al. The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatol. Oxf. Engl. 57, e1–e45 (2018).

    Article  Google Scholar 

  154. Izmirly, P. M. et al. Evaluation of the risk of anti-SSA/Ro-SSB/La antibody-associated cardiac manifestations of neonatal lupus in fetuses of mothers with systemic lupus erythematosus exposed to hydroxychloroquine. Ann. Rheum. Dis. 69, 1827–1830 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Barsalou, J. et al. Prenatal exposure to antimalarials decreases the risk of cardiac but not non-cardiac neonatal lupus: a single-centre cohort study. Rheumatol. Oxf. Engl. 56, 1552–1559 (2017).

    Article  CAS  Google Scholar 

  156. Derdulska, J. M. et al. Neonatal lupus erythematosus — practical guidelines. J. Perinat. Med. 49, 529–538 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Ahn, H. K. et al. Exposure to amlodipine in the first trimester of pregnancy and during breastfeeding. Hypertens. Pregnancy 26, 179–187 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Mito, A. et al. Safety of amlodipine in early pregnancy. J. Am. Heart Assoc. 8, e012093 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ishikawa, T. et al. Risk of major congenital malformations associated with first-trimester antihypertensives, including amlodipine and methyldopa: a large claims database study 2010–2019. Pregnancy Hypertens. 31, 73–83 (2023).

    Article  PubMed  Google Scholar 

  160. Benachi, A. et al. Down syndrome maternal serum screening in patients with renal disease. Am. J. Obstet. Gynecol. 203, 60.e1–e4 (2010).

    Article  PubMed  Google Scholar 

  161. Valentin, M. et al. First-trimester combined screening for trisomy 21 in women with renal disease. Prenat. Diagn. 35, 244–248 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Qureshi, H. et al. BCSH guideline for the use of anti-D immunoglobulin for the prevention of haemolytic disease of the fetus and newborn. Transfus. Med. Oxf. Engl. 24, 8–20 (2014).

    Article  CAS  Google Scholar 

  163. National Institute for Health and Care Excellence. Antenatal Care [NICE Guideline No. 201] https://www.nice.org.uk/guidance/ng201/chapter/Recommendations#routine-antenatal-clinical-care (2021).

  164. Nevis, I. F. et al. Pregnancy outcomes in women with chronic kidney disease: a systematic review. Clin. J. Am. Soc. Nephrol. 6, 2587–2598 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Zhang, J. J. et al. A systematic review and meta-analysis of outcomes of pregnancy in CKD and CKD outcomes in pregnancy. Clin. J. Am. Soc. Nephrol. 10, 1964–1978 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. NICE guideline. Hypertension in pregnancy: diagnosis and management. Am. J. Obstet. Gynecol. 77, S1–S22 (2019).

    Google Scholar 

  167. Oliverio, A. L. & Hladunewich, M. A. End stage kidney disease and dialysis in pregnancy. Adv. Chronic Kidney Dis. 27, 477–485 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Hou, S. H. Frequency and outcome of pregnancy in women on dialysis. Am. J. Kidney Dis. 23, 60–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  169. Bagon, J. A. et al. Pregnancy and dialysis. Am. J. Kidney Dis. 31, 756 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. Basok, E. K. et al. Assessment of female sexual function and quality of life in predialysis, peritoneal dialysis, hemodialysis, and renal transplant patients. Int. Urol. Nephrol. 41, 473–481 (2009).

    Article  PubMed  Google Scholar 

  171. Matuszkiewicz-Rowinska, J. et al. Endometrial morphology and pituitary-gonadal axis dysfunction in women of reproductive age undergoing chronic haemodialysis — a multicentre study. Nephrol. Dial. Transpl. 19, 2074–2077 (2004).

    Article  Google Scholar 

  172. Hosfield, E. M., Rabban, J. T., Chen, L. M. & Zaloudek, C. J. Squamous metaplasia of the ovarian surface epithelium and subsurface fibrosis: distinctive pathologic findings in the ovaries and fallopian tubes of patients on peritoneal dialysis. Int. J. Gynecol. Pathol. 27, 465–474 (2008).

    Article  PubMed  Google Scholar 

  173. Confortini, P. et al. Full term successful pregnancy and successful delivery in a patient on chronic haemodialysis. Proc. Eur. Dial. Transpl. Assoc. 8, 74–80 (1971).

    Google Scholar 

  174. Piccoli, G. B. et al. Pregnancy in dialysis patients in the new millennium: a systematic review and meta-regression analysis correlating dialysis schedules and pregnancy outcomes. Nephrol. Dial. Transplant. 31, 1915–1934 (2016).

    Article  PubMed  Google Scholar 

  175. Baouche, H. et al. Pregnancy in women on chronic dialysis in the last decade (2010–2020): a systematic review. Clin. Kidney J. 16, 138–150 (2023).

    Article  PubMed  Google Scholar 

  176. Hladunewich, M. A. et al. Intensive hemodialysis associates with improved pregnancy outcomes: a Canadian and United States cohort comparison. J. Am. Soc. Nephrol. 25, 1103–1109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Luders, C., Titan, S. M., Kahhale, S., Francisco, R. P. & Zugaib, M. Risk factors for adverse fetal outcome in hemodialysis pregnant women. Kidney Int. Rep. 3, 1077–1088 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Bramham, K. et al. Pregnancy in renal transplant recipients: a UK national cohort study. Clin. J. Am. Soc. Nephrol. 8, 290–298 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Chappell, L. C., Cluver, C. A., Kingdom, J. & Tong, S. Pre-eclampsia. Lancet 398, 341–354 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Tan, M. Y. et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 52, 186–195 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Chappell, L. C. et al. Diagnostic accuracy of placental growth factor in women with suspected preeclampsia: a prospective multicenter study. Circulation 128, 2121–2131 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Duhig, K. E. et al. Placental growth factor testing to assess women with suspected pre-eclampsia: a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial. Lancet 393, 1807–1818 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cerdeira, A. S. et al. Randomized interventional study on prediction of preeclampsia/eclampsia in women with suspected preeclampsia: INSPIRE. Hypertension 74, 983–990 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Wiles, K. et al. Placental and endothelial biomarkers for the prediction of superimposed pre-eclampsia in chronic kidney disease. Pregnancy Hypertens. 24, 58–64 (2021).

    Article  PubMed  Google Scholar 

  185. Gupta, M., Feinberg, B. B. & Burwick, R. M. Thrombotic microangiopathies of pregnancy: differential diagnosis. Pregnancy Hypertens. 12, 29–34 (2018).

    Article  PubMed  Google Scholar 

  186. Moroni, G., Calatroni, M., Donato, B. & Ponticelli, C. Kidney biopsy in pregnant women with glomerular diseases: focus on lupus nephritis. J. Clin. Med. 12, 1834 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Harel, Z. et al. Serum creatinine levels before, during, and after pregnancy. JAMA 321, 205–207 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Machado S et al. Acute kidney injury in pregnancy: a clinical challenge. J. Nephrol. 25, 19–30 (2012).

    Article  PubMed  Google Scholar 

  189. Wiles, K. et al. Serum creatinine in pregnancy: a systematic review. Kidney Int. Rep. 4, 408–419 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Gama, R. M. et al. Acute kidney injury e-alerts in pregnancy: rates, recognition and recovery. Nephrol. Dial. Transpl. 36, 1023–1030 (2021).

    Article  Google Scholar 

  191. Conti-Ramsden, F. I. et al. Pregnancy-related acute kidney injury in preeclampsia: risk factors and renal outcomes. Hypertension 74, 1144–1151 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Noble, R. A., Lucas, B. J. & Selby, N. M. Long-term outcomes in patients with acute kidney injury. Clin. J. Am. Soc. Nephrol. 15, 423–429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ciciu, E., Paṣatu-Cornea, A. M., Petcu, L. C. & Tuţă, L. A. Early diagnosis and management of maternal ureterohydronephrosis during pregnancy. Exp. Ther. Med. 23, 27 (2022).

    Article  PubMed  Google Scholar 

  194. Denstedt, J. D. & Razvi, H. Management of urinary calculi during pregnancy. J. Urol. 148, 1072–1074 (1992).

    Article  CAS  PubMed  Google Scholar 

  195. Lee, J. Y. et al. Canadian Urological Association guideline: management of ureteral calculi — full-text. Can. Urol. Assoc. J. 15, E676–E690 (2021).

    PubMed  PubMed Central  Google Scholar 

  196. Clark, K. et al. WCN24-1183 Assessing kidney function in pregnancy: gestation specific centile reference ranges for serum creatinine, urea, cystatin c and beta-2-microglobulin. Kidney Int. Rep. 9, S435–S436 (2024).

    Article  Google Scholar 

  197. Chu, C. D. et al. CKD awareness among US adults by future risk of kidney failure. Am. J. Kidney Dis. 76, 174–183 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Piccoli, G. B. et al. Adding creatinine to routine pregnancy tests: a decision tree for calculating the cost of identifying patients with CKD in pregnancy. Nephrol. Dial. Transpl. 38, 148–157 (2023).

    Article  CAS  Google Scholar 

  199. Crump, C., Sundquist, J. & Sundquist, K. Preterm or early term birth and risk of autism. Pediatrics 148, e2020032300 (2021).

    Article  PubMed  Google Scholar 

  200. Wang, C., Geng, H., Liu, W. & Zhang, G. Prenatal, perinatal, and postnatal factors associated with autism: a meta-analysis. Medicine 96, e6696 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wiles, K. S., Nelson-Piercy, C. & Bramham, K. Reproductive health and pregnancy in women with chronic kidney disease. Nat. Rev. Nephrol. 14, 165–184 (2018).

    Article  PubMed  Google Scholar 

  202. Ramakrishnan, A., Lee, L. J., Mitchell, L. E. & Agopian, A. J. Maternal hypertension during pregnancy and the risk of congenital heart defects in offspring: a systematic review and meta-analysis. Pediatr. Cardiol. 36, 1442 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  203. van Gelder, M. M. H. J. et al. Maternal hypertensive disorders, antihypertensive medication use, and the risk of birth defects: a case-control study. BJOG 122, 1002–1009 (2015).

    Article  PubMed  Google Scholar 

  204. Magee, L. A. et al. Less-tight versus tight control of hypertension in pregnancy. N. Engl. J. Med. 372, 407–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. At, T. et al. Treatment for mild chronic hypertension during pregnancy. N. Engl. J. Med. 386, 1781–1792.

  206. Luyckx, V. A. & Chevalier, R. L. Impact of early life development on later onset chronic kidney disease and hypertension and the role of evolutionary trade-offs. Exp. Physiol. 107, 410–414 (2022).

    Article  PubMed  Google Scholar 

  207. Hughson, M., Farris, A. B., Douglas-Denton, R., Hoy, W. E. & Bertram, J. F. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 63, 2113–2122 (2003).

    Article  PubMed  Google Scholar 

  208. Sutherland, M. R. & Black, M. J. The impact of intrauterine growth restriction and prematurity on nephron endowment. Nat. Rev. Nephrol. 19, 218–228 (2023).

    Article  PubMed  Google Scholar 

  209. Stonestreet, B. S., Hansen, N. B., Laptook, A. R. & Oh, W. Glucocorticoid accelerates renal functional maturation in fetal lambs. Early Hum. Dev. 8, 331–341 (1983).

    Article  CAS  PubMed  Google Scholar 

  210. Leeson, C. P. M., Kattenhorn, M., Morley, R., Lucas, A. & Deanfield, J. E. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation 103, 1264–1268 (2001).

    Article  CAS  PubMed  Google Scholar 

  211. Cwiek, A. et al. Premature differentiation of nephron progenitor cell and dysregulation of gene pathways critical to kidney development in a model of preterm birth. Sci. Rep. 11, 21667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Warrington, N. M. et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat. Genet. 51, 804–814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Grillo, M. A., Mariani, G. & Ferraris, J. R. Prematurity and low birth weight in neonates as a risk factor for obesity, hypertension, and chronic kidney disease in pediatric and adult age. Front. Med. 8, 769734 (2021).

    Article  Google Scholar 

  214. Kelsey, T. W. et al. Ovarian volume throughout life: a validated normative model. PLoS ONE 8, e71465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Sharpe, R. M., McKinnell, C., Kivlin, C. & Fisher, J. S. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reprod. Camb. Engl. 125, 769–784 (2003).

    Article  CAS  Google Scholar 

  216. Ratcliffe, J. M., Gladen, B. C., Wilcox, A. J. & Herbst, A. L. Does early exposure to maternal smoking affect future fertility in adult males? Reprod. Toxicol. Elmsford N. 6, 297–307 (1992).

    Article  CAS  Google Scholar 

  217. Jensen, T. K. et al. Adult and prenatal exposures to tobacco smoke as risk indicators of fertility among 430 Danish couples. Am. J. Epidemiol. 148, 992–997 (1998).

    Article  CAS  PubMed  Google Scholar 

  218. Storgaard, L. et al. Does smoking during pregnancy affect sons’ sperm counts? Epidemiol. Camb. Mass. 14, 278–286 (2003).

    Article  Google Scholar 

  219. Jensen, T. K. et al. Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1,770 young men from the general population in five European countries. Am. J. Epidemiol. 159, 49–58 (2004).

    Article  PubMed  Google Scholar 

  220. Juul, A. et al. Possible fetal determinants of male infertility. Nat. Rev. Endocrinol. 10, 553–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  221. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Torra, R., Furlano, M., Ortiz, A. & Ars, E. Genetic kidney diseases as an underrecognized cause of chronic kidney disease: the key role of international registry reports. Clin. Kidney J. 14, 1879–1885 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Connaughton, D. M. et al. The Irish kidney gene project — prevalence of family history in patients with kidney disease in Ireland. Nephron 130, 293–301 (2015).

    Article  PubMed  Google Scholar 

  224. Thakoordeen-Reddy, S. et al. Maternal variants within the apolipoprotein L1 gene are associated with preeclampsia in a South African cohort of African ancestry. Eur. J. Obstet. Gynecol. Reprod. Biol. 246, 129–133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Reidy, K. J. et al. Fetal — not maternal — APOL1 genotype associated with risk for preeclampsia in those with African ancestry. Am. J. Hum. Genet. 103, 367–376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Sampson, M. G. et al. Integrative genomics identifies novel associations with APOL1 risk genotypes in Black Neptune subjects. J. Am. Soc. Nephrol. 27, 814–823 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Moxey-Mims, M. Kidney disease in African American children: biological and nonbiological disparities. Am. J. Kidney Dis. 72, S17–S21 (2018).

    Article  PubMed  Google Scholar 

  228. Coscia, L. A. et al. Update on the teratogenicity of maternal mycophenolate mofetil. J. Pediatr. Genet. 4, 42–55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Pham-Huy, A. et al. From mother to baby: antenatal exposure to monoclonal antibody biologics. Expert. Rev. Clin. Immunol. 15, 221–229 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Committee on Infectious Diseases AA of P, Kimberlin, D. W., Barnett, E. D., Lynfield, R., Sawyer, M. H. (eds). Immunization in Special Clinical Circumstances. In: Red Book: 2021–2024 Report of the Committee on Infectious Diseases [Internet]. American Academy of Pediatrics, (2021) [cited 2024 Oct 22]. p. 0. Available from: https://doi.org/10.1542/9781610025782.

  231. Hallstensen, R. F. et al. Eculizumab treatment during pregnancy does not affect the complement system activity of the newborn. Immunobiology 220, 452–459 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Kramer, M. S. & Kakuma, R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst. Rev. 2012, CD003517 (2012).

    PubMed  PubMed Central  Google Scholar 

  233. Kramer M. S. & Kakuma R. in Protecting Infants through Human Milk. (eds Pickering L. K., Morrow A. L., Ruiz-Palacios G. M. & Schanler R.J.) Advances in Experimental Medicine and Biology. 63–77 (Springer, 2004).

  234. Stuebe, A. M., Rich-Edwards, J. W., Willett, W. C., Manson, J. E. & Michels, K. B. Duration of lactation and incidence of type 2 diabetes. JAMA 294, 2601–2610 (2005).

    Article  CAS  PubMed  Google Scholar 

  235. Rød, B. E., Torkildsen, Ø., Myhr, K.-M., Bø, L. & Wergeland, S. Safety of breast feeding during rituximab treatment in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 94, 38 (2023).

    Article  Google Scholar 

  236. Stefanovic, V. The extended use of eculizumab in pregnancy and complement activationassociated diseases affecting maternal, fetal and neonatal kidneys — the future is now? J. Clin. Med. 8, 407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. APILAM. [cited 2024 May 30]. http://e-lactancia.org/privacidad/.

  238. Eisenberg, M. L., Li, S., Cullen, M. R. & Baker, L. C. Increased risk of incident chronic medical conditions in infertile men: analysis of United States claims data. Fertil. Steril. 105, 629–636 (2016).

    Article  PubMed  Google Scholar 

  239. Kitlinski, M., Giwercman, A., Christensson, A., Nilsson, P. M. & Elenkov, A. Prevalence of impaired renal function among childless men as compared to fathers: a population-based study. Sci. Rep. 14, 7720 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Imbasciati, E. et al. Pregnancy in CKD stages 3 to 5: fetal and maternal outcomes. Am. J. Kidney Dis. 49, 753–762 (2007).

    Article  PubMed  Google Scholar 

  241. Gouveia, I. F., Silva, J. R., Santos, C. & Carvalho, C. Maternal and fetal outcomes of pregnancy in chronic kidney disease: diagnostic challenges, surveillance and treatment throughout the spectrum of kidney disease. J. Bras. Nefrol. 43, 88–102 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Bramham, K. Pregnancy in renal transplant recipients and donors. Semin. Nephrol. 37, 370–377 (2017).

    Article  PubMed  Google Scholar 

  243. Banerjee, I. et al. Health outcomes of children born to mothers with chronic kidney disease: a pilot study. Pediatr. Rep. 2, 22–25 (2010).

    Article  Google Scholar 

  244. Abou-Jaoude, P. et al. What about the renal function during childhood of children born from dialysed mothers? Nephrol. Dial. Transpl. 27, 2365–2369 (2012).

    Article  CAS  Google Scholar 

  245. Blowey, D. L. & Warady, B. A. Outcome of infants born to women with chronic kidney disease. Adv. Chronic Kidney Dis. 14, 199–205 (2007).

    Article  PubMed  Google Scholar 

  246. Tong, A., Brown, M. A., Winkelmayer, W. C., Craig, J. C. & Jesudason, S. Perspectives on pregnancy in women with CKD: a semistructured interview study. Am. J. Kidney Dis. 66, 951–961 (2015).

    Article  PubMed  Google Scholar 

  247. Ralston, E. R., Smith, P., Chilcot, J., Silverio, S. A. & Bramham, K. Perceptions of risk in pregnancy with chronic disease: a systematic review and thematic synthesis. PLoS ONE 16, e0254956 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Scherzer, A. L., Chhagan, M., Kauchali, S. & Susser, E. Global perspective on early diagnosis and intervention for children with developmental delays and disabilities. Dev. Med. Child. Neurol. 54, 1079–1084 (2012).

    Article  PubMed  Google Scholar 

  249. Bateman, B. T. et al. Late pregnancy β blocker exposure and risks of neonatal hypoglycemia and bradycardia. Pediatrics 138, e20160731 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Morgan, J. L. et al. Pharmacokinetics of amlodipine besylate at delivery and during lactation. Pregnancy Hypertens. 11, 77–80 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Xie, R. H. et al. Beta-blockers increase the risk of being born small for gestational age or of being institutionalised during infancy. BJOG 121, 1090–1096 (2014).

    Article  PubMed  Google Scholar 

  252. Magee L. A., Duley L. Oral beta-blockers for mild to moderate hypertension during pregnancy. Cochrane Database Syst. Rev. 2003, CD002863 (2000).

    PubMed  Google Scholar 

  253. Nice, F. J. & Luo, A. C. Medications and breast-feeding: current concepts. J. Am. Pharm. Assoc. 52, 86–94 (2012).

    Article  Google Scholar 

  254. National Collaborating Centre for Women’s and Children’s Health (UK). Hypertension in Pregnancy: The Management of Hypertensive Disorders During Pregnancy (RCOG Press, 2010).

  255. Ornoy, A. Pharmacological treatment of attention deficit hyperactivity disorder during pregnancy and lactation. Pharm. Res. 35, 46 (2018).

    Article  PubMed  Google Scholar 

  256. Schreiber, K. et al. British Society for Rheumatology guideline on prescribing drugs in pregnancy and breastfeeding: comorbidity medications used in rheumatology practice. Rheumatology 62, e89–e104 (2023).

    Article  PubMed  Google Scholar 

  257. Sau, A. et al. Azathioprine and breastfeeding: is it safe? BJOG 114, 498–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  258. Bramham, K., Chusney, G., Lee, J., Lightstone, L. & Nelson-Piercy, C. Breastfeeding and tacrolimus: serial monitoring in breast-fed and bottle-fed infants. Clin. J. Am. Soc. Nephrol. 8, 563 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Muller, D. R. P. et al. Effects of GLP-1 agonists and SGLT2 inhibitors during pregnancy and lactation on offspring outcomes: a systematic review of the evidence. Front. Endocrinol. 14 (2023).

  260. World Health Organization. Breastfeeding and maternal medication: recommendations for drugs in the eleventh WHO model list of essential drugs. https://iris.who.int/handle/10665/62435 (2002).

  261. Clark, S. L., Porter, T. F. & West, F. G. Coumarin derivatives and breast-feeding. Obstet. Gynecol. 95, 938–940 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.A.S., I.S. and K.B. researched data for the article. P.A.S., I.S., K.C. and K.B. wrote the article. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kate Bramham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Shilpanjali Jesudason, Giorgina Piccoli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, P.A., Sarris, I., Clark, K. et al. Kidney disease and reproductive health. Nat Rev Nephrol 21, 127–143 (2025). https://doi.org/10.1038/s41581-024-00901-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-024-00901-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing