Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrins in the kidney — beyond the matrix

Abstract

The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.

Key points

  • Integrins are heterodimeric transmembrane receptors that consist of an α- and a β-subunit, which are non-covalently bound to each other; in the kidney, integrins control interactions between cells and the extracellular matrix to regulate cellular functions such as intracellular signalling and organization of the actin cytoskeleton.

  • Different parts of the nephron and the collecting system differ in their morphology, function and extracellular matrix environment and are therefore equipped with a unique set of integrins.

  • The laminin-binding integrin, α3β1, which is stabilized by the tetraspanin CD151, is essential for podocyte health; in mesangial cells, the collagen binding integrin α2β1 promotes whereas α1β1 inhibits collagen production following injury.

  • Integrin-binding proteins such as talins, kindlins and the ILK–PINCH–parvin complex differentially regulate cellular functions in various kidney segments.

  • Integrin-controlled Rho GTPase signalling is intricately involved in the complex reorganization of the actin cytoskeleton during kidney development and repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrin subtypes in the kidney.
Fig. 2: The laminin-binding integrin α3 in podocyte.
Fig. 3: The role of integrin-binding proteins in the podocyte and collecting duct.
Fig. 4: Regulation of the actin cytoskeleton in the podocyte.
Fig. 5: Actin cytoskeleton regulation in the collecting duct.

Similar content being viewed by others

References

  1. Blanc, T. et al. Three-dimensional architecture of nephrons in the normal and cystic kidney. Kidney Int. 99, 632–645 (2021).

    CAS  PubMed  Google Scholar 

  2. Mathew, S., Chen, X., Pozzi, A. & Zent, R. Integrins in renal development. Pediatr. Nephrol. 27, 891–900 (2012).

    PubMed  Google Scholar 

  3. Naylor, R. W., Morais, M. & Lennon, R. Complexities of the glomerular basement membrane. Nat. Rev. Nephrol. 17, 112–127 (2021).

    CAS  PubMed  Google Scholar 

  4. Borza, C. M., Chen, X., Zent, R. & Pozzi, A. Cell receptor-basement membrane interactions in health and disease: a kidney-centric view. Curr. Top. Membr. 76, 231–253 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pozzi, A. & Zent, R. Integrins in kidney disease. J. Am. Soc. Nephrol. 24, 1034–1039 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun, Z., Costell, M. & Fassler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31 (2019).

    CAS  PubMed  Google Scholar 

  7. Moser, M., Legate, K. R., Zent, R. & Fassler, R. The tail of integrins, talin, and kindlins. Science 324, 895–899 (2009).

    CAS  PubMed  Google Scholar 

  8. Lelongt, B. & Ronco, P. Role of extracellular matrix in kidney development and repair. Pediatr. Nephrol. 18, 731–742 (2003).

    PubMed  Google Scholar 

  9. Scarpellini, A. et al. Syndecan-4 knockout leads to reduced extracellular transglutaminase-2 and protects against tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 25, 1013–1027 (2014).

    CAS  PubMed  Google Scholar 

  10. Vogel, W. et al. Discoidin domain receptor 1 is activated independently of β1 integrin. J. Biol. Chem. 275, 5779–5784 (2000).

    CAS  PubMed  Google Scholar 

  11. Dorison, A. & Chantziantoniou, C. DDR1: a major player in renal diseases. Cell Adh. Migr. 12, 299–304 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiusa, M. et al. The extracellular matrix receptor discoidin domain receptor 1 regulates collagen transcription by translocating to the nucleus. J. Am. Soc. Nephrol. 30, 1605–1624 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Borza, C. M. et al. DDR1 contributes to kidney inflammation and fibrosis by promoting the phosphorylation of BCR and STAT3. JCI Insight 7, e150887 (2022).

    PubMed  PubMed Central  Google Scholar 

  14. Borza, C. M., Bolas, G. & Pozzi, A. Genetic and pharmacological tools to study the role of discoidin domain receptors in kidney disease. Front. Pharmacol. 13, 1001122 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nordenfelt, P., Elliott, H. L. & Springer, T. A. Coordinated integrin activation by actin-dependent force during T-cell migration. Nat. Commun. 7, 13119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, J. et al. Ligand binding initiates single-molecule integrin conformational activation. Cell 187, 2990–3005.e17 (2024).

    CAS  PubMed  Google Scholar 

  17. Avraham, S., Korin, B., Chung, J. J., Oxburgh, L. & Shaw, A. S. The mesangial cell — the glomerular stromal cell. Nat. Rev. Nephrol. 17, 855–864 (2021).

    PubMed  Google Scholar 

  18. Satchell, S. The role of the glomerular endothelium in albumin handling. Nat. Rev. Nephrol. 9, 717–725 (2013).

    CAS  PubMed  Google Scholar 

  19. Kreidberg, J. A. & Symons, J. M. Integrins in kidney development, function, and disease. Am. J. Physiol. Renal Physiol. 279, F233–F242 (2000).

    CAS  PubMed  Google Scholar 

  20. Sachs, N. et al. Kidney failure in mice lacking the tetraspanin CD151. J. Cell Biol. 175, 33–39 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pozzi, A. et al. Beta1 integrin expression by podocytes is required to maintain glomerular structural integrity. Dev. Biol. 316, 288–301 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Has, C. et al. Integrin alpha3 mutations with kidney, lung, and skin disease. N. Engl. J. Med. 366, 1508–1514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nicolaou, N. et al. Gain of glycosylation in integrin α3 causes lung disease and nephrotic syndrome. J. Clin. Invest. 122, 4375–4387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sachs, N. et al. Blood pressure influences end-stage renal disease of Cd151 knockout mice. J. Clin. Invest. 122, 348–358 (2012).

    CAS  PubMed  Google Scholar 

  25. Remuzzi, A. et al. Role of ultrastructural determinants of glomerular permeability in ultrafiltration function loss. JCI Insight 5, e137249 (2020).

    PubMed  PubMed Central  Google Scholar 

  26. Naylor, R. W. et al. Basement membrane defects in CD151-associated glomerular disease. Pediatr. Nephrol. 37, 3105–3115 (2022).

    PubMed  PubMed Central  Google Scholar 

  27. Wright, M. D. et al. Characterization of mice lacking the tetraspanin superfamily member CD151. Mol. Cell Biol. 24, 5978–5988 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bufi, R. & Korstanje, R. The impact of genetic background on mouse models of kidney disease. Kidney Int. 102, 38–44 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gardner, H., Kreidberg, J., Koteliansky, V. & Jaenisch, R. Deletion of integrin α1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev. Biol. 175, 301–313 (1996).

    CAS  PubMed  Google Scholar 

  30. Cosgrove, D. et al. Integrin α1β1 and transforming growth factor-β1 play distinct roles in Alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am. J. Pathol. 157, 1649–1659 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zent, R. et al. Glomerular injury is exacerbated in diabetic integrin α1-null mice. Kidney Int. 70, 460–470 (2006).

    CAS  PubMed  Google Scholar 

  32. Girgert, R. et al. Integrin α2-deficient mice provide insights into specific functions of collagen receptors in the kidney. Fibrogenes. Tissue Repair. 3, 19 (2010).

    Google Scholar 

  33. Wei, C. et al. SuPAR mediates viral response proteinuria by rapidly changing podocyte function. Nat. Commun. 14, 4414 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayek, S. S. et al. A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat. Med. 23, 945–953 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gallon, L. & Quaggin, S. E. SuPAR and FSGS: is the jury still out? Nat. Rev. Nephrol. 13, 593 (2017).

    PubMed  Google Scholar 

  37. Sinha, A. et al. Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. Kidney Int. 85, 649–658 (2014).

    CAS  PubMed  Google Scholar 

  38. Sudhini, Y. R., Wei, C. & Reiser, J. suPAR: an inflammatory mediator for kidneys. Kidney Dis. 8, 265–274 (2022).

    Google Scholar 

  39. Nusshag, C. et al. suPAR links a dysregulated immune response to tissue inflammation and sepsis-induced acute kidney injury. JCI Insight 8, e165740 (2023).

    PubMed  PubMed Central  Google Scholar 

  40. Madhusudhan, T. et al. Podocyte integrin-β3 and activated protein C coordinately restrict RhoA signaling and ameliorate diabetic nephropathy. J. Am. Soc. Nephrol. 31, 1762–1780 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Elphick, G. F. et al. Recombinant human activated protein C inhibits integrin-mediated neutrophil migration. Blood 113, 4078–4085 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. He, B. et al. Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat. Commun. 12, 2141 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, X. et al. Lack of integrin α1β1 leads to severe glomerulosclerosis after glomerular injury. Am. J. Pathol. 165, 617–630 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, X. et al. Integrin α1β1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor receptor-mediated Rac activation. Mol. Cell Biol. 27, 3313–3326 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Borza, C. M. et al. Integrin α1β1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase. J. Biol. Chem. 285, 40114–40124 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, X. et al. Integrin-mediated type II TGF-β receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. J. Clin. Invest. 124, 3295–3310 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Heppner, D. E. et al. The NADPH oxidases DUOX1 and NOX2 play distinct roles in redox regulation of epidermal growth factor receptor signaling. J. Biol. Chem. 291, 23282–23293 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chiusa, M. et al. EGF receptor-mediated FUS phosphorylation promotes its nuclear translocation and fibrotic signaling. J. Cell Biol. 219, e202001120 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chiusa, M. et al. Cytoplasmic retention of the DNA/RNA-binding protein FUS ameliorates organ fibrosis in mice. J. Clin. Invest. 134, e175158 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi, M. et al. Enhancing integrin alpha1 inserted (I) domain affinity to ligand potentiates integrin α1β1-mediated down-regulation of collagen synthesis. J. Biol. Chem. 287, 35139–35152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gardner, H., Broberg, A., Pozzi, A., Laato, M. & Heino, J. Absence of integrin α1β1 in the mouse causes loss of feedback regulation of collagen synthesis in normal and wounded dermis. J. Cell Sci. 112, 263–272 (1999).

    CAS  PubMed  Google Scholar 

  52. Williams, A. S. et al. Integrin α1-null mice exhibit improved fatty liver when fed a high fat diet despite severe hepatic insulin resistance. J. Biol. Chem. 290, 6546–6557 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Borza, C. M. et al. Inhibition of integrin α2β1 ameliorates glomerular injury. J. Am. Soc. Nephrol. 23, 1027–1038 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lakhe-Reddy, S., Li, V., Arnold, T. D., Khan, S. & Schelling, J. R. Mesangial cell αvβ8-integrin regulates glomerular capillary integrity and repair. Am. J. Physiol. Renal Physiol. 306, F1400–F1409 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Khan, S. et al. Mesangial cell integrin αvβ8 provides glomerular endothelial cell cytoprotection by sequestering TGF-β and regulating PECAM-1. Am. J. Pathol. 178, 609–620 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hartner, A., Schocklmann, H., Prols, F., Muller, U. & Sterzel, R. B. α8 Integrin in glomerular mesangial cells and in experimental glomerulonephritis. Kidney Int. 56, 1468–1480 (1999).

    CAS  PubMed  Google Scholar 

  57. Hartner, A. et al. The α8 integrin chain affords mechanical stability to the glomerular capillary tuft in hypertensive glomerular disease. Am. J. Pathol. 160, 861–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bieritz, B. et al. Role of α8 integrin in mesangial cell adhesion, migration, and proliferation. Kidney Int. 64, 119–127 (2003).

    CAS  PubMed  Google Scholar 

  59. Zimmerman, S. E. et al. Nephronectin regulates mesangial cell adhesion and behavior in glomeruli. J. Am. Soc. Nephrol. 29, 1128–1140 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Muller, U. et al. Integrin α8β1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell 88, 603–613 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Humbert, C. et al. Integrin α8 recessive mutations are responsible for bilateral renal agenesis in humans. Am. J. Hum. Genet. 94, 288–294 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Elias, B. C. et al. The integrin β1 subunit regulates paracellular permeability of kidney proximal tubule cells. J. Biol. Chem. 289, 8532–8544 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zheng, G. et al. α3 Integrin of cell-cell contact mediates kidney fibrosis by integrin-linked kinase in proximal tubular e-cadherin deficient mice. Am. J. Pathol. 186, 1847–1860 (2016).

    CAS  PubMed  Google Scholar 

  64. Sucre, J. M. et al. Alveolar repair following LPS-induced injury requires cell-ECM interactions. JCI Insight 8, e167211 (2023).

    PubMed  PubMed Central  Google Scholar 

  65. Haake, S. M. et al. Ligand-independent integrin β1 signaling supports lung adenocarcinoma development. JCI Insight 7, e154098 (2022).

    PubMed  PubMed Central  Google Scholar 

  66. Plosa, E. J. et al. β1 Integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight 5, e129259 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Ramovs, V., Krotenberg Garcia, A., Kreft, M. & Sonnenberg, A. Integrin α3β1 is a key regulator of several protumorigenic pathways during skin carcinogenesis. J. Invest. Dermatol. 141, 732–741.e6 (2021).

    CAS  PubMed  Google Scholar 

  68. Mia, M. S. et al. Integrin β1 is a key determinant of the expression of angiotensin-converting enzyme 2 (ACE2) in the kidney epithelial cells. Eur. J. Cell Biol. 102, 151316 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hahm, K. et al. αvβ6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am. J. Pathol. 170, 110–125 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ma, L. J. et al. Transforming growth factor-β-dependent and -independent pathways of induction of tubulointerstitial fibrosis in β6−/− mice. Am. J. Pathol. 163, 1261–1273 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chang, Y. et al. Pharmacologic blockade of alphavbeta1 integrin ameliorates renal failure and fibrosis in vivo. J. Am. Soc. Nephrol. 28, 1998–2005 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Munger, J. S. et al. The integrin αvβ6 binds and activates latent TGF β1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    CAS  PubMed  Google Scholar 

  73. Wu, W. et al. β1-Integrin is required for kidney collecting duct morphogenesis and maintenance of renal function. Am. J. Physiol. Renal Physiol. 297, F210–F217 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, X. et al. β1 Integrin is necessary for ureteric bud branching morphogenesis and maintenance of collecting duct structural integrity. Development 136, 3357–3366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee, K., Boctor, S., Barisoni, L. M. & Gusella, G. L. Inactivation of integrin-β1 prevents the development of polycystic kidney disease after the loss of polycystin-1. J. Am. Soc. Nephrol. 26, 888–895 (2015).

    CAS  PubMed  Google Scholar 

  76. Morais, M. et al. Kidney organoids recapitulate human basement membrane assembly in health and disease. Elife 11, e73486 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kreidberg, J. A. et al. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122, 3537–3547 (1996).

    CAS  PubMed  Google Scholar 

  78. Yazlovitskaya, E. M. et al. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol. Biol. Cell 26, 1857–1874 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Viquez, O. M. et al. Integrin α6 maintains the structural integrity of the kidney collecting system. Matrix Biol. 57-58, 244–257 (2017).

    CAS  PubMed  Google Scholar 

  80. Yazlovitskaya, E. M. et al. The laminin-binding integrins regulate nuclear factor κB-dependent epithelial cell polarity and inflammation. J. Cell Sci. 134, jcs259161 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yazlovitskaya, E. M. et al. The laminin binding α3 and α6 integrins cooperate to promote epithelial cell adhesion and growth. Matrix Biol. 77, 101–116 (2019).

    CAS  PubMed  Google Scholar 

  82. Yang, D. H. et al. Renal collecting system growth and function depend upon embryonic γ1 laminin expression. Development 138, 4535–4544 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Georges-Labouesse, E. et al. Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nat. Genet. 13, 370–373 (1996).

    CAS  PubMed  Google Scholar 

  84. He, Y., Esser, P., Heinemann, A., Bruckner-Tuderman, L. & Has, C. Kindlin-1 and -2 have overlapping functions in epithelial cells implications for phenotype modification. Am. J. Pathol. 178, 975–982 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gough, R. E. & Goult, B. T. The tale of two talins — two isoforms to fine-tune integrin signalling. FEBS Lett. 592, 2108–2125 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bandyopadhyay, A., Rothschild, G., Kim, S., Calderwood, D. A. & Raghavan, S. Functional differences between kindlin-1 and kindlin-2 in keratinocytes. J. Cell Sci. 125, 2172–2184 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ciobanasu, C., Faivre, B. & Le Clainche, C. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring. Nat. Commun. 5, 3095 (2014).

    PubMed  Google Scholar 

  88. Mathew, S. et al. Talin regulates integrin β1-dependent and -independent cell functions in ureteric bud development. Development 144, 4148–4158 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Monkley, S. J. et al. Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev. Dyn. 219, 560–574 (2000).

    CAS  PubMed  Google Scholar 

  90. Theodosiou, M. et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. Elife 5, e10130 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. Rognoni, E., Ruppert, R. & Fassler, R. The kindlin family: functions, signaling properties and implications for human disease. J. Cell Sci. 129, 17–27 (2016).

    CAS  PubMed  Google Scholar 

  92. Bottcher, R. T. et al. Kindlin-2 recruits paxillin and Arp2/3 to promote membrane protrusions during initial cell spreading. J. Cell Biol. 216, 3785–3798 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Bouaouina, M. & Calderwood, D. A. Kindlins. Curr. Biol. 21, R99–R101 (2011).

    CAS  PubMed  Google Scholar 

  94. Yates, L. A. et al. Structural and functional characterization of the kindlin-1 pleckstrin homology domain. J. Biol. Chem. 287, 43246–43261 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes. Dev. 22, 1325–1330 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Schell, C. & Huber, T. B. The evolving complexity of the podocyte cytoskeleton. J. Am. Soc. Nephrol. 28, 3166–3174 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tian, X. et al. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J. Clin. Invest. 124, 1098–1113 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lausecker, F. et al. Vinculin is required to maintain glomerular barrier integrity. Kidney Int. 93, 643–655 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Atherton, P. et al. Relief of talin autoinhibition triggers a force-independent association with vinculin. J. Cell Biol. 219, e201903134 (2020).

    PubMed  Google Scholar 

  100. Sun, Y. et al. Kindlin-2 association with Rho GDP-dissociation inhibitor α suppresses Rac1 activation and podocyte injury. J. Am. Soc. Nephrol. 28, 3545–3562 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Qu, H. et al. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J. Cell Sci. 124, 879–891 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mosaddeghzadeh, N. & Ahmadian, M. R. The RHO family GTPases: mechanisms of regulation and signaling. Cells 10, 1831 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bosco, E. E., Mulloy, J. C. & Zheng, Y. Rac1 GTPase: a “Rac” of all trades. Cell Mol. Life Sci. 66, 370–374 (2009).

    CAS  PubMed  Google Scholar 

  104. Wei, X. et al. Kindlin-2 mediates activation of TGF-β/Smad signaling and renal fibrosis. J. Am. Soc. Nephrol. 24, 1387–1398 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo, B., Gao, J., Zhan, J. & Zhang, H. Kindlin-2 interacts with and stabilizes EGFR and is required for EGF-induced breast cancer cell migration. Cancer Lett. 361, 271–281 (2015).

    CAS  PubMed  Google Scholar 

  106. Yu, Y. et al. Kindlin 2 regulates myogenic related factor myogenin via a canonical Wnt signaling in myogenic differentiation. PLoS ONE 8, e63490 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. Godbout, E. et al. Kindlin-2 mediates mechanical activation of cardiac myofibroblasts. Cells 9, 2702 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Song, J. et al. Kindlin-2 Inhibits the hippo signaling pathway by promoting degradation of MOB1. Cell Rep. 29, 3664–3677.e5 (2019).

    CAS  PubMed  Google Scholar 

  109. Wickstrom, S. A., Lange, A., Montanez, E. & Fassler, R. The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J. 29, 281–291 (2010).

    PubMed  Google Scholar 

  110. Sepulveda, J. L. & Wu, C. The parvins. Cell Mol. Life Sci. 63, 25–35 (2006).

    CAS  PubMed  Google Scholar 

  111. Liang, X. et al. PINCH1 plays an essential role in early murine embryonic development but is dispensable in ventricular cardiomyocytes. Mol. Cell Biol. 25, 3056–3062 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Montanez, E., Wickstrom, S. A., Altstatter, J., Chu, H. & Fassler, R. α-parvin controls vascular mural cell recruitment to vessel wall by regulating RhoA/ROCK signalling. EMBO J. 28, 3132–3144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lange, A. et al. Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature 461, 1002–1006 (2009).

    CAS  PubMed  Google Scholar 

  114. Rogg, M. et al. α-Parvin defines a specific integrin adhesome to maintain the glomerular filtration barrier. J. Am. Soc. Nephrol. 33, 786–808 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. El-Aouni, C. et al. Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis. J. Am. Soc. Nephrol. 17, 1334–1344 (2006).

    CAS  PubMed  Google Scholar 

  116. Schordan, S., Schordan, E., Endlich, K. & Endlich, N. αV-Integrins mediate the mechanoprotective action of osteopontin in podocytes. Am. J. Physiol. Renal Physiol. 300, F119–F132 (2011).

    CAS  PubMed  Google Scholar 

  117. Li, Y., Yang, J., Dai, C., Wu, C. & Liu, Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J. Clin. Invest. 112, 503–516 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Li, Y., Dai, C., Wu, C. & Liu, Y. PINCH-1 promotes tubular epithelial-to-mesenchymal transition by interacting with integrin-linked kinase. J. Am. Soc. Nephrol. 18, 2534–2543 (2007).

    CAS  PubMed  Google Scholar 

  119. Kriz, W., Kaissling, B. & Le Hir, M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Invest. 121, 468–474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, Y. et al. Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 1907–1918 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    CAS  PubMed  Google Scholar 

  122. Sheng, L. & Zhuang, S. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis. Front. Physiol. 11, 569322 (2020).

    PubMed  PubMed Central  Google Scholar 

  123. Smeeton, J. et al. Integrin-linked kinase regulates p38 MAPK-dependent cell cycle arrest in ureteric bud development. Development 137, 3233–3243 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bulus, N. et al. Disruption of the integrin-linked kinase (ILK) pseudokinase domain affects kidney development in mice. J. Biol. Chem. 296, 100361 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Eke, I., Leonhardt, F., Storch, K., Hehlgans, S. & Cordes, N. The small molecule inhibitor QLT0267 radiosensitizes squamous cell carcinoma cells of the head and neck. PLoS ONE 4, e6434 (2009).

    PubMed  PubMed Central  Google Scholar 

  126. Huang, M. et al. Integrin-linked kinase deficiency in collecting duct principal cell promotes necroptosis of principal cell and contributes to kidney inflammation and fibrosis. J. Am. Soc. Nephrol. 30, 2073–2090 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Fujiu, K., Manabe, I. & Nagai, R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J. Clin. Invest. 121, 3425–3441 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. DeMali, K. A., Wennerberg, K. & Burridge, K. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15, 572–582 (2003).

    CAS  PubMed  Google Scholar 

  129. Delon, I. & Brown, N. H. Integrins and the actin cytoskeleton. Curr. Opin. Cell Biol. 19, 43–50 (2007).

    CAS  PubMed  Google Scholar 

  130. Svitkina, T. The actin cytoskeleton and actin-based motility. Cold Spring Harb. Perspect. Biol. 10, a018267 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. Mukherjee, K. et al. Simultaneous stabilization of actin cytoskeleton in multiple nephron-specific cells protects the kidney from diverse injury. Nat. Commun. 13, 2422 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Molitoris, B. A. Actin cytoskeleton in ischemic acute renal failure. Kidney Int. 66, 871–883 (2004).

    PubMed  Google Scholar 

  133. Lawson, C. D. & Burridge, K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 5, e27958 (2014).

    PubMed  PubMed Central  Google Scholar 

  134. Spiering, D. & Hodgson, L. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr. 5, 170–180 (2011).

    PubMed  PubMed Central  Google Scholar 

  135. Suleiman, H. Y. et al. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy. JCI Insight 2, e94137 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Qu, C. et al. Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. J. Am. Soc. Nephrol. 33, 155–173 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Haydak, J. & Azeloglu, E. U. Role of biophysics and mechanobiology in podocyte physiology. Nat. Rev. Nephrol. 20, 371–385 (2024).

    PubMed  Google Scholar 

  138. Zhu, L., Jiang, R., Aoudjit, L., Jones, N. & Takano, T. Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 1621–1630 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Yu, H. et al. Rac1 activation in podocytes induces rapid foot process effacement and proteinuria. Mol. Cell Biol. 33, 4755–4764 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Robins, R. et al. Rac1 activation in podocytes induces the spectrum of nephrotic syndrome. Kidney Int. 92, 349–364 (2017).

    CAS  PubMed  Google Scholar 

  141. Zamboni, V. et al. Hyperactivity of Rac1-GTPase pathway impairs neuritogenesis of cortical neurons by altering actin dynamics. Sci. Rep. 8, 7254 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. Scott, R. P. et al. Podocyte-specific loss of Cdc42 leads to congenital nephropathy. J. Am. Soc. Nephrol. 23, 1149–1154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Etienne-Manneville, S. Cdc42 — the centre of polarity. J. Cell Sci. 117, 1291–1300 (2004).

    CAS  PubMed  Google Scholar 

  144. Blattner, S. M. et al. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney Int. 84, 920–930 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Rogg, M. et al. SRGAP1 controls small rho GTPases to regulate podocyte foot process maintenance. J. Am. Soc. Nephrol. 32, 563–579 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bieling, P. & Rottner, K. From WRC to Arp2/3: collective molecular mechanisms of branched actin network assembly. Curr. Opin. Cell Biol. 80, 102156 (2023).

    CAS  PubMed  Google Scholar 

  147. Schell, C. et al. ARP3 controls the podocyte architecture at the kidney filtration barrier. Dev. Cell 47, 741–757.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Schell, C. et al. N-wasp is required for stabilization of podocyte foot processes. J. Am. Soc. Nephrol. 24, 713–721 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Pernier, J., Shekhar, S., Jegou, A., Guichard, B. & Carlier, M. F. Profilin interaction with actin filament barbed end controls dynamic instability, capping, branching, and motility. Dev. Cell 36, 201–214 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Tian, X. et al. Profilin1 is required for prevention of mitotic catastrophe in murine and human glomerular diseases. J. Clin. Invest. 133, e171237 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bock, F. et al. Rac1 promotes kidney collecting duct repair by mechanically coupling cell morphology to mitotic entry. Sci. Adv. 10, eadi7840 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wioland, H. et al. ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends. Curr. Biol. 27, 1956–1967.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Garg, P. et al. Actin-depolymerizing factor cofilin-1 is necessary in maintaining mature podocyte architecture. J. Biol. Chem. 285, 22676–22688 (2010).

    PubMed  PubMed Central  Google Scholar 

  154. Kuure, S. et al. Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis. PLoS Genet. 6, e1001176 (2010).

    PubMed  PubMed Central  Google Scholar 

  155. Elias, B. C. et al. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development. J. Cell Sci. 128, 4293–4305 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Bock, F. et al. Rac1 promotes kidney collecting duct integrity by limiting actomyosin activity. J. Cell Biol. 220, e202103080 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sorce, B. et al. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nat. Commun. 6, 8872 (2015).

    CAS  PubMed  Google Scholar 

  158. Ramkumar, N. & Baum, B. Coupling changes in cell shape to chromosome segregation. Nat. Rev. Mol. Cell Biol. 17, 511–521 (2016).

    CAS  PubMed  Google Scholar 

  159. Pham, T. D. et al. Angiotensin II acts through Rac1 to upregulate pendrin: role of NADPH oxidase. Am. J. Physiol. Renal Physiol. 326, F202–F218 (2024).

    CAS  PubMed  Google Scholar 

  160. Ayuzawa, N. et al. Rac1 deficiency impairs postnatal development of the renal papilla. Sci. Rep. 12, 20310 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Pang, X. et al. Targeting integrin pathways: mechanisms and advances in therapy. Signal. Transduct. Target. Ther. 8, 1 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Shen, A. R. et al. Integrin, exosome and kidney disease. Front. Physiol. 11, 627800 (2020).

    PubMed  Google Scholar 

  163. Tang, T. T. et al. Employing macrophage-derived microvesicle for kidney-targeted delivery of dexamethasone: an efficient therapeutic strategy against renal inflammation and fibrosis. Theranostics 9, 4740–4755 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kumar, S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int. 93, 27–40 (2018).

    CAS  PubMed  Google Scholar 

  165. Bonventre, J. V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121, 4210–4221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Little, M. H. & Kairath, P. Does renal repair recapitulate kidney development? J. Am. Soc. Nephrol. 28, 34–46 (2017).

    CAS  PubMed  Google Scholar 

  167. Okamura, D. M. et al. Spiny mice activate unique transcriptional programs after severe kidney injury regenerating organ function without fibrosis. iScience 24, 103269 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Korhonen, M., Ylanne, J., Laitinen, L. & Virtanen, I. The α1-α6 subunits of integrins are characteristically expressed in distinct segments of developing and adult human nephron. J. Cell Biol. 111, 1245–1254 (1990).

    CAS  PubMed  Google Scholar 

  169. Voigt, S. et al. Distribution and quantification of α1-integrin subunit in rat organs. Histochem. J. 27, 123–132 (1995).

    CAS  PubMed  Google Scholar 

  170. Patey, N., Halbwachs-Mecarelli, L., Droz, D., Lesavre, P. & Noel, L. H. Distribution of integrin subunits in normal human kidney. Cell Adhes. Commun. 2, 159–167 (1994).

    CAS  PubMed  Google Scholar 

  171. Kuhara, T., Kagami, S. & Kuroda, Y. Expression of β1-integrins on activated mesangial cells in human glomerulonephritis. J. Am. Soc. Nephrol. 8, 1679–1687 (1997).

    CAS  PubMed  Google Scholar 

  172. Rahilly, M. A. & Fleming, S. Differential expression of integrin α chains by renal epithelial cells. J. Pathol. 167, 327–334 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants K08 DK134879 (to F.B.), DK069921 (to R.Z.), DK088327 (to R.Z.), DK127589 (to R.Z.), R01 DK119212 (to A.P.), P30 DK114809 (to A.P.) and VA Merit awards I01-BX002196 (to R.Z.) and 1I01BX002025 (to A.P.). A.P. is the recipient of a Department of Veterans Affairs Senior Research Career Scientist Award IK6 BX005240. F.B. is supported by the Research Scholar Award by the Southern Society for Clinical Investigation. R.Z. is supported by a Keck Foundation Grant.

Author information

Authors and Affiliations

Authors

Contributions

F.B., S.L. and R.Z. researched data for the article. F.B., A.P. and R.Z. wrote the article. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Fabian Bock or Roy Zent.

Ethics declarations

Competing interests

The authors do not declare any conflicts of interest.

Peer review

Peer review information

Nature Reviews Nephrology thanks Shuta Ishibe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bock, F., Li, S., Pozzi, A. et al. Integrins in the kidney — beyond the matrix. Nat Rev Nephrol 21, 157–174 (2025). https://doi.org/10.1038/s41581-024-00906-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-024-00906-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing