Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From fat to filter: the effect of adipose tissue-derived signals on kidney function

Abstract

Obesity is associated with severe consequences for the renal system, including chronic kidney disease, kidney failure and increased mortality. Obesity has both direct and indirect effects on kidney health through several mechanisms, including activation of the renin–angiotensin system, mechanical compression, inflammation, fibrosis, increased filtration barrier permeability and renal nerve activity. The expansion of adipose tissue through hypertrophy and hyperplasia can induce haemodynamic changes that promote glomerular hyperfiltration to compensate for the greater metabolic demands of the increased body weight. Adipose expansion is also associated with the release of adipokines and pro-inflammatory cytokines, hyperinsulinaemia and insulin resistance, which exert direct and indirect effects on kidney function via various mechanisms. Increased uptake of fatty acids by the kidney leads to alterations in lipid metabolism and lipotoxicity, also contributing to the pro-inflammatory and pro-fibrotic environment. The role of the adipose tissue–brain–kidney axis in the obesity-associated decline in renal function is sustained by studies showing that stimulation of adipose tissue sensory neurons by locally released factors increases renal sympathetic nerve activity. Conversely, pre-existent kidney disease can contribute to adipose dysfunction through the accumulation of uraemic toxins and hormonal changes. These findings highlight the importance of crosstalk between adipose tissue and the kidneys and provide insights into the mechanisms underlying the associations between obesity and kidney disease.

Key points

  • The mechanisms by which adipose tissue exerts pathogenic effects on the kidney structure and function are multifactorial and include mechanical compression, haemodynamic effects, alterations in fatty acid metabolism, lipotoxicity, oxidative stress, inflammation and altered adipokine release.

  • In the context of obesity and metabolic disease, sensory neurons that innervate adipose tissue are stimulated by numerous locally released factors, sending signals to brain areas that increase the sympathetic outflow to the kidneys.

  • Elevated levels of uraemic toxins in patients with chronic kidney disease (CKD) promote adipose tissue loss and the ectopic accumulation of lipids, which in turn may contribute to worsening kidney function.

  • The exploration of therapeutic targets to down-modulate activity of the adipose afferent reflex could be a potential approach to reducing obesity-associated CKD.

  • Improved understanding of the pathological interactions between adipose tissue and the kidneys in the context of obesity and CKD will aid the identification of new renoprotective targets; drug-based, surgical and lifestyle interventions are under investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Progression of kidney disease in the context of obesity.
Fig. 2: Adipose tissue-derived factors that compromise the health and function of the kidney.
Fig. 3: Anatomical and functional effects of obesity on the glomerulus.
Fig. 4: Consequences of obesity for the proximal tubule and collecting ducts.
Fig. 5: Overactivation of the adipose–brain–blood pressure axis during obesity.

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. Chronic kidney disease in the United States, 2023. https://www.cdc.gov/kidneydisease/publications-resources/CKD-national-facts.html (2024).

  2. Martínez-Montoro, J. I., Morales, E., Cornejo-Pareja, I., Tinahones, F. J. & Fernández-García, J. C. Obesity-related glomerulopathy: current approaches and future perspectives. Obes. Rev. 23, e13450 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Friedman, A. N., Ogden, C. L. & Hales, C. M. Prevalence of obesity and CKD among adults in the United States, 2017–2020. Kidney Med. 5, 100568 (2023).

    Article  PubMed  Google Scholar 

  4. Jiang, Z. et al. Obesity and chronic kidney disease. Am. J. Physiol. Endocrinol. Metab. 324, E24–E41 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Virtue, S. & Vidal-Puig, A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome — an allostatic perspective. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1801, 338–349 (2010).

    Article  CAS  Google Scholar 

  6. D’Agati, V. D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 12, 453–471 (2016).

    Article  PubMed  Google Scholar 

  7. Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat. Rev. Nephrol. 15, 367–385 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. de Vries, A. P. et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2, 417–426 (2014).

    Article  PubMed  Google Scholar 

  9. Chen, H. M. et al. Podocyte lesions in patients with obesity-related glomerulopathy. Am. J. Kidney Dis. 48, 772–779 (2006).

    Article  PubMed  Google Scholar 

  10. Kravets, I. & Mallipattu, S. K. The role of podocytes and podocyte-associated biomarkers in diagnosis and treatment of diabetic kidney disease. J. Endocr. Soc. 4, bvaa029 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Trimarchi, H. Mechanisms of podocyte detachment, podocyturia, and risk of progression of glomerulopathies. Kidney Dis. 6, 324–329 (2020).

    Article  Google Scholar 

  12. Yang, C. et al. Research progress on multiple cell death pathways of podocytes in diabetic kidney disease. Mol. Med. 29, 135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yau, K., Kuah, R., Cherney, D. Z. I. & Lam, T. K. T. Obesity and the kidney: mechanistic links and therapeutic advances. Nat. Rev. Endocrinol. 20, 321–335 (2024).

    Article  PubMed  Google Scholar 

  14. Tsuboi, N., Okabayashi, Y., Shimizu, A. & Yokoo, T. The renal pathology of obesity. Kidney Int. Rep. 2, 251–260 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zeisberg, M. & Neilson, E. G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 21, 1819–1834 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Czaja-Stolc, S., Potrykus, M., Stankiewicz, M., Kaska, Ł. & Małgorzewicz, S. Pro-inflammatory profile of adipokines in obesity contributes to pathogenesis, nutritional disorders, and cardiovascular risk in chronic kidney disease. Nutrients 14, 1457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koenen, M., Hill, M. A., Cohen, P. & Sowers, J. R. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 128, 951–968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Couch, C. A., Fowler, L. A., Goss, A. M. & Gower, B. A. Associations of renal sinus fat with blood pressure and ectopic fat in a diverse cohort of adults. Int. J. Cardiol. Cardiovasc. Risk Prev. 16, 200165 (2023).

    PubMed  Google Scholar 

  19. D’Marco, L. et al. Perirenal fat thickness is associated with metabolic risk factors in patients with chronic kidney disease. Kidney Res. Clin. Pract. 38, 365–372 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Spit, K. A. et al. Renal sinus fat and renal hemodynamics: a cross-sectional analysis. MAGMA 33, 73–80 (2020).

    Article  PubMed  Google Scholar 

  21. Qiu, X. et al. The role of perirenal adipose tissue deposition in chronic kidney disease progression: mechanisms and therapeutic implications. Life Sci. 352, 122866 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, N. et al. Novel insight into perirenal adipose tissue: a neglected adipose depot linking cardiovascular and chronic kidney disease. World J. Diabetes 11, 115–125 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hammoud, S. H., AlZaim, I., Al-Dhaheri, Y., Eid, A. H. & El-Yazbi, A. F. Perirenal adipose tissue inflammation: novel insights linking metabolic dysfunction to renal diseases. Front. Endocrinol. 12, 707126 (2021).

    Article  Google Scholar 

  24. Kotsis, V., Martinez, F., Trakatelli, C. & Redon, J. Impact of obesity in kidney diseases. Nutrients 13, 4482 (2021).

  25. Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ. Res. 116, 991–1006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mende, C. & Einhorn, D. Fatty kidney disease: the importance of ectopic fat deposition and the potential value of imaging. J. Diabetes 14, 73–78 (2022).

    Article  PubMed  Google Scholar 

  27. Castro, B. B. A., Foresto-Neto, O., Saraiva-Camara, N. O. & Sanders-Pinheiro, H. Renal lipotoxicity: insights from experimental models. Clin. Exp. Pharmacol. Physiol. 48, 1579–1588 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Mitrofanova, A., Merscher, S. & Fornoni, A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat. Rev. Nephrol. 19, 629–645 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Mount, P., Davies, M., Choy, S. W., Cook, N. & Power, D. Obesity-related chronic kidney disease — the role of lipid metabolism. Metabolites 5, 720–732 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hou, Y. et al. Mitochondrial oxidative damage reprograms lipid metabolism of renal tubular epithelial cells in the diabetic kidney. Cell Mol. Life Sci. 81, 23 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan, Q., Tang, B. & Zhang, C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal. Transduct. Target. Ther. 7, 182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zatterale, F. et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front. Physiol. 10, 1607 (2019).

    Article  PubMed  Google Scholar 

  33. Samovski, D., Jacome-Sosa, M. & Abumrad, N. A. Fatty acid transport and signaling: mechanisms and physiological implications. Annu. Rev. Physiol. 85, 317–337 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Hua, W. et al. CD36-mediated podocyte lipotoxicity promotes foot process effacement. Open Med. 19, 20240918 (2024).

    Article  CAS  Google Scholar 

  35. Zhang, D. et al. Short-chain fatty acids in diseases. Cell Commun. Signal. 21, 212 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, X. et al. CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat. Rev. Nephrol. 13, 769–781 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Mori, Y. et al. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metab. 33, 1042–1061.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao, X. et al. Kidney injury molecule-1 is upregulated in renal lipotoxicity and mediates palmitate-induced tubular cell injury and inflammatory response. Int. J. Mol. Sci. 20, 3406 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gai, Z. et al. Lipid accumulation and chronic kidney disease. Nutrients 11, 629–645 (2019).

    Article  Google Scholar 

  40. Zhao, J. et al. CD36-mediated lipid accumulation and activation of nlrp3 inflammasome lead to podocyte injury in obesity-related glomerulopathy. Mediators Inflamm. 2019, 3172647 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Mukhi, D. et al. ACSS2 gene variants determine kidney disease risk by controlling de novo lipogenesis in kidney tubules. J. Clin. Invest. 134, e172963 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cassis, L. A., Police, S. B., Yiannikouris, F. & Thatcher, S. E. Local adipose tissue renin-angiotensin system. Curr. Hypertens. Rep. 10, 93–98 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schutten, M. T., Houben, A. J., de Leeuw, P. W. & Stehouwer, C. D. The link between adipose tissue renin-angiotensin-aldosterone system signaling and obesity-associated hypertension. Physiology 32, 197–209 (2017).

    Article  PubMed  Google Scholar 

  44. Thethi, T., Kamiyama, M. & Kobori, H. The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome. Curr. Hypertens. Rep. 14, 160–169 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Siragy, H. M. & Carey, R. M. Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease. Am. J. Nephrol. 31, 541–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Biancardi, V. C., Son, S. J., Ahmadi, S., Filosa, J. A. & Stern, J. E. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension 63, 572–579 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, S. et al. The adipose renin-angiotensin system modulates systemic markers of insulin sensitivity and activates the intrarenal renin-angiotensin system. J. Biomed. Biotechnol. 2006, 027012 (2006).

    Google Scholar 

  48. Lin, H. et al. Kidney angiotensin in cardiovascular disease: formation and drug targeting. Pharmacol. Rev. 74, 462–505 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Briones, A. M. et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 59, 1069–1078 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Hosoya, K. et al. Insulin resistance in chronic kidney disease is ameliorated by spironolactone in rats and humans. Kidney Int. 87, 749–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Remuzzi, G., Cattaneo, D. & Perico, N. The aggravating mechanisms of aldosterone on kidney fibrosis. J. Am. Soc. Nephrol. 19, 1459–1462 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Davel, A. P., Jaffe, I. Z., Tostes, R. C., Jaisser, F. & Belin de Chantemele, E. J. New roles of aldosterone and mineralocorticoid receptors in cardiovascular disease: translational and sex-specific effects. Am. J. Physiol. Heart Circ. Physiol 315, H989–H999 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ichihara, A. & Yatabe, M. S. The (pro)renin receptor in health and disease. Nat. Rev. Nephrol. 15, 693–712 (2019).

    Article  PubMed  Google Scholar 

  54. Shamansurova, Z. et al. Adipose tissue (P)RR regulates insulin sensitivity, fat mass and body weight. Mol. Metab. 5, 959–969 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fukushima, A. et al. Increased plasma soluble (pro)renin receptor levels are correlated with renal dysfunction in patients with heart failure. Int. J. Cardiol. 168, 4313–4314 (2013).

    Article  PubMed  Google Scholar 

  56. Visniauskas, B. et al. Sex differences in soluble prorenin receptor in patients with type 2 diabetes. Biol. Sex. Differ. 12, 33 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gatineau, E., Gong, M. C. & Yiannikouris, F. Soluble prorenin receptor increases blood pressure in high fat-fed male mice. Hypertension 74, 1014–1020 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Fu, Z. et al. Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor. Clin. Sci. 135, 793–810 (2021).

    Article  CAS  Google Scholar 

  59. Quadri, S. & Siragy, H. M.(Pro)renin receptor contributes to regulation of renal epithelial sodium channel. J. Hypertens. 34, 486–494 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu, Q. & Scherer, P. E. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat. Rev. Nephrol. 14, 105–120 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Mascali, A. et al. Obesity and kidney disease: beyond the hyperfiltration. Int. J. Immunopathol. Pharmacol. 29, 354–363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. & Sivitz, W. I. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 100, 270–278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rahmouni, K. Leptin-induced sympathetic nerve activation: signaling mechanisms and cardiovascular consequences in obesity. Curr. Hypertens. Rev. 6, 104–209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hall, J. E. et al. Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovasc. Res. 117, 1859–1876 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Lago, R., Gomez, R., Lago, F., Gomez-Reino, J. & Gualillo, O. Leptin beyond body weight regulation-current concepts concerning its role in immune function and inflammation. Cell Immunol. 252, 139–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Pedone, C. et al. Longitudinal association between serum leptin concentration and glomerular filtration rate in humans. PLoS ONE 10, e0117828 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Korczynska, J., Czumaj, A., Chmielewski, M., Swierczynski, J. & Sledzinski, T. The causes and potential injurious effects of elevated serum leptin levels in chronic kidney disease patients. Int. J. Mol. Sci. 22, 4685 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Briffa, J. F., Grinfeld, E., Poronnik, P., McAinch, A. J. & Hryciw, D. H. Uptake of leptin and albumin via separate pathways in proximal tubule cells. Int. J. Biochem. Cell Biol. 79, 194–198 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Briffa, J. F. et al. Acute leptin exposure reduces megalin expression and upregulates TGFβ1 in cultured renal proximal tubule cells. Mol. Cell Endocrinol. 401, 25–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Young, C. N., Morgan, D. A., Butler, S. D., Mark, A. L. & Davisson, R. L. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects. Hypertension 61, 737–744 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Patel, M. et al. Central mechanisms in sympathetic nervous dysregulation in obesity. J. Neurophysiol. 130, 1414–1424 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Zhao, J., Miyamoto, S., You, Y. H. & Sharma, K. AMP-activated protein kinase (AMPK) activation inhibits nuclear translocation of Smad4 in mesangial cells and diabetic kidneys. Am. J. Physiol. Renal Physiol 308, F1167–F1177 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Nasrallah, M. P. & Ziyadeh, F. N. Overview of the physiology and pathophysiology of leptin with special emphasis on its role in the kidney. Semin. Nephrol. 33, 54–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Dalmasso, C., Leachman, J. R., Osborn, J. L. & Loria, A. S. Sensory signals mediating high blood pressure via sympathetic activation: role of adipose afferent reflex. Am. J. Physiol. Regul. Integr. Comp. Physiol 318, R379–R389 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Xiong, X. Q., Chen, W. W. & Zhu, G. Q. Adipose afferent reflex: sympathetic activation and obesity hypertension. Acta Physiol. 210, 468–478 (2014).

    Article  CAS  Google Scholar 

  76. Mao, S. et al. Leptin and chronic kidney diseases. J. Recept. Signal. Transduct. Res. 38, 89–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Podkowińska, A. & Formanowicz, D. Chronic kidney disease as oxidative stress- and inflammatory-mediated cardiovascular disease. Antioxidants 9, 752 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Han, D. C. et al. Leptin stimulates type I collagen production in db/db mesangial cells: glucose uptake and TGF-β type II receptor expression. Kidney Int. 59, 1315–1323 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Thieme, K. & Oliveira-Souza, M. Renal hemodynamic and morphological changes after 7 and 28 days of leptin treatment: the participation of angiotensin II via the AT1 receptor. PLoS ONE 10, e0122265 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chen, H.-H. et al. Chronic kidney disease: interaction of adiponectin gene polymorphisms and diabetes. Int. J. Mol. Sci. 24, 8128 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vahdat, S. The complex effects of adipokines in the patients with kidney disease. J. Res. Med. Sci. 23, 60 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Przybyciński, J., Dziedziejko, V., Puchałowicz, K., Domański, L. & Pawlik, A. Adiponectin in chronic kidney disease. Int. J. Mol. Sci. 21, 9375 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Khoramipour, K. et al. Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition. Nutrients 13, 1180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ahima, R. S. Linking adiponectin to proteinuria. J. Clin. Invest. 118, 1619–1622 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ohashi, K. et al. Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler. Thromb. Vasc. Biol. 27, 1910–1917 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Zha, D., Wu, X. & Gao, P. Adiponectin and its receptors in diabetic kidney disease: molecular mechanisms and clinical potential. Endocrinology 158, 2022–2034 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Sharma, K. et al. Adiponectin regulates albuminuria and podocyte function in mice. J. Clin. Invest. 118, 1645–1656 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Miyamoto, S. & Sharma, K. Adipokines protecting CKD. Nephrol. Dial. Transpl. 28 (Suppl. 4) iv15–iv22 (2013).

    Google Scholar 

  89. Kim, Y. & Park, C. W. Mechanisms of adiponectin action: implication of adiponectin receptor agonism in diabetic kidney disease. Int. J. Mol. Sci. 20, 1782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baldelli, S. et al. The role of adipose tissue and nutrition in the regulation of adiponectin. Nutrients 16, 2436 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Slyvka, Y. et al. Antioxidant diet and sex interact to regulate NOS isoform expression and glomerular mesangium proliferation in Zucker diabetic rat kidney. Acta Histochem. 118, 183–193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Martinez Cantarin, M. P., Keith, S. W., Waldman, S. A. & Falkner, B. Adiponectin receptor and adiponectin signaling in human tissue among patients with end-stage renal disease. Nephrol. Dial. Transpl. 29, 2268–2277 (2014).

    Article  Google Scholar 

  93. Park, C. H. & Yoo, T. H. TGF-β inhibitors for therapeutic management of kidney fibrosis. Pharmaceuticals 15, 1485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Choi, S. R. et al. Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy. Metabolism 85, 348–360 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Jang, H. S., Kim, J. & Padanilam, B. J. Renal sympathetic nerve activation via α2-adrenergic receptors in chronic kidney disease progression. Kidney Res. Clin. Pract. 38, 6–14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chen, L. et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed. Pharmacother. 101, 670–681 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Declèves, A. E., Mathew, A. V., Cunard, R. & Sharma, K. AMPK mediates the initiation of kidney disease induced by a high-fat diet. J. Am. Soc. Nephrol. 22, 1846–1855 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Du, N. et al. Combination of ginsenoside Rg1 and Astragaloside IV reduces oxidative stress and inhibits TGF-β1/Smads signaling cascade on renal fibrosis in rats with diabetic nephropathy. Drug. Des. Devel. Ther. 12, 3517–3524 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, J. et al. Blockade of endothelial-mesenchymal transition by a smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59, 2612–2624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Isakova, T., Yanucil, C. & Faul, C. A klotho-derived peptide as a possible novel drug to prevent kidney fibrosis. Am. J. Kidney Dis. 80, 285–288 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Yuan, Q. et al. A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nat. Commun. 13, 438 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, X. et al. Klotho-derived peptide 1 inhibits cellular senescence in the fibrotic kidney by restoring Klotho expression via posttranscriptional regulation. Theranostics 14, 420–435 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pai, R., Ha, H., Kirschenbaum, M. A. & Kamanna, V. S. Role of tumor necrosis factor-alpha on mesangial cell MCP-1 expression and monocyte migration: mechanisms mediated by signal transduction. J. Am. Soc. Nephrol. 7, 914–923 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Sethi, J. K. & Hotamisligil, G. S. Metabolic messengers: tumour necrosis factor. Nat. Metab. 3, 1302–1312 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Denhez, B. et al. Saturated fatty acids induce insulin resistance in podocytes through inhibition of IRS1 via activation of both IKKβ and mTORC1. Sci. Rep. 10, 21628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sieber, J. et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am. J. Physiol. Renal Physiol 299, F821–829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Therrien, F. J., Agharazii, M., Lebel, M. & Larivière, R. Neutralization of tumor necrosis factor-alpha reduces renal fibrosis and hypertension in rats with renal failure. Am. J. Nephrol. 36, 151–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Timoshanko, J. R. & Tipping, P. G. Resident kidney cells and their involvement in glomerulonephritis. Curr. Drug. Targets Inflamm. Allergy 4, 353–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Tirichen, H. et al. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front. Physiol. 12, 627837 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Su, H., Lei, C. T. & Zhang, C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front. Immunol. 8, 405 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Barreto, D. V. et al. Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney Int. 77, 550–556 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Mohamed-Ali, V. et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. J. Clin. Endocrinol. Metab. 82, 4196–4200 (1997).

    CAS  PubMed  Google Scholar 

  113. Trujillo, M. E. et al. Interleukin-6 regulates human adipose tissue lipid metabolism and leptin production in vitro. J. Clin. Endocrinol. Metab. 89, 5577–5582 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Coletta, I. et al. Selective induction of MCP-1 in human mesangial cells by the IL-6/sIL-6R complex. Exp. Nephrol. 8, 37–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Li, K. et al. Interleukin-6 stimulates epithelial sodium channels in mouse cortical collecting duct cells. Am. J. Physiol. Regul. Integr. Comp. Physiol 299, R590–595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lu, T. C. et al. Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy. Kidney Int. 76, 63–71 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Paquissi, F. C. & Abensur, H. The Th17/IL-17 axis and kidney diseases, with focus on lupus nephritis. Front. Med. 8, 654912 (2021).

    Article  Google Scholar 

  118. Yun, H. et al. The chemerin-CMKLR1 axis is functionally important for central regulation of energy homeostasis. Front. Physiol. 13, 897105 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Behnoush, A. H. et al. Chemerin levels in chronic kidney disease: a systematic review and meta-analysis. Front. Endocrinol. 14, 1120774 (2023).

    Article  Google Scholar 

  120. Leiherer, A. et al. High plasma chemerin is associated with renal dysfunction and predictive for cardiovascular events — insights from phenotype and genotype characterization. Vasc. Pharmacol. 77, 60–68 (2016).

    Article  CAS  Google Scholar 

  121. Habas, K. & Shang, L. Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell 54, 139–143 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Hsu, C. Y. et al. Increased circulating visfatin is associated with progression of kidney disease in non-diabetic hypertensive patients. Am. J. Hypertens. 29, 528–536 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Axelsson, J. et al. Circulating levels of visfatin/pre-B-cell colony-enhancing factor 1 in relation to genotype, GFR, body composition, and survival in patients with CKD. Am. J. Kidney Dis. 49, 237–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Song, H. K. et al. Visfatin: a new player in mesangial cell physiology and diabetic nephropathy. Am. J. Physiol. Renal Physiol. 295, F1485–1494 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Huang, Q. et al. Visfatin stimulates a cellular renin-angiotensin system in cultured rat mesangial cells. Endocr. Res. 36, 93–100 (2011).

    Article  PubMed  Google Scholar 

  126. Boini, K. M. et al. Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells. Biochim. Biophys. Acta 1801, 1294–1304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Huang, D. et al. Contribution of podocyte inflammatory exosome release to glomerular inflammation and sclerosis during hyperhomocysteinemia. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fan, X. et al. Interleukin-10 attenuates renal injury after myocardial infarction in diabetes. J. Investig. Med. 70, 1233–1242 (2022).

    Article  PubMed  Google Scholar 

  129. Fang, M., Jeon, Y., Echouffo-Tcheugui, J. B. & Selvin, E. Prevalence and management of obesity in U.S. adults with type 1 diabetes. Ann. Intern. Med. 176, 427–429 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bonner, R., Albajrami, O., Hudspeth, J. & Upadhyay, A. Diabetic kidney disease. Prim. Care 47, 645–659 (2020).

    Article  PubMed  Google Scholar 

  131. Cherney, D. Z. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129, 587–597 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Nordheim, E. & Geir Jenssen, T. Chronic kidney disease in patients with diabetes mellitus. Endocr. Connect. 10, R151–R159 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pyram, R., Kansara, A., Banerji, M. A. & Loney-Hutchinson, L. Chronic kidney disease and diabetes. Maturitas 71, 94–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Katsoulieris, E. et al. Lipotoxicity in renal proximal tubular cells: relationship between endoplasmic reticulum stress and oxidative stress pathways. Free. Radic. Biol. Med. 48, 1654–1662 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. García-Carro, C. et al. A nephrologist perspective on obesity: from kidney injury to clinical management. Front. Med. 8, 655871 (2021).

    Article  Google Scholar 

  136. Zhang, Y. et al. Hyperinsulinemia can cause kidney disease in the IGT stage of OLETF rats via the INS/IRS-1/PI3-K/Akt signaling pathway. J. Diabetes Res. 2019, 4709715 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Whaley-Connell, A. & Sowers, J. R. Insulin resistance in kidney disease: is there a distinct role separate from that of diabetes or obesity. Cardiorenal Med. 8, 41–49 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Daza-Arnedo, R. et al. Insulin and the kidneys: a contemporary view on the molecular basis. Front. Nephrol. 3, 1133352 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Brosolo, G. et al. Insulin resistance and high blood pressure: mechanistic insight on the role of the kidney. Biomedicines 10, 2374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zeni, L., Norden, A. G. W., Cancarini, G. & Unwin, R. J. A more tubulocentric view of diabetic kidney disease. J. Nephrol. 30, 701–717 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gilbert, R. E. Proximal tubulopathy: prime mover and key therapeutic target in diabetic kidney disease. Diabetes 66, 791–800 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Pagtalunan, M. E. et al. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest. 99, 342–348 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Vallon, V. & Thomson, S. C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 16, 317–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Serrano, E., Shenoy, P. & Martinez Cantarin, M. P. Adipose tissue metabolic changes in chronic kidney disease. Immunometabolism 5, e00023 (2023).

    Article  PubMed  Google Scholar 

  145. Tanaka, S. et al. Indoxyl sulfate contributes to adipose tissue inflammation through the activation of NADPH oxidase. Toxins 12, 502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vanholder, R. et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 63, 1934–1943 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Glassock, R. J. & Massry, S. G. in Nutritional Management of Renal Disease 4th edn. (eds Kopple, J. D., Massry, S. G., Kalantar-Zadeh, K., & Fouque, D.) 77–89 (Academic Press, 2022).

  148. Nishi, H., Takemura, K., Higashihara, T. & Inagi, R. Uremic sarcopenia: clinical evidence and basic experimental approach. Nutrients 12, 1814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhao, H. L. et al. Fat redistribution and adipocyte transformation in uninephrectomized rats. Kidney Int. 74, 467–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Stocker, S. D., Kinsman, B. J. & Sved, A. F. Recent advances in neurogenic hypertension: dietary salt, obesity, and inflammation. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.117.08936 (2017).

  151. do Carmo, J. M. et al. Obesity-induced hypertension: brain signaling pathways. Curr. Hypertens. Rep. 18, 58 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. DiBona, G. F. Sympathetic nervous system and hypertension. Hypertension 61, 556–560 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Asirvatham-Jeyaraj, N. et al. Renal denervation normalizes arterial pressure with no effect on glucose metabolism or renal inflammation in obese hypertensive mice. Hypertension 68, 929–936 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Ott, C. et al. Renal denervation preserves renal function in patients with chronic kidney disease and resistant hypertension. J. Hypertens. 33, 1261–1266 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Id, D. et al. Predictors of blood pressure response: obesity is associated with a less pronounced treatment response after renal denervation. Catheter. Cardiovasc. Interv. 87, E30–E38 (2016).

    Article  PubMed  Google Scholar 

  156. Kopp, U. C. Role of renal sensory nerves in physiological and pathophysiological conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R79–R95 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Tyshynsky, R., Vulchanova, L. & Osborn, J. in Renal Denervation: Treatment and Device-Based Neuromodulation. (eds Heuser, R. R., Schlaich, M. P., Hering, D., & Bertog, S. C.) 3–9 (Springer International Publishing, 2023).

  158. Lambert, E. A. et al. Obesity-associated organ damage and sympathetic nervous activity. Hypertension 73, 1150–1159 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Yu, S. Q., Ma, S. & Wang, D. H. Activation of TRPV1-expressing renal sensory nerves of rats with N-oleoyldopamine attenuates high-fat-diet-induced impairment of renal function. Int. J. Mol. Sci. 24, 6207 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Banek, C. T. et al. Targeted afferent renal denervation reduces arterial pressure but not renal inflammation in established DOCA-salt hypertension in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R883–R891 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Foss, J. D., Fink, G. D. & Osborn, J. W. Differential role of afferent and efferent renal nerves in the maintenance of early- and late-phase Dahl S hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R262–R267 (2016).

    Article  PubMed  Google Scholar 

  162. Cao, W. et al. Adipocytes initiate an adipose-cerebral-peripheral sympathetic reflex to induce insulin resistance during high-fat feeding. Clin. Sci. 133, 1883–1899 (2019).

    Article  CAS  Google Scholar 

  163. Ding, L. et al. Adipose afferent reflex response to insulin is mediated by melanocortin 4 type receptors in the paraventricular nucleus in insulin resistance rats. Acta Physiol. 214, 450–466 (2015).

    Article  CAS  Google Scholar 

  164. Xiong, X. Q. et al. Enhanced adipose afferent reflex contributes to sympathetic activation in diet-induced obesity hypertension. Hypertension 60, 1280–1286 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Niijima, A. Afferent signals from leptin sensors in the white adipose tissue of the epididymis, and their reflex effect in the rat. J. Autonomic Nerv. Syst. 73, 19–25 (1998).

    Article  CAS  Google Scholar 

  166. Niijima, A. Reflex effects from leptin sensors in the white adipose tissue of the epididymis to the efferent activity of the sympathetic and vagus nerve in the rat. Neurosci. Lett. 262, 125–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Murphy, K. T. et al. Leptin-sensitive sensory nerves innervate white fat. Am. J. Physiol. Endocrinol. Metab. 304, E1338–E1347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tanida, M., Iwashita, S., Ootsuka, Y., Terui, N. & Suzuki, M. Leptin injection into white adipose tissue elevates renal sympathetic nerve activity dose-dependently through the afferent nerves pathway in rats. Neurosci. Lett. 293, 107–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Song, C. K., Schwartz, G. J. & Bartness, T. J. Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R501–R511 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Shi, Z. et al. Sympathetic activation by chemical stimulation of white adipose tissues in rats. J. Appl. Physiol. 112, 1008–1014 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Bartness, T. J. & Song, C. K. Brain-adipose tissue neural crosstalk. Physiol. Behav. 91, 343–351 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bartness, T. J., Liu, Y., Shrestha, Y. B. & Ryu, V. Neural innervation of white adipose tissue and the control of lipolysis. Front. Neuroendocrinol. 35, 473–493 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Stern, J. E. Neuroendocrine-autonomic integration in the paraventricular nucleus: novel roles for dendritically released neuropeptides. J. Neuroendocrinol. 27, 487–497 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Seravalle, G. & Grassi, G. Sympathetic nervous system, hypertension, obesity and metabolic syndrome. High. Blood Press. Cardiovasc. Prev. 23, 175–179 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. de Kloet, A. D. & Herman, J. P. Fat-brain connections: adipocyte glucocorticoid control of stress and metabolism. Front. Neuroendocrinol. 48, 50–57 (2018).

    Article  PubMed  Google Scholar 

  176. Dalmasso, C. et al. Epididymal fat-derived sympathoexcitatory signals exacerbate neurogenic hypertension in obese male mice exposed to early life stress. Hypertension 78, 1434–1449 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Guilherme, A., Henriques, F., Bedard, A. H. & Czech, M. P. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat. Rev. Endocrinol. 15, 207–225 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Szolcsanyi, J., Szallasi, A., Szallasi, Z., Joo, F. & Blumberg, P. M. Resiniferatoxin: an ultrapotent selective modulator of capsaicin-sensitive primary afferent neurons. J. Pharmacol. Exp. Ther. 255, 923–928 (1990).

    Article  CAS  PubMed  Google Scholar 

  179. Ding, L. et al. Superoxide anions in paraventricular nucleus modulate adipose afferent reflex and sympathetic activity in rats. PLoS ONE 8, e83771 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cao, W. et al. A renal-cerebral-peripheral sympathetic reflex mediates insulin resistance in chronic kidney disease. EBioMedicine 37, 281–293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Cui, B. P. et al. Ionotropic glutamate receptors in paraventricular nucleus mediate adipose afferent reflex and regulate sympathetic outflow in rats. Acta Physiol. 209, 45–54 (2013).

    Article  CAS  Google Scholar 

  182. Wang, Y. et al. The role of somatosensory innervation of adipose tissues. Nature 609, 569–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jiang, H., Ding, X., Cao, Y., Wang, H. & Zeng, W. Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue. Cell Metab. 26, 686–692.e683 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Qiu, F. et al. Potentiation of acid-sensing ion channel activity by the activation of 5-HT(2) receptors in rat dorsal root ganglion neurons. Neuropharmacology 63, 494–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Van Dyken, P. & Lacoste, B. Impact of metabolic syndrome on neuroinflammation and the blood-brain barrier. Front. Neurosci. 12, 930 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Feng, Z., Fang, C., Ma, Y. & Chang, J. Obesity-induced blood-brain barrier dysfunction: phenotypes and mechanisms. J. Neuroinflammation 21, 110 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Le Thuc, O. & Garcia-Caceres, C. Obesity-induced inflammation: connecting the periphery to the brain. Nat. Metab. 6, 1237–1252 (2024).

    Article  PubMed  Google Scholar 

  188. Thaler, J. P., Guyenet, S. J., Dorfman, M. D., Wisse, B. E. & Schwartz, M. W. Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes 62, 2629–2634 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Malkiewicz, M. A. et al. Blood-brain barrier permeability and physical exercise. J. Neuroinflammation 16, 15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Salas-Venegas, V. et al. The obese brain: mechanisms of systemic and local inflammation, and interventions to reverse the cognitive deficit. Front. Integr. Neurosci. 16, 798995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Garofalo, C. et al. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int. 91, 1224–1235 (2017).

    Article  PubMed  Google Scholar 

  192. Ghatage, T., Goyal, S. G., Dhar, A. & Bhat, A. Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies. Hypertension Res. 44, 740–755 (2021).

    Article  Google Scholar 

  193. Pergola, P. E. et al. Effect of ziltivekimab on determinants of hemoglobin in patients with CKD stage 3–5: an analysis of a randomized trial (RESCUE). J. Am. Soc. Nephrol. 35, 74–84 (2024).

    Article  PubMed  Google Scholar 

  194. Adamstein, N. H. et al. Association of interleukin 6 inhibition with ziltivekimab and the neutrophil-lymphocyte ratio: a secondary analysis of the RESCUE clinical trial. JAMA Cardiol. 8, 177–181, (2023).

    Article  PubMed  Google Scholar 

  195. Ivković, V. & Bruchfeld, A. Endothelin receptor antagonists in diabetic and non-diabetic chronic kidney disease. Clin. Kidney J. 17, sfae072 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Schiffrin, E. L. & Pollock, D. M. Endothelin system in hypertension and chronic kidney disease. Hypertension 81, 691–701 (2024).

    Article  CAS  PubMed  Google Scholar 

  197. Cheong, A. J. Y. et al. SGLT inhibitors on weight and body mass: a meta-analysis of 116 randomized-controlled trials. Obesity 30, 117–128 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Zingerman, B. et al. Effect of acetazolamide on obesity-induced glomerular hyperfiltration: a randomized controlled trial. PLoS ONE 10, e0137163 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Suh, S. H. & Kim, S. W. Dyslipidemia in patients with chronic kidney disease: an updated overview. Diabetes Metab. J. 47, 612–629 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 391, 109–121 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by National Institutes of Health grants (R01-HL-142969 and R01-HL-1647 to A.S.L.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Carolina Dalmasso or Analia S. Loria.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Toshiro Fujita, Sandra Merscher, Joseph Tam who co-reviewed with Liad Hinden, Raymond Townsend and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Dalmasso, C., Turner, M.B. et al. From fat to filter: the effect of adipose tissue-derived signals on kidney function. Nat Rev Nephrol 21, 417–434 (2025). https://doi.org/10.1038/s41581-025-00950-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-025-00950-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing