Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of microplastics and nanoplastics on the kidney and cardiovascular system

Abstract

Microplastics and nanoplastics are ubiquitous environmental pollutants that contaminate air, food and water supplies, resulting in widespread human exposure and potential health risks. Varying concentrations of particulate plastics have been identified in human tissues and body fluids, including the heart, kidney, liver, brain, blood and urine. Studies in animal models and human cells have reported that particulate plastics can induce oxidative stress, cell death and inflammation as well as disrupt metabolism and immune function. They have also been shown to have toxic effects on kidney and cardiovascular cells, which are exacerbated by the presence of other environmental contaminants such as heavy metals. Patients with kidney failure might be at risk of increased exposure to particulate plastics during dialysis. Furthermore, clinical evidence suggests that particulate plastic exposure is a risk factor for cardiovascular disease. Approaches to mitigating such exposure include degradation via abiotic and biotic processes, improved waste management and water filtration approaches and use of alternative materials. Further research into the fate, toxicity and health consequences of particulate plastics is imperative to inform strategies to address this escalating environmental and health concern.

Key points

  • Particulate plastics are ubiquitous environmental pollutants that contaminate terrestrial and aquatic ecosystems, resulting in human exposure via ingestion, inhalation and skin contact.

  • Following exposure, particulate plastics can enter the bloodstream and circulate throughout the body; they have been identified in organs including the heart, kidney, liver and brain.

  • Studies in animal models and human cells have demonstrated that exposure to particulate plastics can induce oxidative stress and cytotoxic effects as well as disrupt energy homeostasis, metabolism and immune function.

  • Evidence from in vitro experiments and animal studies suggests that particulate plastics have toxic effects on the kidney; patients receiving haemodialysis might be at risk of increased exposure to particulate plastics.

  • Particulate plastics are potential risk factors for cardiovascular disease and have been shown to have adverse effects on cardiovascular cells in experimental studies, including induction of oxidative stress, inflammation, autophagy dysfunction and suppression of angiogenesis.

  • Approaches to mitigating particulate plastic pollution include degradation via biotic and abiotic mechanisms; stricter regulations for plastic production, use and disposal; use of alternative materials; and public education efforts to encourage sustainable choices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The toxic effects of microplastics and nanoplastics.

Similar content being viewed by others

References

  1. Wu, P. et al. Environmental occurrences, fate, and impacts of microplastics. Ecotoxicol. Environ. Saf. 184, 109612 (2019).

    Article  PubMed  CAS  Google Scholar 

  2. Barnes, D. K., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1985–1998 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Brown, A. Planetary health digest. Lancet Planet. Health 3, e378 (2019).

    Article  PubMed  Google Scholar 

  4. Ivar do Sul, J. A. & Costa, M. F. The present and future of microplastic pollution in the marine environment. Env. Pollut. 185, 352–364 (2014).

    Article  CAS  Google Scholar 

  5. Du, H., Huang, S. & Wang, J. Environmental risks of polymer materials from disposable face masks linked to the COVID-19 pandemic. Sci. Total. Environ. 815, 152980 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Barouki, R. et al. The COVID-19 pandemic and global environmental change: emerging research needs. Environ. Int. 146, 106272 (2021).

    Article  PubMed  CAS  Google Scholar 

  7. Pottinger, A. S. et al. Pathways to reduce global plastic waste mismanagement and greenhouse gas emissions by 2050. Science 386, 1168–1173 (2024).

    Article  PubMed  CAS  Google Scholar 

  8. Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wright, S. L. & Kelly, F. J. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634–6647 (2017).

    Article  PubMed  CAS  Google Scholar 

  10. Bradney, L. et al. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 131, 104937 (2019).

    Article  PubMed  CAS  Google Scholar 

  11. Amobonye, A., Bhagwat, P., Raveendran, S., Singh, S. & Pillai, S. Environmental impacts of microplastics and nanoplastics: a current overview. Front. Microbiol. 12, 768297 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Deng, Y., Zhang, Y., Lemos, B. & Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 7, 46687 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Veneman, W. J., Spaink, H. P., Brun, N. R., Bosker, T. & Vijver, M. G. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae. Aquat. Toxicol. 190, 112–120 (2017).

    Article  PubMed  CAS  Google Scholar 

  14. Nihart, A. J. et al. Bioaccumulation of microplastics in decedent human brains. Nat. Med. 31, 1114–1119 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Eschenbacher, W. L. et al. Nylon flock-associated interstitial lung disease. Am. J. Respir. Crit. Care Med. 159, 2003–2008 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. Yan, Z. et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status. Environ. Sci. Technol. 56, 414–421 (2022).

    Article  PubMed  CAS  Google Scholar 

  17. Marfella, R. et al. Microplastics and nanoplastics in atheromas and cardiovascular events. N. Engl. J. Med. 390, 900–910 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Passos, R. S. et al. Microplastics and nanoplastics in haemodialysis waters: emerging threats to be in our radar. Environ. Toxicol. Pharmacol. 102, 104253 (2023).

    Article  PubMed  CAS  Google Scholar 

  19. Feng, Y. et al. A systematic review of the impacts of exposure to micro-and nano-plastics on human tissue accumulation and health. Eco Environ. Health 2, 195–207 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ziani, K. et al. Microplastics: a real global threat for environment and food safety: a state of the art review. Nutrients 15, 617 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yadav, H., Sethulekshmi, S. & Shriwastav, A. Estimation of microplastic exposure via the composite sampling of drinking water, respirable air, and cooked food from Mumbai, India. Environ. Res. 214, 113735 (2022).

    Article  PubMed  CAS  Google Scholar 

  22. Wu, P. et al. Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. J. Hazard. Mater. 437, 129361 (2022).

    Article  PubMed  CAS  Google Scholar 

  23. Mohamed Nor, N. H., Kooi, M., Diepens, N. J. & Koelmans, A. A. Lifetime accumulation of microplastic in children and adults. Environ. Sci. Technol. 55, 5084–5096 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Prata, J. C. Microplastics and human health: integrating pharmacokinetics. Crit. Rev. Environ. Sci. Technol. 53, 1489–1511 (2023).

    Article  CAS  Google Scholar 

  25. Ali, N. et al. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 99, 104901 (2024).

    Article  PubMed  CAS  Google Scholar 

  26. Garcia, M. M. et al. In vivo tissue distribution of polystyrene or mixed polymer microspheres and metabolomic analysis after oral exposure in mice. Environ. Health Perspect. 132, 47005 (2024).

    Article  PubMed  CAS  Google Scholar 

  27. Kutralam-Muniasamy, G., Shruti, V., Pérez-Guevara, F. & Roy, P. D. Microplastic diagnostics in humans: “The 3Ps” progress, problems, and prospects. Sci. Total. Environ. 856, 159164 (2023).

    Article  PubMed  CAS  Google Scholar 

  28. Barceló, D., Picó, Y. & Alfarhan, A. H. Microplastics: detection in human samples, cell line studies, and health impacts. Environ. Toxicol. Pharmacol. 101, 104204 (2023).

    Article  PubMed  Google Scholar 

  29. Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199 (2022).

    Article  PubMed  CAS  Google Scholar 

  30. Horvatits, T. et al. Microplastics detected in cirrhotic liver tissue. EBioMedicine 82, 104147 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Amato-Lourenço, L. F. et al. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 416, 126124 (2021).

    Article  PubMed  Google Scholar 

  32. Massardo, S. et al. MicroRaman spectroscopy detects the presence of microplastics in human urine and kidney tissue. Environ. Int. 184, 108444 (2024).

    Article  PubMed  CAS  Google Scholar 

  33. Pérez-Guevara, F., Roy, P. D., Kutralam-Muniasamy, G. & Shruti, V. A central role for fecal matter in the transport of microplastics: an updated analysis of new findings and persisting questions. J. Hazard. Mater. Adv. 4, 100021 (2021).

    Google Scholar 

  34. Ding, H. et al. Do membrane filtration systems in drinking water treatment plants release nano/microplastics? Sci. Total. Environ. 755, 142658 (2021).

    Article  PubMed  CAS  Google Scholar 

  35. Alqahtani, S., Alqahtani, S., Saquib, Q. & Mohiddin, F. Toxicological impact of microplastics and nanoplastics on humans: understanding the mechanistic aspect of the interaction. Front. Toxicol. 5, 1193386 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. He, T. et al. Research progress on the cellular toxicity caused by microplastics and nanoplastics. J. Appl. Toxicol. 43, 1576–1593 (2023).

    Article  PubMed  CAS  Google Scholar 

  37. Wang, W. et al. Polystyrene microplastics induced nephrotoxicity associated with oxidative stress, inflammation, and endoplasmic reticulum stress in juvenile rats. Front. Nutr. 9, 1059660 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li, X. et al. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/beta-catenin signaling pathway in mice. Ecotoxicol. Environ. Saf. 232, 113238 (2022).

    Article  PubMed  CAS  Google Scholar 

  39. Mattioda, V. et al. Pro-inflammatory and cytotoxic effects of polystyrene microplastics on human and murine intestinal cell lines. Biomolecules 13, 140 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Xie, X. et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol. Environ. Saf. 190, 110133 (2020).

    Article  PubMed  CAS  Google Scholar 

  41. An, R. et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 449, 152665 (2021).

    Article  PubMed  CAS  Google Scholar 

  42. Basini, G. et al. Nanoplastics induced oxidative stress and VEGF production in aortic endothelial cells. Environ. Toxicol. Pharmacol. 104, 104294 (2023).

    Article  PubMed  CAS  Google Scholar 

  43. Vlacil, A. K. et al. Polystyrene microplastic particles induce endothelial activation. PLoS One 16, e0260181 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hu, M. & Palić, D. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biol. 37, 101620 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhang, Y., Murugesan, P., Huang, K. & Cai, H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat. Rev. Cardiol. 17, 170–194 (2020).

    Article  PubMed  CAS  Google Scholar 

  46. Wen, Y. et al. NADPH oxidase hyperactivity contributes to cardiac dysfunction and apoptosis in rats with severe experimental pancreatitis through ROS-mediated MAPK signaling pathway. Oxid. Med. Cell. Longev. 2019, 4578175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang, P. et al. Metabolomics reveals the mechanism of polyethylene microplastic toxicity to Daphnia magna. Chemosphere 307, 135887 (2022).

    Article  PubMed  CAS  Google Scholar 

  48. Teng, J. et al. Toxic effects of exposure to microplastics with environmentally relevant shapes and concentrations: accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas. Environ. Pollut. 269, 116169 (2021).

    Article  PubMed  CAS  Google Scholar 

  49. Chiu, H.-W. et al. Polystyrene microplastics induce hepatic lipid metabolism and energy disorder by upregulating the NR4A1-AMPK signaling pathway. Environ. Pollut. 369, 125850 (2025).

    Article  PubMed  CAS  Google Scholar 

  50. Wang, H. et al. Polystyrene nanoplastics induce profound metabolic shift in human cells as revealed by integrated proteomic and metabolomic analysis. Environ. Int. 166, 107349 (2022).

    Article  PubMed  CAS  Google Scholar 

  51. Liu, S., Li, H., Wang, J., Wu, B. & Guo, X. Polystyrene microplastics aggravate inflammatory damage in mice with intestinal immune imbalance. Sci. Total. Environ. 833, 155198 (2022).

    Article  PubMed  CAS  Google Scholar 

  52. Qiao, R. et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci. Total. Environ. 662, 246–253 (2019).

    Article  PubMed  CAS  Google Scholar 

  53. Xia, Q. et al. Inhalation of microplastics induces inflammatory injuries in multiple murine organs via the Toll-like receptor pathway. Environ. Sci. Technol. 58, 18603–18618 (2024).

    Article  PubMed  CAS  Google Scholar 

  54. Lunov, O. et al. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 5, 9648–9657 (2011).

    Article  PubMed  CAS  Google Scholar 

  55. Caputi, S. et al. Microplastics affect the inflammation pathway in human gingival fibroblasts: a study in the Adriatic sea. Int. J. Environ. Res. Public. Health 19, 7782 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Krishnan, K. A systematic review on the impact of micro-nanoplastics exposure on human health and diseases. Biointerface Res. Appl. Chem. 13, 1–12 (2023).

    Google Scholar 

  57. Djouina, M. et al. Oral exposure to polyethylene microplastics alters gut morphology, immune response, and microbiota composition in mice. Environ. Res. 212, 113230 (2022).

    Article  PubMed  CAS  Google Scholar 

  58. Yang, Q. et al. Oral feeding of nanoplastics affects brain function of mice by inducing macrophage IL-1 signal in the intestine. Cell Rep. 42, 112346 (2023).

    Article  PubMed  CAS  Google Scholar 

  59. Collin-Faure, V. et al. The internal dose makes the poison: higher internalization of polystyrene particles induce increased perturbation of macrophages. Front. Immunol. 14, 1092743 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Park, E. J. et al. Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation. Toxicol. Lett. 324, 75–85 (2020).

    Article  PubMed  CAS  Google Scholar 

  61. Hirt, N. & Body-Malapel, M. Immunotoxicity and intestinal effects of nano-and microplastics: a review of the literature. Part. Fibre Toxicol. 17, 1–22 (2020).

    Article  Google Scholar 

  62. Singh, A., Chauhan, S., Varjani, S., Pandey, A. & Bhargava, P. C. Integrated approaches to mitigate threats from emerging potentially toxic elements: a way forward for sustainable environmental management. Environ. Res. 209, 112844 (2022).

    Article  PubMed  CAS  Google Scholar 

  63. Bhagat, J., Zang, L., Nakayama, H., Nishimura, N. & Shimada, Y. Effects of nanoplastic on toxicity of azole fungicides (ketoconazole and fluconazole) in zebrafish embryos. Sci. Total. Environ. 800, 149463 (2021).

    Article  PubMed  CAS  Google Scholar 

  64. Lee, W. S. et al. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale 11, 3173–3185 (2019).

    Article  PubMed  CAS  Google Scholar 

  65. Xiong, X., Wang, J., Liu, J. & Xiao, T. Microplastics and potentially toxic elements: a review of interactions, fate and bioavailability in the environment. Environ. Pollut. 340, 122754 (2023).

    Article  PubMed  Google Scholar 

  66. Kutralam-Muniasamy, G., Pérez-Guevara, F., Martínez, I. E. & Shruti, V. Overview of microplastics pollution with heavy metals: analytical methods, occurrence, transfer risks and call for standardization. J. Hazard. Mater. 415, 125755 (2021).

    Article  PubMed  CAS  Google Scholar 

  67. Wang, Y.-x et al. The combined effects of microplastics and the heavy metal cadmium on the marine periphytic ciliate Euplotes vannus. Environ. Pollut. 308, 119663 (2022).

    Article  PubMed  CAS  Google Scholar 

  68. Goodman, K. E., Hua, T. & Sang, Q.-X. A. Effects of polystyrene microplastics on human kidney and liver cell morphology, cellular proliferation, and metabolism. ACS Omega 7, 34136–34153 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Wang, Y.-L. et al. The kidney-related effects of polystyrene microplastics on human kidney proximal tubular epithelial cells HK-2 and male C57BL/6 mice. Environ. Health Perspect. 129, 057003 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang, Y.-L. et al. Polystyrene microplastic-induced extracellular vesicles cause kidney-related effects in the crosstalk between tubular cells and fibroblasts. Ecotoxicol. Environ. Saf. 273, 116098 (2024).

    Article  PubMed  CAS  Google Scholar 

  71. Chen, Y.-C. et al. The nephrotoxic potential of polystyrene microplastics at realistic environmental concentrations. J. Hazard. Mater. 427, 127871 (2022).

    Article  PubMed  CAS  Google Scholar 

  72. Meng, X. et al. Polystyrene microplastics induced oxidative stress, inflammation and necroptosis via NF-κB and RIP1/RIP3/MLKL pathway in chicken kidney. Toxicology 478, 153296 (2022).

    Article  PubMed  CAS  Google Scholar 

  73. Xiong, X. et al. The microplastics exposure induce the kidney injury in mice revealed by RNA-seq. Ecotoxicol. Environ. Saf. 256, 114821 (2023).

    Article  PubMed  CAS  Google Scholar 

  74. Xu, W. et al. Single-cell RNA-seq analysis decodes the kidney microenvironment induced by polystyrene microplastics in mice receiving a high-fat diet. J. Nanobiotechnology 22, 13 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Li, Z. et al. Polystyrene nanoplastics aggravates lipopolysaccharide-induced apoptosis in mouse kidney cells by regulating IRE1/XBP1 endoplasmic reticulum stress pathway via oxidative stress. J. Cell Physiol. 238, 151–164 (2023).

    Article  PubMed  CAS  Google Scholar 

  76. Meng, X. et al. Effects of nano-and microplastics on kidney: physicochemical properties, bioaccumulation, oxidative stress and immunoreaction. Chemosphere 288, 132631 (2022).

    Article  PubMed  CAS  Google Scholar 

  77. Liang, Y. et al. Polystyrene microplastics induce kidney injury via gut barrier dysfunction and C5a/C5aR pathway activation. Environ. Pollut. 342, 122909 (2024).

    Article  PubMed  CAS  Google Scholar 

  78. Ehsan, N. et al. Attenuative effects of ginkgetin against polystyrene microplastics-induced renal toxicity in rats. Pak. Vet. J. 43, 819–823 (2023).

    CAS  Google Scholar 

  79. Li, Y. et al. Toxicity of polystyrene nanoplastics to human embryonic kidney cells and human normal liver cells: effect of particle size and Pb2+ enrichment. Chemosphere 328, 138545 (2023).

    Article  PubMed  CAS  Google Scholar 

  80. Zou, H. et al. Microplastics exacerbate cadmium-induced kidney injury by enhancing oxidative stress, autophagy, apoptosis, and fibrosis. Int. J. Mol. Sci. 23, 14411 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sun, X. et al. Combined exposure to di(2-ethylhexyl) phthalate and polystyrene microplastics induced renal autophagy through the ROS/AMPK/ULK1 pathway. Food Chem. Toxicol. 171, 113521 (2023).

    Article  PubMed  CAS  Google Scholar 

  82. Baj, J. et al. Derivatives of plastics as potential carcinogenic factors: the current state of knowledge. Cancers 14, 4637 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Liu, Q. et al. Adsorption mechanism of trace heavy metals on microplastics and simulating their effect on microalgae in river. Environ. Res. 214, 113777 (2022).

    Article  PubMed  CAS  Google Scholar 

  84. Posnack, N. G. The adverse cardiac effects of Di(2-ethylhexyl)phthalate and Bisphenol A. Cardiovasc. Toxicol. 14, 339–357 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Shi, X., Xu, T., Cui, W., Qi, X. & Xu, S. Combined negative effects of microplastics and plasticizer DEHP: the increased release of Nets delays wound healing in mice. Sci. Total. Environ. 862, 160861 (2023).

    Article  PubMed  CAS  Google Scholar 

  86. Pires, A. & Sobral, P. Application of failure mode and effects analysis to reduce microplastic emissions. Waste Manag. Res. 39, 744–753 (2021).

    Article  PubMed  CAS  Google Scholar 

  87. Koelmans, A. A. et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 155, 410–422 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhu, X. et al. Micro- and nanoplastics: a new cardiovascular risk factor? Environ. Int. 171, 107662 (2023).

    Article  PubMed  CAS  Google Scholar 

  89. Yang, Y. et al. Detection of various microplastics in patients undergoing cardiac surgery. Environ. Sci. Technol. 57, 10911–10918 (2023).

    Article  PubMed  CAS  Google Scholar 

  90. Chen, Y. C. et al. Evaluation of toxicity of polystyrene microplastics under realistic exposure levels in human vascular endothelial EA.hy926 cells. Chemosphere 313, 137582 (2023).

    Article  PubMed  CAS  Google Scholar 

  91. Yan, J. et al. Toxic vascular effects of polystyrene microplastic exposure. Sci. Total. Environ. 905, 167215 (2023).

    Article  PubMed  CAS  Google Scholar 

  92. Lett, Z., Hall, A., Skidmore, S. & Alves, N. J. Environmental microplastic and nanoplastic: exposure routes and effects on coagulation and the cardiovascular system. Environ. Pollut. 291, 118190 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ballesteros, S. et al. Genotoxic and immunomodulatory effects in human white blood cells after ex vivo exposure to polystyrene nanoplastics. Environ. Sci. Nano. 7, 3431–3446 (2020).

    Article  CAS  Google Scholar 

  94. Gopinath, P. M. et al. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics. Sci. Rep. 9, 8860 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lee, H.-S. et al. Adverse effect of polystyrene microplastics (PS-MPs) on tube formation and viability of human umbilical vein endothelial cells. Food Chem. Toxicol. 154, 112356 (2021).

    Article  PubMed  CAS  Google Scholar 

  96. Zhou, Y. et al. Low-dose of polystyrene microplastics induce cardiotoxicity in mice and human-originated cardiac organoids. Environ. Int. 179, 108171 (2023).

    Article  PubMed  CAS  Google Scholar 

  97. Li, J. et al. Embryonic exposure of polystyrene nanoplastics affects cardiac development. Sci. Total. Environ. 906, 167406 (2024).

    Article  PubMed  CAS  Google Scholar 

  98. Nussenzweig, S. C., Verma, S. & Finkel, T. The role of autophagy in vascular biology. Circ. Res. 116, 480–488 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Jiang, B. et al. The role of autophagy in cardiovascular disease: cross-interference of signaling pathways and underlying therapeutic targets. Front. Cardiovasc. Med. 10, 1088575 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Mohammadinejad, R. et al. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 15, 4–33 (2019).

    Article  PubMed  CAS  Google Scholar 

  101. Popp, L. & Segatori, L. Differential autophagic responses to nano-sized materials. Curr. Opin. Biotechnol. 36, 129–136 (2015).

    Article  PubMed  CAS  Google Scholar 

  102. Wang, M. et al. Silica nanoparticles induce lung inflammation in mice via ROS/PARP/TRPM2 signaling-mediated lysosome impairment and autophagy dysfunction. Part. Fibre Toxicol. 17, 23 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Lu, Y. Y. et al. Size-dependent effects of polystyrene nanoplastics on autophagy response in human umbilical vein endothelial cells. J. Hazard. Mater. 421, 126770 (2022).

    Article  PubMed  CAS  Google Scholar 

  104. Wang, Q. et al. Toxic effects of polystyrene nanoplastics and polybrominated diphenyl ethers to zebrafish (Danio rerio). Fish. Shellfish. Immunol. 126, 21–33 (2022).

    Article  PubMed  CAS  Google Scholar 

  105. Zhang, R., Wang, M., Chen, X., Yang, C. & Wu, L. Combined toxicity of microplastics and cadmium on the zebrafish embryos (Danio rerio). Sci. Total. Environ. 743, 140638 (2020).

    Article  PubMed  CAS  Google Scholar 

  106. Mao, Y. et al. Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere 208, 59–68 (2018).

    Article  PubMed  CAS  Google Scholar 

  107. Picó, Y. & Barceló, D. Analysis and prevention of microplastics pollution in water: current perspectives and future directions. ACS Omega 4, 6709–6719 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rochman, C. M. et al. Policy: classify plastic waste as hazardous. Nature 494, 169–171 (2013).

    Article  PubMed  CAS  Google Scholar 

  109. David, M. et al. in Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications (eds O. V. Kharissova, L. M. T. Martínez & B. I. Kharisov) 1–13 (Springer International Publishing, 2020).

  110. Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M. & Ni, B. J. Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res. 152, 21–37 (2019).

    Article  PubMed  CAS  Google Scholar 

  111. Loura, N., Singh, M. & Dhull, V. Plastic degrading nanomaterials via photocatalysis. UPJOZ 44, 84–94 (2023).

    Article  Google Scholar 

  112. Kim, S. et al. Advanced oxidation processes for microplastics degradation: a recent trend. Chem. Eng. J. Adv. 9, 100213 (2022).

    Article  CAS  Google Scholar 

  113. Dos Santos, Nd. O., Busquets, R. & Campos, L. C. Insights into the removal of microplastics and microfibres by advanced oxidation processes. Sci. Total. Environ. 861, 160665 (2023).

    Article  PubMed  Google Scholar 

  114. Ahmed, A. S. S. et al. Microplastics in aquatic environments: a comprehensive review of toxicity, removal, and remediation strategies. Sci. Total. Environ. 876, 162414 (2023).

    Article  PubMed  CAS  Google Scholar 

  115. Lee, Q. Y. & Li, H. Photocatalytic degradation of plastic waste: a mini review. Micromachines 12, 907 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gambarini, V. et al. Phylogenetic distribution of plastic-degrading microorganisms. mSystems 6, e01112–e01120 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Papadopoulou, A., Hecht, K. & Buller, R. Enzymatic PET degradation. Chimia 73, 743–749 (2019).

    Article  PubMed  CAS  Google Scholar 

  118. Kaushal, J., Khatri, M. & Arya, S. Recent insight into enzymatic degradation of plastics prevalent in the environment: a mini-review. Clean. Eng. Technol. 2, 100083 (2021).

    Article  Google Scholar 

  119. Cui, Y. et al. Computational redesign of a hydrolase for nearly complete PET depolymerization at industrially relevant high-solids loading. Nat. Commun. 15, 1417 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Dolci, G. et al. How does plastic compare with alternative materials in the packaging sector? A systematic review of LCA studies. Waste Manag. Res. 43, 339–357 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by the National Science and Technology Council, Taiwan (NSTC 113-2314-B-038-084 and NSTC 113-2314-B-039-044).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Hui-Wen Chiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Raffaele Marfella, Tian Xia and Thomas Munzel, who co-reviewed with Marin Kuntic, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YH., Zheng, CM., Wang, YJ. et al. Effects of microplastics and nanoplastics on the kidney and cardiovascular system. Nat Rev Nephrol 21, 585–596 (2025). https://doi.org/10.1038/s41581-025-00971-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-025-00971-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing