Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Collagen formation, function and role in kidney disease

Abstract

Highly abundant in mammals, collagens define the organization of tissues and participate in cell signalling. Most of the 28 vertebrate collagens, with the exception of collagens VI, VII, XXVI and XXVIII, can be categorized into five subgroups: fibrillar collagens, network-forming collagens, fibril-associated collagens with interrupted triple helices, membrane-associated collagens with interrupted triple helices and multiple triple-helix domains with interruptions. Collagen peptides are synthesized from the ribosome and enter the rough endoplasmic reticulum, where they undergo numerous post-translational modifications. The collagen chains form triple helices that can be secreted to form a diverse array of supramolecular structures in the extracellular matrix. Collagens are ubiquitously expressed and have been linked to a broad spectrum of disorders, including genetic disorders with kidney phenotypes. They also have an important role in kidney fibrosis and mass spectrometry-based proteomic studies have improved understanding of the composition of fibrosis in kidney disease. A wide range of therapeutics are in development for collagen and kidney disorders, including genetic approaches, chaperone therapies, protein degradation strategies and anti-fibrotic therapies. Improved understanding of collagens and their role in disease is needed to facilitate the development of more specific treatments for collagen and kidney disorders.

Key points

  • Collagens are highly abundant in vertebrates and have critical roles in structural integrity, tissue organization and signalling.

  • Collagens undergo a series of processing events that begin with trafficking into the rough endoplasmic reticulum and post-translational modification.

  • Pathogenic variants in collagen genes are associated with a spectrum of disorders.

  • In the kidney, collagen variants cause Alport syndrome, congenital abnormalities of the kidney and urinary tract and the multisystem disorder, Gould syndrome.

  • Dysregulated collagens are also a hallmark of fibrosis, which is a major cause of organ failure.

  • Current and future therapies for collagen disorders and kidney diseases can be broadly categorized as genetic approaches, chaperone therapies, protein degradation strategies and anti-fibrotic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The collagen family of proteins.
Fig. 2: Collagens in the human kidney.
Fig. 3: Approaches to treating collagen disorders and fibrosis in the kidney.

Similar content being viewed by others

References

  1. Piez, K. A. History of extracellular matrix: a personal view. Matrix Biol. 16, 85–92 (1997).

    CAS  PubMed  Google Scholar 

  2. Sharma, S., Dwivedi, S., Chandra, S., Srivastava, A. & Vijay, P. Collagen: a brief analysis. J. Oral Maxillofac. Pathol. 10, 11–17 (2019).

    Google Scholar 

  3. Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 3, a004978 (2011).

    PubMed  PubMed Central  Google Scholar 

  4. Levy, M. & Feingold, J. Estimating prevalence in single-gene kidney diseases progressing to renal failure. Kidney Int. 58, 925–943 (2000).

    CAS  PubMed  Google Scholar 

  5. Hasstedt, S. J. & Atkin, C. L. X-linked inheritance of Alport syndrome: family P revisited. Am. J. Hum. Genet. 35, 1241–1251 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Persson, U., Hertz, J. M., Wieslander, J. & Segelmark, M. Alport syndrome in southern Sweden. Clin. Nephrol. 64, 85–90 (2005).

    CAS  PubMed  Google Scholar 

  7. Pajari, H., Kääriäinen, H., Muhonen, T. & Koskimies, O. Alport’s syndrome in 78 patients: epidemiological and clinical study. Acta Paediatr. 85, 1300–1306 (1996).

    CAS  PubMed  Google Scholar 

  8. Barua, M. & Paterson, A. D. Population-based studies reveal an additive role of type IV collagen variants in hematuria and albuminuria. Pediatr. Nephrol. 37, 253–262 (2022).

    PubMed  Google Scholar 

  9. Gibson, J. et al. Prevalence estimates of predicted pathogenic COL4A3-COL4A5 variants in a population sequencing database and their implications for Alport syndrome. J. Am. Soc. Nephrol. 32, 2273–2290 (2021).

    PubMed  PubMed Central  Google Scholar 

  10. Wirz, J. A., Boudko, S. P., Lerch, T. F., Chapman, M. S. & Bächinger, H. P. Crystal structure of the human collagen XV trimerization domain: a potent trimerizing unit common to multiplexin collagens. Matrix Biol. 30, 9–15 (2011).

    CAS  PubMed  Google Scholar 

  11. Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ricard-Blum, S. & Ruggiero, F. The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol. Biol. 53, 430–442 (2005).

    CAS  PubMed  Google Scholar 

  13. Fidler, A. L., Boudko, S. P., Rokas, A. & Hudson, B. G. The triple helix of collagens — an ancient protein structure that enabled animal multicellularity and tissue evolution. J. Cell Sci. 131, jcs203950 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Salo, A. M. & Myllyharju, J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp. Dermatol. 30, 38–49 (2021).

    CAS  PubMed  Google Scholar 

  15. Onursal, C., Dick, E., Angelidis, I., Schiller, H. B. & Staab-Weijnitz, C. A. Collagen biosynthesis, processing, and maturation in lung ageing. Front. Med. 8, 593874 (2021).

    Google Scholar 

  16. Bedran-Russo, A. K. B., Pereira, P. N. R., Duarte, W. R., Drummond, J. L. & Yamauchi, M. Application of crosslinkers to dentin collagen enhances the ultimate tensile strength. J. Biomed. Mater. Res. 80B, 268–272 (2007).

    CAS  Google Scholar 

  17. Dolmatov, I. Y. & Nizhnichenko, V. A. Extracellular matrix of echinoderms. Mar. Drugs 21, 417 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamauchi, M. & Sricholpech, M. Lysine post-translational modifications of collagen. Essays Biochem. 52, 113–133 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hosoyamada, Y. & Sakai, T. Structural arrangement of collagen fibrils in the periarterial connective tissue of the kidney: their functional relevance as a structural stabilizer against arterial pressure. Anat. Sci. Int. 87, 80–87 (2012).

    CAS  PubMed  Google Scholar 

  20. Stribos, E. G. D. et al. Non-invasive quantification of collagen turnover in renal transplant recipients. PLoS ONE 12, e0175898 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Genovese, F. et al. Turnover of type III collagen reflects disease severity and is associated with progression and microinflammation in patients with IgA nephropathy. Nephrol. Dial. Transplant. 31, 472–479 (2016).

    CAS  PubMed  Google Scholar 

  22. Pilemann-Lyberg, S. et al. Markers of collagen formation and degradation reflect renal function and predict adverse outcomes in patients with type 1 diabetes. Diabetes Care 42, 1760–1768 (2019).

    CAS  PubMed  Google Scholar 

  23. Genovese, F. et al. Collagen type III and VI remodeling biomarkers are associated with kidney fibrosis in lupus nephritis. Kidney360 2, 1473–1481 (2021).

    PubMed  PubMed Central  Google Scholar 

  24. Sparding, N. et al. Endotrophin, a collagen type VI-derived matrikine, reflects the degree of renal fibrosis in patients with IgA nephropathy and in patients with ANCA-associated vasculitis. Nephrol. Dial. Transplant. 37, 1099–1108 (2022).

    CAS  PubMed  Google Scholar 

  25. Yepes-Calderón, M. et al. Biopsy-controlled non-invasive quantification of collagen type VI in kidney transplant recipients: a post-hoc analysis of the MECANO trial. J. Clin. Med. 9, 3216 (2020).

    PubMed  PubMed Central  Google Scholar 

  26. Rasmussen, D. G. K. et al. Higher collagen VI formation is associated with all-cause mortality in patients with type 2 diabetes and microalbuminuria. Diabetes Care 41, 1493–1500 (2018).

    CAS  PubMed  Google Scholar 

  27. Abrahamson, D. R., Hudson, B. G., Stroganova, L., Borza, D. B. & St John, P. L. Cellular origins of type IV collagen networks in developing glomeruli. J. Am. Soc. Nephrol. 20, 1471–1479 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Miner, J. H. Renal basement membrane components. Kidney Int. 56, 2016–2024 (1999).

    CAS  PubMed  Google Scholar 

  29. Bülow, R. D. & Boor, P. Extracellular matrix in kidney fibrosis: more than just a scaffold. J. Histochem. Cytochem. 67, 643–661 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Adeva-Andany, M. M. & Carneiro-Freire, N. Biochemical composition of the glomerular extracellular matrix in patients with diabetic kidney disease. World J. Diabetes 13, 498–520 (2022).

    PubMed  PubMed Central  Google Scholar 

  31. Lennon, R. et al. Global analysis reveals the complexity of the human glomerular extracellular matrix. J. Am. Soc. Nephrol. 25, 939–951 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Genovese, F., Manresa, A. A., Leeming, D. J., Karsdal, M. A. & Boor, P. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair 7, 4 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Kashtan, C. E. & Kim, Y. Distribution of the α1 and α2 chains of collagen IV and of collagens V and VI in Alport syndrome. Kidney Int. 42, 115–126 (1992).

    CAS  PubMed  Google Scholar 

  34. Alexakis, C., Maxwell, P. & Bou-Gharios, G. Organ-specific collagen expression: implications for renal disease. Nephron Exp. Nephrol. 102, e71–e75 (2006).

    CAS  PubMed  Google Scholar 

  35. Sundaramoorthy, M., Meiyappan, M., Todd, P. & Hudson, B. G. Crystal structure of NC1 domains: structural basis for type IV collagen assembly in basement membranes. J. Biol. Chem. 277, 31142–31153 (2002).

    CAS  PubMed  Google Scholar 

  36. Bogin, O. et al. Insight into Schmid metaphyseal chondrodysplasia from the crystal structure of the collagen X NC1 domain trimer. Structure 10, 165–173 (2002).

    CAS  PubMed  Google Scholar 

  37. Dublet, B., Vernet, T. & van der Rest, M. Schmid’s metaphyseal chondrodysplasia mutations interfere with folding of the C-terminal domain of human collagen X expressed in Escherichia coli. J. Biol. Chem. 274, 18909–18915 (1999).

    CAS  PubMed  Google Scholar 

  38. Engel, J. & Prockop, D. J. The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Annu. Rev. Biophys. Biophys. Chem. 20, 137–152 (1991).

    CAS  PubMed  Google Scholar 

  39. Risteli, J., Timpl, R., Bächinger, H. P., Engel, J. & Furthmayr, H. 7-S collagen: characterization of an unusual basement membrane structure. Eur. J. Biochem. 108, 239–250 (1980).

    CAS  PubMed  Google Scholar 

  40. Añazco, C. et al. Lysyl oxidase-like-2 cross-links collagen IV of glomerular basement membrane. J. Biol. Chem. 291, 25999–26012 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Boudko, S. P. et al. Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds. J. Biol. Chem. 299, 105318 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Söder, S. & Pöschl, E. The NC1 domain of human collagen IV is necessary to initiate triple helix formation. Biochem. Biophys. Res. Commun. 325, 276–280 (2004).

    PubMed  Google Scholar 

  43. Randles, M. J. et al. Basement membrane ligands initiate distinct signalling networks to direct cell shape. Matrix Biol. 90, 61–78 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sato, K. et al. Type XXVI collagen, a new member of the collagen family, is specifically expressed in the testis and ovary. J. Biol. Chem. 277, 37678–37684 (2002).

    CAS  PubMed  Google Scholar 

  45. Ansorge, H. L. et al. Type XIV collagen regulates bibrillogenesis premature collagen fibril growth and tissue dysfunction in null mice. J. Biol. Chem. 284, 8427–8438 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Madsen, E. A. et al. Type XXII collagen complements fibrillar collagens in the serological assessment of tumor fibrosis and the outcome in pancreatic cancer. Cells 11, 3763 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Papanicolaou, M. et al. Temporal profiling of the breast tumour microenvironment reveals collagen XII as a driver of metastasis. Nat. Commun. 13, 4587 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zvackova, I., Matalova, E. & Lesot, H. Regulators of collagen fibrillogenesis during molar development in the mouse. Front. Physiol. 8, 554 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Izzi, V. et al. Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin. Cancer Biol. 62, 134–148 (2020).

    CAS  PubMed  Google Scholar 

  50. Wakabayashi, T. Transmembrane collagens in neuromuscular development and disorders. Front. Mol. Neurosci. 13, 635375 (2020).

    CAS  PubMed  Google Scholar 

  51. Spivey, K. A. et al. A role for collagen XXIII in cancer cell adhesion, anchorage-independence and metastasis. Oncogene 31, 2362–2372 (2012).

    CAS  PubMed  Google Scholar 

  52. Franzke, C.-W., Tasanen, K., Schumann, H. & Bruckner-Tuderman, L. Collagenous transmembrane proteins: collagen XVII as a prototype. Matrix Biol. 22, 299–309 (2003).

    CAS  PubMed  Google Scholar 

  53. Tu, H. M., Huhtala, P., Lee, H. M., Adams, J. C. & Pihlajaniemi, T. Membrane-associated collagens with interrupted triple-helices (MACITs): evolution from a bilaterian common ancestor and functional conservation in C. elegans. BMC Evol. Biol. 15, 281 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Rhode, H. et al. Urinary protein-biomarkers reliably indicate very early kidney damage in children with Alport syndrome independently of albuminuria and inflammation. Kidney Int. Rep. 8, 2778–2793 (2023).

    PubMed  PubMed Central  Google Scholar 

  55. Bretaud, S., Guillon, E., Karppinen, S.-M., Pihlajaniemi, T. & Ruggiero, F. Collagen XV, a multifaceted multiplexin present across tissues and species. Matrix Biol. 6–7, 100023 (2020).

    Google Scholar 

  56. Rinta-Jaskari, M. M. et al. Temporally and spatially regulated collagen XVIII isoforms are involved in ureteric tree development via the TSP1-like domain. Matrix Biol. 115, 139–159 (2023).

    CAS  PubMed  Google Scholar 

  57. Boudko, S. P. et al. Crystal structure of human collagen XVIII trimerization domain: a novel collagen trimerization fold. J. Mol. Biol. 392, 787–802 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Myers, J. C. et al. The molecular structure of human tissue type XV presents a unique conformation among the collagens. Biochem. J. 404, 535–544 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fitzgerald, J., Holden, P. & Hansen, U. The expanded collagen VI family: new chains and new questions. Connect. Tissue Res. 54, 345–350 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gebauer, J. M., Kobbe, B., Paulsson, M. & Wagener, R. Structure, evolution and expression of collagen XXVIII: lessons from the zebrafish. Matrix Biol. 49, 106–119 (2016).

    CAS  PubMed  Google Scholar 

  61. Saleh, M. A. et al. Development of NC1 and NC2 domains of Type VII collagen ELISA for the diagnosis and analysis of the time course of epidermolysis bullosa acquisita patients. J. Dermatol. Sci. 62, 169–175 (2011).

    CAS  PubMed  Google Scholar 

  62. Lamandé, S. R. & Bateman, J. F. Collagen VI disorders: insights on form and function in the extracellular matrix and beyond. Matrix Biol. 71–72, 348–367 (2018).

    PubMed  Google Scholar 

  63. Koca, D. et al. COL7A1 expression improves prognosis prediction for patients with clear cell renal cell carcinoma atop of stage. Cancers 15, 2701 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ishikawa, Y. & Bächinger, H. P. An additional function of the rough endoplasmic reticulum protein complex prolyl 3-hydroxylase 1·cartilage-associated protein·cyclophilin B: the CXXXC motif reveals disulfide isomerase activity in vitro. J. Biol. Chem. 288, 31437–31446 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tang, M. et al. Effect of hydroxylysine-O-glycosylation on the structure of type I collagen molecule: a computational study. Glycobiology 30, 830–843 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hudson, D. M. et al. P3h3-null and Sc65-null mice phenocopy the collagen lysine under-hydroxylation and cross-linking abnormality of Ehlers-Danlos syndrome type VIA. J. Biol. Chem. 292, 3877–3887 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sipilä, L. et al. Secretion and assembly of type IV and VI collagens depend on glycosylation of hydroxylysines. J. Biol. Chem. 282, 33381–33388 (2007).

    PubMed  Google Scholar 

  68. Lamandé, S. R. & Bateman, J. F. The type I collagen proα1(I) COOH-terminal propeptide N-linked oligosaccharide. Functional analysis by site-directed mutagenesis. J. Biol. Chem. 270, 17858–17865 (1995).

    PubMed  Google Scholar 

  69. Franzke, C. W. et al. C-terminal truncation impairs glycosylation of transmembrane collagen XVII and leads to intracellular accumulation. J. Biol. Chem. 281, 30260–30268 (2006).

    CAS  PubMed  Google Scholar 

  70. Li, R. C., Wong, M. Y., DiChiara, A. S., Hosseini, A. S. & Shoulders, M. D. Collagen’s enigmatic, highly conserved N-glycan has an essential proteostatic function. Proc. Natl Acad. Sci. USA 118, e2026608118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wilson, R., Lees, J. F. & Bulleid, N. J. Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J. Biol. Chem. 273, 9637–9643 (1998).

    CAS  PubMed  Google Scholar 

  72. Taga, Y. et al. Hydroxyhomocitrulline is a collagen-specific carbamylation mark that affects cross-link formation. Cell Chem. Biol. 24, 1276–1284.e3 (2017).

    CAS  PubMed  Google Scholar 

  73. Kalluri, R., Shield, C. F., Todd, P., Hudson, B. G. & Neilson, E. G. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J. Clin. Invest. 99, 2470–2478 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Boudko, S. P., Engel, J. & Bächinger, H. P. Trimerization and triple helix stabilization of the collagen XIX NC2 domain. J. Biol. Chem. 283, 34345–34351 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. McCaughey, J. & Stephens, D. J. ER-to-Golgi transport: a sizeable problem. Trends Cell Biol. 29, 940–953 (2019).

    CAS  PubMed  Google Scholar 

  76. McCaughey, J., Stevenson, N. L., Cross, S. & Stephens, D. J. ER-to-Golgi trafficking of procollagen in the absence of large carriers. J. Cell Biol. 218, 929–948 (2018).

    PubMed  Google Scholar 

  77. Saito, K. et al. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell 22, 2301–2308 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. McCaughey, J. et al. A general role for TANGO1, encoded by MIA3, in secretory pathway organization and function. J. Cell Sci. 134, jcs259075 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bunel, L., Pincet, L., Malhotra, V., Raote, I. & Pincet, F. A model for collagen secretion by intercompartmental continuities. Proc. Natl Acad. Sci. USA 121, e2310404120 (2024).

    CAS  PubMed  Google Scholar 

  80. Omari, S. et al. Mechanisms of procollagen and HSP47 sorting during ER-to-Golgi trafficking. Matrix Biol. 93, 79–94 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hirata, Y., Matsui, Y., Wada, I. & Hosokawa, N. Endoplasmic reticulum-to-Golgi trafficking of procollagen III via conventional vesicular and tubular carriers. Mol. Biol. Cell 33, ar21 (2022).

    PubMed  PubMed Central  Google Scholar 

  82. Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15, 771–785 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Canty-Laird, E. G., Lu, Y. & Kadler, K. E. Stepwise proteolytic activation of type I procollagen to collagen within the secretory pathway of tendon fibroblasts in situ. Biochem. J. 441, 707–717 (2012).

    CAS  PubMed  Google Scholar 

  84. Zakiyanov, O., Kalousová, M., Zima, T. & Tesař, V. Matrix metalloproteinases in renal diseases: a critical appraisal. Kidney Blood Press. Res. 44, 298–330 (2019).

    CAS  PubMed  Google Scholar 

  85. Nakamura, T. et al. Elevation of serum levels of metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and type IV collagen, and plasma levels of metalloproteinase-9 in polycystic kidney disease. Am. J. Nephrol. 20, 32–36 (2000).

    CAS  PubMed  Google Scholar 

  86. Rao, V. H. et al. Role for macrophage metalloelastase in glomerular basement membrane damage associated with Alport syndrome. Am. J. Pathol. 169, 32–46 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cosgrove, D. et al. Integrin α1β1 regulates matrix metalloproteinases via P38 mitogen-activated protein kinase in mesangial cells: implications for Alport syndrome. Am. J. Pathol. 172, 761–773 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Martínez-Pulleiro, R., García-Murias, M., Fidalgo-Díaz, M. & García-González, M. Á. Molecular basis, diagnostic challenges and therapeutic approaches of Alport syndrome: a primer for clinicians. Int. J. Mol. Sci. 22, 11063 (2021).

    PubMed  PubMed Central  Google Scholar 

  89. Djaziri, N. et al. Cleavage of periostin by MMP9 protects mice from kidney cystic disease. PLoS ONE 18, e0294922 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. The UniProt, C. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).

    Google Scholar 

  91. Brown, K. L., Cummings, C. F., Vanacore, R. M. & Hudson, B. G. Building collagen IV smart scaffolds on the outside of cells. Protein Sci. 26, 2151–2161 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ivanov, S. V. et al. Identification of brominated proteins in renal extracellular matrix: potential interactions with peroxidasin. Biochem. Biophys. Res. Commun. 681, 152–156 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Al-U’datt, D. A. G. F. et al. Involvement and possible role of transglutaminases 1 and 2 in mediating fibrotic signalling, collagen cross-linking and cell proliferation in neonatal rat ventricular fibroblasts. PLoS ONE 18, e0281320 (2023).

    PubMed  PubMed Central  Google Scholar 

  94. Nicolas, C. et al. Carbamylation and glycation compete for collagen molecular aging in vivo. Sci. Rep. 9, 18291 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gorisse, L. et al. Protein carbamylation is a hallmark of aging. Proc. Natl Acad. Sci. USA 113, 1191–1196 (2016).

    CAS  PubMed  Google Scholar 

  96. Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 50, D20–D26 (2022).

    CAS  PubMed  Google Scholar 

  97. Kuivaniemi, H., Tromp, G. & Prockop, D. J. Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Hum. Mutat. 9, 300–315 (1997).

    CAS  PubMed  Google Scholar 

  98. Deshmukh, S. N., Dive, A. M., Moharil, R. & Munde, P. Enigmatic insight into collagen. J. Oral Maxillofac. Pathol. 20, 276–283 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Qadar, L. T., Ochani, R. K., Shaikh, A., Arsalan, Q. & Ali, R. A unique association of osteogenesis imperfecta with bilateral renal osteodystrophy and gastroenteritis in a three-year-old boy. Cureus 11, e4467 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. Vetter, U. et al. Osteogenesis imperfecta in childhood: cardiac and renal manifestations. Eur. J. Pediatr. 149, 184–187 (1989).

    CAS  PubMed  Google Scholar 

  101. Chines, A., Boniface, A., McAlister, W. & Whyte, M. Hypercalciuria in osteogenesis imperfecta: a follow-up study to assess renal effects. Bone 16, 333–339 (1995).

    CAS  PubMed  Google Scholar 

  102. Bastarache, L., Denny, J. C. & Roden, D. M. Phenome-wide association studies. JAMA 327, 75–76 (2022).

    PubMed  PubMed Central  Google Scholar 

  103. Li, L. et al. Collagen type III glomerulopathy: a morphologic study. Zhonghua Bing Li Xue Za Zhi 34, 385–388 (2005).

    PubMed  Google Scholar 

  104. Liu, H., Luo, C., Li, Z., Zhang, C. & Xiong, J. The first case of lipoprotein glomerulopathy complicated with collagen type III glomerulopathy and literature review. J. Nephrol. 36, 663–667 (2023).

    CAS  PubMed  Google Scholar 

  105. Morita, H. et al. Collagenofibrotic glomerulopathy with a widespread expression of type-V collagen. Virchows Arch. 442, 163–168 (2003).

    PubMed  Google Scholar 

  106. Roberts-Pilgrim, A. M. et al. Deficient degradation of homotrimeric type I collagen, α1(I)3 glomerulopathy in oim mice. Mol. Genet. Metab. 104, 373–382 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. De Gregorio, V., Caparali, E. B., Shojaei, A., Ricardo, S. & Barua, M. Alport syndrome: clinical spectrum and therapeutic advances. Kidney Med. 5, 100631 (2023).

    PubMed  PubMed Central  Google Scholar 

  108. Pokidysheva, E. N. et al. Collagen IV of basement membranes: II. Emergence of collagen IVα345 enabled the assembly of a compact GBM as an ultrafilter in mammalian kidneys. J. Biol. Chem. 299, 105459 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Chevalier, R. L. CAKUT: a pediatric and evolutionary perspective on the leading cause of CKD in childhood. Pediatr. Rep. 15, 143–153 (2023).

    PubMed  PubMed Central  Google Scholar 

  110. Kohl, S., Habbig, S., Weber, L. T. & Liebau, M. C. Molecular causes of congenital anomalies of the kidney and urinary tract (CAKUT). Mol. Cell. Pediatr. 8, 2 (2021).

    PubMed  PubMed Central  Google Scholar 

  111. Boyce, D., McGee, S., Shank, L., Pathak, S. & Gould, D. Epilepsy and related challenges in children with COL4A1 and COL4A2 mutations: a Gould syndrome patient registry. Epilepsy Behav. 125, 108365 (2021).

    PubMed  Google Scholar 

  112. Burns, A. & Hug, J. Infantile hemiparesis and porencephaly due to a COL4A1 mutation: Gould syndrome. BMJ Case Rep. 17, e259103 (2024).

    PubMed  Google Scholar 

  113. Hirabayashi, Y. et al. Mutation analysis of thin basement membrane nephropathy. Genes 13, 1779 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bekheirnia, M. R. et al. Genotype-phenotype correlation in X-linked Alport syndrome. J. Am. Soc. Nephrol. 21, 876–883 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jais, J. P. et al. X-linked Alport syndrome: natural history in 195 families and genotype-phenotype correlations in males. J. Am. Soc. Nephrol. 11, 649–657 (2000).

    CAS  PubMed  Google Scholar 

  116. Salem, R. M. et al. Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen. J. Am. Soc. Nephrol. 30, 2000–2016 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lerner, R. A., Glassock, R. J. & Dixon, F. J. The role of anti-glomerular basement membrane antibody in the pathogenesis of human glomerulonephritis. J. Exp. Med. 126, 989–1004 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Butkowski, R. J., Langeveld, J. P., Wieslander, J., Hamilton, J. & Hudson, B. G. Localization of the Goodpasture epitope to a novel chain of basement membrane collagen. J. Biol. Chem. 262, 7874–7877 (1987).

    CAS  PubMed  Google Scholar 

  119. Saus, J., Wieslander, J., Langeveld, J. P., Quinones, S. & Hudson, B. G. Identification of the Goodpasture antigen as the α3(IV) chain of collagen IV. J. Biol. Chem. 263, 13374–13380 (1988).

    CAS  PubMed  Google Scholar 

  120. Netzer, K. O. et al. The Goodpasture autoantigen. Mapping the major conformational epitope(s) of α3(IV) collagen to residues 17–31 and 127–141 of the NC1 domain. J. Biol. Chem. 274, 11267–11274 (1999).

    CAS  PubMed  Google Scholar 

  121. Hellmark, T., Burkhardt, H. & Wieslander, J. Goodpasture disease. Characterization of a single conformational epitope as the target of pathogenic autoantibodies. J. Biol. Chem. 274, 25862–25868 (1999).

    CAS  PubMed  Google Scholar 

  122. Borza, D. B. et al. The Goodpasture autoantigen. Identification of multiple cryptic epitopes on the NC1 domain of the α3(IV) collagen chain. J. Biol. Chem. 275, 6030–6037 (2000).

    CAS  PubMed  Google Scholar 

  123. David, M., Borza, D.-B., Leinonen, A., Belmont, J. M. & Hudson, B. G. Hydrophobic amino acid residues are critical for the immunodominant epitope of the Goodpasture autoantigen: a molecular basis for the cryptic nature of the epitope. J. Biol. Chem. 276, 6370–6377 (2001).

    CAS  PubMed  Google Scholar 

  124. Gunnarsson, A., Hellmark, T. & Wieslander, J. Molecular properties of the Goodpasture epitope. J. Biol. Chem. 275, 30844–30848 (2000).

    CAS  PubMed  Google Scholar 

  125. Phelps, R. G. & Rees, A. J. The HLA complex in Goodpasture’s disease: a model for analyzing susceptibility to autoimmunity. Kidney Int. 56, 1638–1653 (1999).

    CAS  PubMed  Google Scholar 

  126. Pedchenko, V., Kitching, A. R. & Hudson, B. G. Goodpasture’s autoimmune disease — a collagen IV disorder. Matrix Biol. 71–72, 240–249 (2018).

    PubMed  Google Scholar 

  127. Van Damme, T., Colman, M., Syx, D. & Malfait, F. The Ehlers–Danlos syndromes against the backdrop of inborn errors of metabolism. Genes 13, 265 (2022).

    PubMed  PubMed Central  Google Scholar 

  128. Sandholm, N. et al. Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease. Diabetologia 65, 1495–1509 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Cruz, P. M. R. et al. The clinical spectrum of the congenital myasthenic syndrome resulting from COL13A1 mutations. Brain 142, 1547–1560 (2019).

    Google Scholar 

  130. Condrat, I., He, Y., Cosgarea, R. & Has, C. Junctional epidermolysis bullosa: allelic heterogeneity and mutation stratification for precision medicine. Front. Med. 5, 363 (2018).

    Google Scholar 

  131. Xu, F. et al. The oncogenic role of COL23A1 in clear cell renal cell carcinoma. Sci. Rep. 7, 9846 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Balikova, I. et al. Three cases of molecularly confirmed Knobloch syndrome. Ophthalmic Genet. 41, 83–87 (2020).

    PubMed  Google Scholar 

  133. Kinnunen, A. I. et al. Lack of collagen XVIII long isoforms affects kidney podocytes, whereas the short form is needed in the proximal tubular basement membrane. J. Biol. Chem. 286, 7755–7764 (2011).

    CAS  PubMed  Google Scholar 

  134. Chen, M., Costa, F. K., Lindvay, C. R., Han, Y. P. & Woodley, D. T. The recombinant expression of full-length type VII collagen and characterization of molecular mechanisms underlying dystrophic epidermolysis bullosa. J. Biol. Chem. 277, 2118–2124 (2002).

    CAS  PubMed  Google Scholar 

  135. Fenton, A. et al. Serum endotrophin, a type VI collagen cleavage product, is associated with increased mortality in chronic kidney disease. PLoS ONE 12, e0175200 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Randles, M. J. et al. Identification of an altered matrix signature in kidney aging and disease. J. Am. Soc. Nephrol. 32, 1713 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Thorlacius-Ussing, J. et al. The collagen landscape in cancer: profiling collagens in tumors and in circulation reveals novel markers of cancer-associated fibroblast subtypes. J. Pathol. 262, 22–36 (2023).

    PubMed  Google Scholar 

  138. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Huang, R., Fu, P. & Ma, L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal. Transduct. Target. Ther. 8, 129 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Li, L., Fu, H. & Liu, Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat. Rev. Nephrol. 18, 545–557 (2022).

    CAS  PubMed  Google Scholar 

  141. Klinkhammer, B. M. et al. Non-invasive molecular imaging of kidney diseases. Nat. Rev. Nephrol. 17, 688–703 (2021).

    PubMed  PubMed Central  Google Scholar 

  142. Baues, M. et al. A collagen-binding protein enables molecular imaging of kidney fibrosis in vivo. Kidney Int. 97, 609–614 (2020).

    CAS  PubMed  Google Scholar 

  143. Gerth, J. et al. Collagen type VIII expression in human diabetic nephropathy. Eur. J. Clin. Invest. 37, 767–773 (2007).

    CAS  PubMed  Google Scholar 

  144. Rasmussen, D. G. K. et al. Collagen turnover profiles in chronic kidney disease. Sci. Rep. 9, 16062 (2019).

    PubMed  PubMed Central  Google Scholar 

  145. Bischof, J., Hierl, M. & Koller, U. Emerging gene therapeutics for epidermolysis bullosa under development. Int. J. Mol. Sci. 25, 2242 (2024).

    Google Scholar 

  146. Epstein, A. L. & Haag-Molkenteller, C. Herpes simplex virus gene therapy for dystrophic epidermolysis bullosa (DEB). Cell 186, 3523–3523.e1 (2023).

    CAS  PubMed  Google Scholar 

  147. Omachi, K., Kai, H., Roberge, M. & Miner, J. H. NanoLuc reporters identify COL4A5 nonsense mutations susceptible to drug-induced stop codon readthrough. iScience 25, 103891 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Leubitz, A. et al. A randomized, double-blind, placebo-controlled, multiple dose escalation study to evaluate the safety and pharmacokinetics of ELX-02 in healthy subjects. Clin. Pharmacol. Drug Dev. 10, 859–869 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05448755 (2022).

  150. Bene, M. R., Thyne, K., Dorigatti, J. & Salmon, A. B. 4-phenylbutyrate: molecular mechanisms and aging intervention potential. Innov. Aging 3, S101 (2019).

    PubMed Central  Google Scholar 

  151. Besio, R. et al. Cellular stress due to impairment of collagen prolyl hydroxylation complex is rescued by the chaperone 4-phenylbutyrate. Dis. Model. Mech. 12, dmm038521 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Takeyari, S. et al. 4-Phenylbutyric acid enhances the mineralization of osteogenesis imperfecta iPSC-derived osteoblasts. J. Biol. Chem. 296, 100027 (2021).

    CAS  PubMed  Google Scholar 

  153. Wang, D. et al. The chemical chaperone, PBA, reduces ER stress and autophagy and increases collagen IV α5 expression in cultured fibroblasts from men with X-linked Alport syndrome and missense mutations. Kidney Int. Rep. 2, 739–748 (2017).

    PubMed  PubMed Central  Google Scholar 

  154. Jones, F. E. et al. 4-Sodium phenyl butyric acid has both efficacy and counter-indicative effects in the treatment of Col4a1 disease. Hum. Mol. Genet. 28, 628–638 (2019).

    CAS  PubMed  Google Scholar 

  155. Mullan, L. A. et al. Increased intracellular proteolysis reduces disease severity in an ER stress-associated dwarfism. J. Clin. Invest. 127, 3861–3865 (2017).

    PubMed  PubMed Central  Google Scholar 

  156. European Union Clinical Trials Register. Clinicaltrialsregister.eu https://www.clinicaltrialsregister.eu/ctr-search/trial/2018-002633-38/IT (2022).

  157. Blank, M. et al. The effect of carbamazepine on bone structure and strength in control and osteogenesis imperfecta (Col1a2+/p.G610C) mice. J. Cell Mol. Med. 26, 4021–4031 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    PubMed  PubMed Central  Google Scholar 

  159. Yang, J. et al. VHL-recruiting PROTAC attenuates renal fibrosis and preserves renal function via simultaneous degradation of Smad3 and stabilization of HIF-2α. Cell Biosci. 12, 203 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, N. et al. Suramin inhibits renal fibrosis in chronic kidney disease. J. Am. Soc. Nephrol. 22, 1064–1075 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Wu, S. B., Hou, T. Y., Kau, H. C. & Tsai, C. C. Effect of pirfenidone on TGF-β1-induced myofibroblast differentiation and extracellular matrix homeostasis of human orbital fibroblasts in Graves’ ophthalmopathy. Biomolecules 11, 1424 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Stein, C. A., LaRocca, R. V., Thomas, R., McAtee, N. & Myers, C. E. Suramin: an anticancer drug with a unique mechanism of action. J. Clin. Oncol. 7, 499–508 (1989).

    CAS  PubMed  Google Scholar 

  164. Ruwanpura, S. M., Thomas, B. J. & Bardin, P. G. Pirfenidone: molecular mechanisms and potential clinical applications in lung disease. Am. J. Respir. Cell Mol. Biol. 62, 413–422 (2020).

    CAS  PubMed  Google Scholar 

  165. Gulati, S. & Luckhardt, T. R. Updated evaluation of the safety, efficacy and tolerability of pirfenidone in the treatment of idiopathic pulmonary fibrosis. Drug Healthc. Patient Saf. 12, 85–94 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04496596 (2023).

  167. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04258397 (2022).

  168. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02689778 (2023).

  169. Song, M.-K. et al. Bardoxolone ameliorates TGF-β1-associated renal fibrosis through Nrf2/Smad7 elevation. Free Radic. Biol. Med. 138, 33–42 (2019).

    CAS  PubMed  Google Scholar 

  170. de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).

    PubMed  PubMed Central  Google Scholar 

  171. Warady, B. A. et al. Effects of bardoxolone methyl in Alport syndrome. Clin. J. Am. Soc. Nephrol. 17, 1763–1774 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ruggenenti, P. The CARDINAL trial of bardoxolone methyl in Alport syndrome: when marketing interests prevail over patients clinical needs. Nephron 147, 465–469 (2023).

    CAS  PubMed  Google Scholar 

  173. Ricard-Blum, S., Dublet, B. & der Rest, M. V. in Unconventional Collagens. (eds Ricard-Blum, S., Dublet, B. & der Rest, M.V.) (Oxford Univ. Press, 2000).

  174. Snellman, A., Tuomisto, A., Koski, A., Latvanlehto, A. & Pihlajaniemi, T. The role of disulfide bonds and alpha-helical coiled-coils in the biosynthesis of type XIII collagen and other collagenous transmembrane proteins. J. Biol. Chem. 282, 14898–14905 (2007).

    CAS  PubMed  Google Scholar 

  175. Stoica, Z. et al. Imaging of avascular necrosis of femoral head: familiar methods and newer trends. Curr. Health Sci. J. 35, 23–28 (2009).

    PubMed  PubMed Central  Google Scholar 

  176. Zhou, X., Wang, J., Mao, J. & Ye, Q. Clinical manifestations of Alport syndrome-diffuse leiomyomatosis patients with contiguous gene deletions in COL4A6 and COL4A5. Front. Med. 8, 766224 (2021).

    Google Scholar 

  177. Gonzaga-Jauregui, C. et al. Functional biology of the Steel syndrome founder allele and evidence for clan genomics derivation of COL27A1 pathogenic alleles worldwide. Eur. J. Hum. Genet. 28, 1243–1264 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Guide, S. V. et al. Trial of beremagene geperpavec (B-VEC) for dystrophic epidermolysis bullosa. N. Engl. J. Med. 387, 2211–2219 (2022).

    CAS  PubMed  Google Scholar 

  179. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04491604 (2023).

  180. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03019185 (2024).

  181. Karsdal, M. A. Biochemistry of Collagens, Laminins and Elastin: Structure, Function and Biomarkers (Haley, 2024).

  182. Bönnemann, C. G. The collagen VI-related myopathies: muscle meets its matrix. Nat. Rev. Neurol. 7, 379–390 (2011).

    PubMed  PubMed Central  Google Scholar 

  183. Peissel, B. et al. Comparative distribution of the alpha 1(IV), alpha 5(IV), and alpha 6(IV) collagen chains in normal human adult and fetal tissues and in kidneys from X-linked Alport syndrome patients. J. Clin. Invest. 96, 1948–1957 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Alport UK and The Alport Syndrome Foundation for their support. V.D.G.’s research has been supported by a Canada Graduate Scholarship — Master’s from the Canadian Institutes of Health Research (CIHR). M.B.’s research has been supported by the Canadian Institutes of Health Research (175145, 173378), Toronto General Research Institute and Toronto General Hospital Foundation. R.L.’s research is supported by the Wellcome Trust (202860/Z/16/Z), Kidney Research UK and The Stoneygate Trust.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Moumita Barua or Rachel Lennon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Tom Van Agtmael, Peter Boor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

MedlinePlus: https://medlineplus.gov

Supplementary information

Glossary

Readthrough therapies

Therapies that restore protein function by selectively suppressing premature protein truncating variants.

Rotary shadowing electron microscopy

Technique that involves obliquely depositing metals of a high scattering power with a low angle to the specimen surface to enhance the transmission electron microscopy image contrast.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Gregorio, V., Barua, M. & Lennon, R. Collagen formation, function and role in kidney disease. Nat Rev Nephrol 21, 200–215 (2025). https://doi.org/10.1038/s41581-024-00902-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-024-00902-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing