Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein handling in kidney tubules

Abstract

The kidney proximal tubule reabsorbs and degrades filtered plasma proteins to reclaim valuable nutrients and maintain body homeostasis. Defects in this process result in proteinuria, one of the most frequently used biomarkers of kidney disease. Filtered proteins enter proximal tubules via receptor-mediated endocytosis and are processed within a highly developed apical endo-lysosomal system (ELS). Proteinuria is a strong risk factor for chronic kidney disease progression and genetic disorders of the ELS cause hereditary kidney diseases, so deepening understanding of how the proximal tubule handles proteins is crucial for translational nephrology. Moreover, the ELS is both an entry point for nephrotoxins that induce tubular damage and a target for novel therapies to prevent it. Cutting-edge research techniques, such as functional intravital imaging and computational modelling, are shedding light on spatial and integrative aspects of renal tubular protein processing in vivo, how these are altered under pathological conditions and the consequences for other tubular functions. These insights have potentially important implications for understanding the origins of systemic complications arising in proteinuric states, and might lead to the development of new ways of monitoring and treating kidney diseases.

Key points

  • Uptake and degradation of filtered plasma proteins by kidney proximal tubules (PTs) is an important process in kidney physiology and body homeostasis. Defects in protein reabsorption lead to proteinuria, one of the most widely used disease biomarkers in nephrology.

  • PT cells are highly adapted to protein uptake and processing. These cells express large, multi-ligand receptors that bind a wide range of proteins and facilitate their internalization, and have a sophisticated apical endo-lysosomal system (ELS) that rapidly sorts and metabolizes proteins.

  • Protein uptake occurs mainly in the early PT, whereas small peptides are reclaimed in later regions, which shapes the axial topography of the PT. Some studies suggest that early PT cells release endocytic material, which can then be reabsorbed downstream, suggesting that tubular protein metabolism is an integrated process.

  • In response to increased glomerular protein filtration, PTs ramp up endocytic activity and uptake extends to the later regions to limit urinary protein loss. However, this axial remodelling might result in loss of other tubular functions, and dramatic increases in protein filtration can overwhelm and damage PTs, which is likely to be an important pathogenic mechanism in proteinuric kidney diseases.

  • Genetic defects in the PT ELS cause proteinuria and progressive loss of kidney function. Elucidation of underlying disease pathways is helping to identify potential molecular targets for therapeutic intervention.

  • The ELS provides protein nephrotoxins with an entry point into PT cells; temporary blockade of endocytosis might lower toxin uptake and reduce tubular damage. Moreover, conjugating compounds to proteins or peptides provides a mechanism for targeting PTs in vivo in drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adaptations of proximal tubular cells to protein processing.
Fig. 2: Axial pattern of protein and peptide uptake along the proximal tubule.
Fig. 3: Consequences of increasing glomerular protein filtration on the proximal tubule.
Fig. 4: Axial patterns of protein uptake along the proximal tubule in disease states.

Similar content being viewed by others

References

  1. Maack, T., Johnson, V., Kau, S. T., Figueiredo, J. & Sigulem, D. Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int. 16, 251–270 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Inker, L. A. et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N. Engl. J. Med. 385, 1737–1749 (2021).

  3. Yu, Z. et al. Polygenic risk scores for kidney function and their associations with circulating proteome, and incident kidney diseases. J. Am. Soc. Nephrol. 32, 3161–3173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eshbach, M. L. & Weisz, O. A. Receptor-mediated endocytosis in the proximal tubule. Annu. Rev. Physiol. 79, 425–448 (2017).

  5. Nielsen, R., Christensen, E. I. & Birn, H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int. 89, 58–67 (2016).

  6. Jang, C. et al. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab. 30, 594–606.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nykjaer, A. et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96, 507–515 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Charnas, L. R., Bernardini, I., Rader, D., Hoeg, J. M. & Gahl, W. A. Clinical and laboratory findings in the oculocerebrorenal syndrome of Lowe, with special reference to growth and renal function. N. Engl. J. Med. 324, 1318–1325 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Norden, A. G. W. et al. Tubular proteinuria defined by a study of Dent’s (CLCN5 mutation) and other tubular diseases. Kidney Int. 57, 240–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Weisz, O. A. Endocytic adaptation to functional demand by the kidney proximal tubule. J. Physiol. 599, 3437–3446 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Goto, S., Hosojima, M., Kabasawa, H. & Saito, A. The endocytosis receptor megalin: from bench to bedside. Int. J. Biochem. Cell Biol. 157, 106393 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Christensen, E. I., Birn, H., Storm, T., Weyer, K. & Nielsen, R. Endocytic receptors in the renal proximal tubule. Physiology 27, 223–236 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Beenken, A. et al. Structures of LRP2 reveal a molecular machine for endocytosis. Cell 186, 821–836.e13 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hurtado-Lorenzo, A. et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat. Cell Biol. 8, 124–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Christensen, E. I., Wagner, C. A. & Kaissling, B. Uriniferous tubule: structural and functional organization. Compr. Physiol. 2, 805–861 (2012).

    Article  PubMed  Google Scholar 

  16. Nagai, J. et al. Mutually dependent localization of megalin and Dab2 in the renal proximal tubule. Am. J. Physiol. Renal Physiol. 289, 569–576 (2005).

    Article  Google Scholar 

  17. Shipman, K. E. & Weisz, O. A. Making a dent in Dent disease. Function 1, zqaa017 (2020).

  18. Hatae, T., Ichimura, T., Ishida, T. & Sakurai, T. Apical tubular network in the rat kidney proximal tubule cells studied by thick-section and scanning electron microscopy. Cell Tissue Res. 288, 317–325 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Polesel, M. et al. Spatiotemporal organisation of protein processing in the kidney. Nat. Commun. 13, 1–13 (2022).

    Article  Google Scholar 

  20. Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481–3500 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yokota, S., Tsuji, H. & Kato, K. Immunocytochemical localization of cathepsin H in rat kidney. Light and electron microscopic study. Histochemistry 85, 223–230 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. De Matteis, M. A., Staiano, L., Emma, F. & Devuyst, O. The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nat. Rev. Nephrol. 13, 455–470 (2017).

  23. Schuh, C. D. et al. Combined structural and functional imaging of the kidney reveals major axial differences in proximal tubule endocytosis. J. Am. Soc. Nephrol. 29, 2696–2712 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Christensen, E. I. A well-developed endolysosomal system reflects protein reabsorption in segment 1 and 2 of rat proximal tubules. Kidney Int. 99, 841–853 (2020).

  25. Edwards, A., Long, K. R., Baty, C. J., Shipman, K. E. & Weisz, O. A. Modelling normal and nephrotic axial uptake of albumin and other filtered proteins along the proximal tubule. J. Physiol. 600, 1933–1952 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Caruso-Meves, C., Pinheiro, A. A. S., Cai, H., Souza-Menezes, J. & Guggino, W. B. PKB and megalin determine the survival or death of renal proximal tubule cells. Proc. Natl Acad. Sci. USA 103, 18810–18815 (2006).

    Article  Google Scholar 

  27. Rbaibi, Y. et al. Megalin, cubilin, and Dab2 drive endocytic flux in kidney proximal tubule cells. Mol. Biol. Cell 34, ar74 (2023).

  28. Christensen, E. I. Rapid protein uptake and digestion in proximal tubule lysosomes. Kidney Int. 10, 301–310 (1976).

    Article  CAS  PubMed  Google Scholar 

  29. Osicka, T. M., Houlihan, C. A., Chan, J. G., Jerums, G. & Comper, W. D. Albuminuria in patients with type 1 diabetes is directly linked to changes in the lysosome-mediated degradation of albumin during renal passage. Diabetes 49, 1579–1584 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Gudehithlu, K. P., Pegoraro, A. A., Dunea, G., Arruda, J. A. L. & Singh, A. K. Degradation of albumin by the renal proximal tubule-cells and the subsequent fate of its fragments. Kidney Int. 65, 2113–2122 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Weyer, K., Nielsen, R., Christensen, E. I. & Birn, H. Generation of urinary albumin fragments does not require proximal tubular uptake. J. Am. Soc. Nephrol. 23, 591–596 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grove, K. J. et al. Imaging mass spectrometry reveals direct albumin fragmentation within the diabetic kidney. Kidney Int. 94, 292–302 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, L., Chou, C.-L. & Knepper, M. A. A comprehensive map of mRNAs and their isoforms across all 14 renal tubule segments of mouse. J. Am. Soc. Nephrol. 32, 897–912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kugler, P. Localization of aminopeptidase A (angiotensinase A) in the rat and mouse kidney. Histochemistry 72, 269–278 (1981).

    Article  CAS  PubMed  Google Scholar 

  35. Jedrzejewski, K. & Kugler, P. Peptidases in the kidney and urine of rats after castration. Histochemistry 74, 63–84 (1982).

    Article  CAS  PubMed  Google Scholar 

  36. Kugler, P., Wolf, G. & Scherberich, J. Histochemical demonstration of peptidases in the human kidney. Histochemistry 83, 337–341 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Neiss, W. F. & Klehn, K. L. The postnatal development of the rat kidney, with special reference to the chemodifferentiation of the proximal tubule. Histochemistry 73, 251–268 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. Daniel, H. & Rubio-Aliaga, I. An update on renal peptide transporters. Am. J. Physiol. Renal Physiol. 284, F885–F892 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Ansermet, C. et al. Renal tubular arginase-2 participates in the formation of the corticomedullary urea gradient and attenuates kidney damage in ischemia-reperfusion injury in mice. Acta Physiol. 229, e13457 (2020).

    Article  CAS  Google Scholar 

  40. Gudehithlu, K. P. et al. Peptiduria: a potential early predictor of diabetic kidney disease. Clin. Exp. Nephrol. 23, 56–64 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Rudolphi, C. F., Blijdorp, C. J., Van Willigenburg, H., Salih, M. & Hoorn, E. J. Urinary extracellular vesicles and tubular transport. Nephrol. Dial. Transplant. 38, 1583–1590 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. De, S. et al. Exocytosis-mediated urinary full-length megalin excretion is linked with the pathogenesis of diabetic nephropathy. Diabetes 66, 1391–1404 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Lisi, S. et al. Preferential megalin-mediated transcytosis of low-hormonogenic thyroglobulin: a control mechanism for thyroid hormone release. Proc. Natl Acad. Sci. USA 100, 14858–14863 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dickson, L. E., Wagner, M. C., Sandoval, R. M. & Molitoris, B. A. The proximal tubule and albuminuria: really! J. Am. Soc. Nephrol. 25, 443–453 (2014).

  45. Tenten, V. et al. Albumin is recycled from the primary urine by tubular transcytosis. J. Am. Soc. Nephrol. 24, 1966–1980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Molitoris, B. A., Sandoval, R. M., Yadav, S. P. S. & Wagner, M. C. Albumin uptake and processing by the proximal tubule: physiological, pathological, and therapeutic implications. Physiol. Rev. 102, 1625–1667 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Birn, H., Nielsen, R. & Weyer, K. Tubular albumin uptake: is there evidence for a quantitatively important, receptor-independent mechanism? Kidney Int. 104, 1069–1073 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Molitoris, B. A., Dunn, K. W. & Sandoval, R. M. Proximal tubule role in albumin homeostasis: controversy, species differences, and the contributions of intravital microscopy. Kidney Int. 104, 1065–1069 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Peti-Peterdi, J. Independent two-photon measurements of albumin GSC give low values. Am. J. Physiol. Renal Physiol. 296, F1255-F1257 (2009).

  50. Tojo, A. & Endou, H. Intrarenal handling of proteins in rats using fractional micropuncture technique. Am. J. Physiol. 263, F601–F606 (1992).

  51. Weyer, K. et al. Abolishment of proximal tubule albumin endocytosis does not affect plasma albumin during nephrotic syndrome in mice. Kidney Int. 93, 335–342 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Martins, J. R. et al. Intravital kidney microscopy: entering a new era. Kidney Int. 100, 527–535 (2021).

    Article  PubMed  Google Scholar 

  53. Bedin, M. et al. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J. Clin. Invest. 130, 335–344 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Cravedi, P. & Remuzzi, G. Pathophysiology of proteinuria and its value as an outcome measure in chronic kidney disease. Br. J. Clin. Pharmacol. 76, 516–523 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zoja, C., Abbate, M. & Remuzzi, G. Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrol. Dial. Transplant. 30, 706–712 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, W. J. et al. Urinary proteins induce lysosomal membrane permeabilization and lysosomal dysfunction in renal tubular epithelial cells. Am. J. Physiol. Renal Physiol. 308, F639–F649 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Cybulsky, A. V. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat. Rev. Nephrol. 13, 681–696 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Long, K. R., Rbaibi, Y., Gliozzi, M. L., Ren, Q. & Weisz, O. A. Differential kidney proximal tubule cell responses to protein overload by albumin and its ligands. Am. J. Physiol. Renal Physiol. 318, F851–F859 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Meyrier, A. & Niaudet, P. Acute kidney injury complicating nephrotic syndrome of minimal change disease. Kidney Int. 94, 861–869 (2018).

    Article  PubMed  Google Scholar 

  60. Guo, J. K. et al. Increased tubular proliferation as an adaptive response to glomerular albuminuria. J. Am. Soc. Nephrol. 23, 429–437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dizin, E. et al. Time-course of sodium transport along the nephron in nephrotic syndrome: the role of potassium. FASEB J. 34, 2408–2424 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. De Seigneux, S. et al. Proteinuria increases plasma phosphate by altering its tubular handling. J. Am. Soc. Nephrol. 26, 1608–1618 (2015).

    Article  PubMed  Google Scholar 

  63. Schaeverbeke, J. & Cheignon, M. Differentiation of glomerular filter and tubular reabsorption apparatus during foetal development of the rat kidney. J. Embryol. Exp. Morphol. 58, 157–175 (1980).

    CAS  PubMed  Google Scholar 

  64. Abbate, M. et al. Complement-mediated dysfunction of glomerular filtration barrier accelerates progressive renal injury. J. Am. Soc. Nephrol. 19, 1158–1167 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaissling, B., LeHir, M. & Kriz, W. Renal epithelial injury and fibrosis. Biochim. Biophys. Acta 1832, 931–939 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Theilig, F. et al. Abrogation of protein uptake through megalin-deficient proximal tubules does not safeguard against tubulointerstitial injury. J. Am. Soc. Nephrol. 18, 1824–1834 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Faivre, A. et al. Spatiotemporal landscape of kidney tubular responses to glomerular proteinuria. J. Am. Soc. Nephrol. 35, 854–869 (2024).

    Article  PubMed  Google Scholar 

  68. Rutkowski, J. M. et al. Adiponectin promotes functional recovery after podocyte ablation. J. Am. Soc. Nephrol. 24, 268–282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sweet, D. H., Bush, K. T. & Nigam, S. K. The organic anion transporter family: from physiology to ontogeny and the clinic. Am. J. Physiol. Renal Physiol. 281, F197–F205 (2001).

  70. Aggarwal, S. et al. SOX9 switch links regeneration to fibrosis at the single-cell level in mammalian kidneys. Science 383, 1–14 (2024).

    Article  Google Scholar 

  71. Lidberg, K. A. et al. Serum protein exposure activates a core regulatory program driving human proximal tubule injury. J. Am. Soc. Nephrol. 33, 949–965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O’Neill, W. C. Serum protein-induced tubular injury. J. Am. Soc. Nephrol. 33, 1627 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ying, W. Z. et al. Immunoglobulin light chains generate proinflammatory and profibrotic kidney injury. J. Clin. Invest. 129, 2792–2806 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kudose, S. et al. Clinicopathologic spectrum of lysozyme-associated nephropathy. Kidney Int. Rep. 8, 1585–1595 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Molitoris, B. A. & Wagner, M. C. Is albumin toxic to the kidney? It depends. Clin. J. Am. Soc. Nephrol. 18, 1222–1224 (2023).

    PubMed  PubMed Central  Google Scholar 

  76. Nielsen, R. et al. Increased lysosomal proteolysis counteracts protein accumulation in the proximal tubule during focal segmental glomerulosclerosis. Kidney Int. 84, 902–910 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Weisz, O. A. Considerations in comparing proximal tubule cell culture models. J. Am. Soc. Nephrol. 32, 2099–2100 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Peruchetti, D. B., Cheng, J., Caruso-Neves, C. & Guggino, W. B. Mis-regulation of mammalian target of rapamycin (mTOR) complexes induced by albuminuria in proximal tubules. J. Biol. Chem. 289, 16790–16801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Long, K. R. et al. Cubilin-, megalin-, and Dab2-dependent transcription revealed by CRISPR/Cas9 knockout in kidney proximal tubule cells. Am. J. Physiol. Renal Physiol. 322, F14–F26 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, T., Weinbaum, S. & Weinstein, A. M. Regulation of glomerulotubular balance: flow-activated proximal tubule function. Pflugers Arch. Eur. J. Physiol. 469, 643–654 (2017).

  81. Gleixner, E. M. et al. V-ATPase/mTOR signaling regulates megalin-mediated apical endocytosis. Cell Rep. 8, 10–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Grahammer, F. et al. mTOR regulates endocytosis and nutrient transport in proximal tubular cells. J. Am. Soc. Nephrol. 28, 230–241 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Long, K. R. et al. Proximal tubule apical endocytosis is modulated by fluid shear stress via an mTOR-dependent pathway. Mol. Biol. Cell 28, 2508–2517 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Berquez, M. et al. Lysosomal cystine export regulates mTORC1 signaling to guide kidney epithelial cell fate specialization. Nat. Commun. 14, 1–21 (2023).

    Article  Google Scholar 

  85. Silva-Aguiar, R. P. et al. Albumin expands albumin reabsorption capacity in proximal tubule epithelial cells through a positive feedback loop between AKT and megalin. Int. J. Mol. Sci. 23, 848 (2022).

  86. Rinschen, M. M. et al. VPS34-dependent control of apical membrane function of proximal tubule cells and nutrient recovery by the kidney. Sci. Signal. 15, eabo7940 (2022).

  87. Lynch, M. R. et al. TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance. JCI Insight 5, e126749 (2019).

  88. Nakamura, S. et al. LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat. Cell Biol. 22, 1252–1263 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Cui, Z. et al. Structure of the lysosomal mTORC1–TFEB–Rag–Ragulator megacomplex. Nature 614, 572–579 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Raghavan, V., Rbaibi, Y., Pastor-Soler, N. M., Carattino, M. D. & Weisz, O. A. Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia. Proc. Natl Acad. Sci. USA 111, 8506–8511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thelen, S., Abouhamed, M., Ciarimboli, G., Edemir, B. & Bähler, M. Rho GAP myosin IXa is a regulator of kidney tubule function. Am. J. Physiol. Renal Physiol. 309, F501–F513 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Nielsen, R. et al. Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells. Proc. Natl Acad. Sci. USA 104, 5407–5412 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Desmond, M. J. et al. Tubular proteinuria in mice and humans lacking the intrinsic lysosomal protein SCARB2/Limp-2. Am. J. Physiol. Renal Physiol. 300, 1437–1447 (2011).

    Article  Google Scholar 

  94. Skeby, C. K. et al. Proprotein convertase subtilisin/kexin type 9 targets megalin in the kidney proximal tubule and aggravates proteinuria in nephrotic syndrome. Kidney Int. 104, 754–768 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Wong, K. et al. Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort. Lancet 403, 1279–1289 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Keller, S. A. et al. Drug discovery and therapeutic perspectives for proximal tubulopathies. Kidney Int. 104, 1103–1112 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Issler, N. et al. A founder mutation in EHD1 presents with tubular proteinuria and deafness. J. Am. Soc. Nephrol. 33, 732–745 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van der Wijst, J., Belge, H., Bindels, R. J. M. & Devuyst, O. Learning physiology from inherited kidney disorders. Physiol. Rev. 99, 1575–1653 (2019).

    Article  PubMed  Google Scholar 

  99. Devuyst, O., Christie, P. T., Courtoy, P. J., Beauwens, R. & Thakker, R. V. Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent’s disease. Hum. Mol. Genet. 8, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Christensen, E. I. et al. Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc. Natl Acad. Sci. USA 100, 8472–8477 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hennings, J. C. et al. A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule. EMBO Mol. Med. 4, 1057–1071 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gorvin, C. M. et al. Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients. Proc. Natl Acad. Sci. USA 110, 7014–7019 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Novarino, G., Weinert, S., Rickheit, G. & Jentsch, T. J. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328, 1398–1401 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Shipman, K. E. et al. Impaired endosome maturation mediates tubular proteinuria in Dent disease cell culture and mouse models. J. Am. Soc. Nephrol. 34, 619-640 (2023).

  105. Prange, J. A. et al. Overcoming endocytosis deficiency by cubosome nanocarriers. ACS Appl. Bio Mater. 2, 2490–2499 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Vicinanza, M. et al. OCRL controls trafficking through early endosomes via PtdIns4,5P 2-dependent regulation of endosomal actin. EMBO J. 30, 4970–4985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Festa, B. P. et al. OCRL deficiency impairs endolysosomal function in a humanized mouse model for Lowe syndrome and Dent disease. Hum. Mol. Genet. 28, 1931–1946 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Berquez, M. et al. The phosphoinositide 3-kinase inhibitor alpelisib restores actin organization and improves proximal tubule dysfunction in vitro and in a mouse model of Lowe syndrome and Dent disease. Kidney Int. 98, 883–896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vilasi, A. et al. Combined proteomic and metabonomic studies in three genetic forms of the renal Fanconi syndrome. Am. J. Physiol. Renal Physiol. 293, F456–F467 (2007).

  110. Rega, L. R., De Leo, E., Nieri, D. & Luciani, A. Defective cystinosin, aberrant autophagy−endolysosome pathways, and storage disease: towards assembling the puzzle. Cell 11, 326 (2022).

    Article  CAS  Google Scholar 

  111. Festa, B. P. et al. Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney. Nat. Commun. 9, 161 (2018).

  112. de Leo, E. et al. Cell-based phenotypic drug screening identifies luteolin as candidate therapeutic for nephropathic cystinosis. J. Am. Soc. Nephrol. 31, 1522–1537 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Janssens, V. et al. Protection of cystinotic mice by kidney-specific megalin ablation supports an endocytosis-based mechanism for nephropathic cystinosis progression. J. Am. Soc. Nephrol. 30, 2177–2190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rega, L. R. et al. Dietary supplementation of cystinotic mice by lysine inhibits the megalin pathway and decreases kidney cystine content. Sci. Rep. 13, 1–14 (2023).

    Article  Google Scholar 

  115. Ren, Q. et al. Shear stress and oxygen availability drive differential changes in opossum kidney proximal tubule cell metabolism and endocytosis. Traffic 20, 448–459 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen, Z. et al. Transgenic zebrafish modeling low-molecular-weight proteinuria and lysosomal storage diseases. Kidney Int. 97, 1150–1163 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Gaide Chevronnay, H. P. et al. Time course of pathogenic and adaptation mechanisms in cystinotic mouse kidneys. J. Am. Soc. Nephrol. 25, 1256–1269 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gu, X. et al. Kidney disease genetic risk variants alter lysosomal beta-mannosidase (MANBA) expression and disease severity. Sci. Transl. Med. 13, eaaz1458 (2021).

  119. Qiu, C. et al. Renal compartment–specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu, M. et al. Relationship between lysosomal dyshomeostasis and progression of diabetic kidney disease. Cell Death Dis. 12, 1–10 (2021).

    Article  Google Scholar 

  121. Kolli, R. T. et al. The urinary proteome infers dysregulation of mitochondrial, lysosomal, and protein reabsorption processes in chronic kidney disease of unknown etiology (CKDu). Am. J. Physiol. Renal Physiol. 324, F387–F403 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Vervaet, B. A. et al. Chronic interstitial nephritis in agricultural communities is a toxin-induced proximal tubular nephropathy. Kidney Int. 97, 350–369 (2020).

    Article  PubMed  Google Scholar 

  123. Bugarski, M., Ghazi, S., Polesel, M., Martins, J. R. & Hall, A. M. Changes in NAD and lipid metabolism drive acidosis-induced acute kidney injury. J. Am. Soc. Nephrol. 32, 342–356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bovée, D. M., Janssen, J. W., Zietse, R., Danser, A. H. J. & Hoorn, E. J. Acute acid load in chronic kidney disease increases plasma potassium, plasma aldosterone and urinary renin. Nephrol. Dial. Transplant. 35, 1821–1823 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lee, L. E., Doke, T., Mukhi, D. & Susztak, K. The key role of altered tubule cell lipid metabolism in kidney disease development. Kidney Int. 106, 24–34 (2024).

    Article  CAS  PubMed  Google Scholar 

  126. Wright, J. et al. Transcriptional adaptation to Clcn5 knockout in proximal tubules of mouse kidney. Physiol. Genomics 33, 341–354 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Simons, M. The benefits of tubular proteinuria: an evolutionary perspective. J. Am. Soc. Nephrol. 29, 710–712 (2018).

  128. Gros, F. & Muller, S. The role of lysosomes in metabolic and autoimmune diseases. Nat. Rev. Nephrol. 19, 366–383 (2023).

    Article  CAS  PubMed  Google Scholar 

  129. Matsushita, K. et al. Cilastatin ameliorates rhabdomyolysis-induced AKI in mice. J. Am. Soc. Nephrol. 32, 2579–2594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dickenmann, M., Oettl, T. & Mihatsch, M. J. Narrative review osmotic nephrosis: acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes. Am. J. Kidney Dis. 51, 491–503 (2008).

    Article  PubMed  Google Scholar 

  131. Hori, Y. et al. Megalin blockade with cilastatin suppresses drug-induced nephrotoxicity. J. Am. Soc. Nephrol. 28, 1783–1791 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wagner, M. C. et al. Lrpap1 (RAP) inhibits proximal tubule clathrin mediated and clathrin independent endocytosis, ameliorating renal aminoglycoside nephrotoxicity. Kidney360 4, 591–605 (2023).

    PubMed  PubMed Central  Google Scholar 

  133. Rinschen, M. M. et al. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nat. Commun. 13, 1–17 (2022).

    Article  Google Scholar 

  134. Parihar, A. S., Chopra, S. & Prasad, V. Nephrotoxicity after radionuclide therapies. Transl. Oncol. 15, 101295 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Trac, N. et al. Spotlight on genetic kidney diseases: a call for drug delivery and nanomedicine solutions. ACS Nano 17, 6165–6177 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, J., Masehi-Lano, J. J. & Chung, E. J. Peptide and antibody ligands for renal targeting: nanomedicine strategies for kidney disease. Biomater. Sci. 5, 1450–1459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Peek, J. L. & Wilson, M. H. Cell and gene therapy for kidney disease. Nat. Rev. Nephrol. 19, 451–462 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Geo, H. N. et al. Renal nano-drug delivery for acute kidney injury: current status and future perspectives. J. Control. Release 343, 237–254 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Uchida, M. et al. The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration. J. Clin. Invest. 129, 3941–3951 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.M.H. has received support from the Swiss National Centre for Competence in Research (NCCR) Kidney Control of Homeostasis and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Hall.

Ethics declarations

Competing interests

A.M.H. has received consultancy fees from Proteinqure and AstraZeneca.

Peer review

Peer review information

Nature Reviews Nephrology thanks Celso Caruso-Neves and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, A.M. Protein handling in kidney tubules. Nat Rev Nephrol 21, 241–252 (2025). https://doi.org/10.1038/s41581-024-00914-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-024-00914-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing