Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kidney health outcomes of hypertensive disorders of pregnancy

Abstract

Hypertensive disorders of pregnancy (HDPs), including pre-eclampsia (PE), are frequent, affecting 8–10% and 2–4% of all pregnancies, respectively. Among HDPs, PE is the best characterized and most frequently studied — it is a heterogeneous disease with different clinical phenotypes reflecting distinct underlying mechanisms that ultimately result in widespread endothelial dysfunction and systemic damage. HDP clinical remission is common after delivery, but the long-term health of women with a history of HDP is adversely affected compared with that of women with normotensive pregnancies. The relationship between HDP and kidney health is bidirectional: chronic kidney disease (CKD) increases the risk of HDP, and HDP raises the risk of future CKD. To what extent this increased risk of CKD after HDP is due to pre-existing CKD that is unmasked by pregnancy and/or whether HDP is a causal factor in CKD remains unclear. CKD is diagnosed in up to 20% of women after PE, and the lifetime risk of kidney failure after one episode of PE is 4–8 times higher than that of the general population, increasing further with PE recurrence. These risks are cross generational, as women born prematurely from pregnancies complicated by PE and fetal growth restriction can have low nephron mass, which would not only increase their lifetime risk of CKD but also their risk of developing PE in their own pregnancies.

Key points

  • Hypertension disorders of pregnancy (HDPs) and pre-eclampsia (PE) are frequent pregnancy complications, affecting 8–10% and 2–4% of all pregnancies, respectively. These complications are associated with adverse long-term cardiovascular and kidney outcomes.

  • The relationship between PE and chronic kidney disease (CKD) is bidirectional, as CKD increases the risk of PE and PE is associated with increased risk of CKD later in life. PE might occur in the setting of undiagnosed CKD predating pregnancy or it might contribute to kidney injury and future CKD.

  • The effects of HDP and PE are cross generational, as offspring born prematurely from PE pregnancies frequently have low nephron mass, which, in female offspring, increases the risk of complicated pregnancies in adulthood.

  • A nephrology work-up after an episode of HDP should be considered to assess potential undiagnosed CKD, address risk factors and promote long-term kidney health.

  • No satisfactory preventive strategies or treatments exist for HDP. Further research is needed to better understand the pathogenesis and long-term effects of PE and HDP overall to inform targeted strategies for prevention and care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global burden of HDPs and demographic and health indicators of global regions.
Fig. 2: Risk factors for CKD and HDPs.
Fig. 3: Pathological processes and risk factors involved in the development of pre-eclampsia.
Fig. 4: Interplay between the placenta, the kidneys and impaired fetal development.

Similar content being viewed by others

References

  1. Longhitano, E. et al. The hypertensive disorders of pregnancy: a focus on definitions for clinical nephrologists. J. Clin. Med. 11, 3420 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chappell, L. C., Cluver, C. A., Kingdom, J. & Tong, S. Pre-eclampsia. Lancet 398, 341–354 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Magee, L. A., Nicolaides, K. H. & von Dadelszen, P. Preeclampsia. N. Engl. J. Med. 386, 1817–1832 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Garovic, V. D. et al. Incidence and long-term outcomes of hypertensive disorders of pregnancy. J. Am. Coll. Cardiol. 75, 2323–2334 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vikse, B. E., Irgens, L. M., Leivestad, T., Skjaerven, R. & Iversen, B. M. Preeclampsia and the risk of end-stage renal disease. N. Engl. J. Med. 359, 800–809 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Barrett, P. M. et al. Adverse pregnancy outcomes and long-term maternal kidney disease: a systematic review and meta-analysis. JAMA Netw. Open 3, e1920964 (2020).

    Article  PubMed  Google Scholar 

  7. Covella, B. et al. A systematic review and meta-analysis indicates long-term risk of chronic and end-stage kidney disease after preeclampsia. Kidney Int. 96, 711–727 (2019).

    Article  PubMed  Google Scholar 

  8. Garovic, V. D. & Piccoli, G. B. A kidney-centric view of pre-eclampsia through the kidney-placental bidirectional lens. Kidney Int. 104, 213–217 (2023).

    Article  PubMed  Google Scholar 

  9. Kattah, A. G. et al. Preeclampsia and ESRD: the role of shared risk factors. Am. J. Kidney Dis. 69, 498–505 (2017).

    Article  PubMed  Google Scholar 

  10. Cabiddu, G. et al. Pre-eclampsia is a valuable opportunity to diagnose chronic kidney disease: a multicentre study. Nephrol. Dial. Transpl. 37, 1488–1498 (2022).

    Article  Google Scholar 

  11. Ibarra-Hernandez, M. et al. Acute kidney injury in pregnancy and the role of underlying CKD: a point of view from Mexico. J. Nephrol. 30, 773–780 (2017).

    Article  PubMed  Google Scholar 

  12. van Oostwaard, M. F. et al. Recurrence of hypertensive disorders of pregnancy: an individual patient data metaanalysis. Am. J. Obstet. Gynecol. 212, 624.e1–624.e17 (2015).

    Article  PubMed  Google Scholar 

  13. Dimitriadis, E. et al. Pre-eclampsia. Nat. Rev. Dis. Primers 9, 8 (2023).

    Article  PubMed  Google Scholar 

  14. Piccoli, G. B. et al. A best practice position statement on the role of the nephrologist in the prevention and follow-up of preeclampsia: the Italian study group on kidney and pregnancy. J. Nephrol. 30, 307–317 (2017).

    Article  PubMed  Google Scholar 

  15. Piccoli, G. B. et al. Women and kidney disease: reflections on World Kidney Day 2018. Kidney Int. 93, 278–283 (2018).

    Article  PubMed  Google Scholar 

  16. Innes, K. E., Marshall, J. A., Byers, T. E. & Calonge, N. A woman’s own birth weight and gestational age predict her later risk of developing preeclampsia, a precursor of chronic disease. Epidemiology 10, 153–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Luyckx, V. A. et al. A developmental approach to the prevention of hypertension and kidney disease: a report from the low birth weight and nephron number working group. Lancet 390, 424–428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Homer, C. S., Brown, M. A., Mangos, G. & Davis, G. K. Non-proteinuric pre-eclampsia: a novel risk indicator in women with gestational hypertension. J. Hypertens. 26, 295–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. [No authors listed] Gestational hypertension and preeclampsia: ACOG practice bulletin, number 222. Obstet. Gynecol. 135, e237–e260 (2020).

  20. Magee, L. A. et al. The 2021 International Society for the Study of Hypertension in Pregnancy Classification, Diagnosis & Management recommendations for international practice. Pregnancy Hypertens. 27, 148–169 (2022).

    Article  PubMed  Google Scholar 

  21. [No authors listed] ACOG practice bulletin no. 202: gestational hypertension and preeclampsia. Obstet. Gynecol. 133, 1 (2019).

  22. Society of Obstetric Medicine of Australia and New Zealand. Hypertension in Pregnancy Guideline 2023 (SOMANZ, 2024).

  23. Metoki, H. et al. Hypertensive disorders of pregnancy: definition, management, and out-of-office blood pressure measurement. Hypertens. Res. 45, 1298–1309 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Verlohren, S. et al. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 27, 42–50 (2022).

    Article  PubMed  Google Scholar 

  25. Rolfo, A. et al. Chronic kidney disease may be differentially diagnosed from preeclampsia by serum biomarkers. Kidney Int. 83, 177–181 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Cabiddu, G. et al. A best practice position statement on pregnancy in chronic kidney disease: the Italian Study Group on Kidney and Pregnancy. J. Nephrol. 29, 277–303 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wiles, K. et al. Clinical practice guideline on pregnancy and renal disease. BMC Nephrol. 20, 401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Modzelewski, J. et al. Atypical preeclampsia before 20 weeks of gestation — a systematic review. Int. J. Mol. Sci. 24, 3752 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Magee, L. A. et al. Less-tight versus tight control of hypertension in pregnancy. N. Engl. J. Med. 372, 407–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Tita, A. T. et al. Treatment for mild chronic hypertension during pregnancy. N. Engl. J. Med. 386, 1781–1792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brewer, J. et al. Posterior reversible encephalopathy syndrome in 46 of 47 patients with eclampsia. Am. J. Obstet. Gynecol. 208, 468.e1–468.e6 (2013).

    Article  PubMed  Google Scholar 

  32. Hinchey, J. et al. A reversible posterior leukoencephalopathy syndrome. N. Engl. J. Med. 334, 494–500 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Garovic, V. D. et al. Hypertension in pregnancy: diagnosis, blood pressure goals, and pharmacotherapy: a scientific statement from the American Heart Association. Hypertension 79, e21–e41 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Santos, J., Schenone, M. H. & Garovic, V. D. Early identification of individuals at risk for hypertensive disorders of pregnancy. JAMA Netw. Open 6, e2334858 (2023).

    Article  PubMed  Google Scholar 

  35. Ananth, C. V., Keyes, K. M. & Wapner, R. J. Pre-eclampsia rates in the United States, 1980–2010: age-period-cohort analysis. BMJ 347, f6564 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Levine, R. J. et al. Trial of calcium to prevent preeclampsia. N. Engl. J. Med. 337, 69–76 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Say, L. et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob. Health 2, e323–e333 (2014).

    Article  PubMed  Google Scholar 

  38. Wang, W. et al. Epidemiological trends of maternal hypertensive disorders of pregnancy at the global, regional, and national levels: a population-based study. BMC Pregnancy Childbirth 21, 364 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bello, A. K. et al. An update on the global disparities in kidney disease burden and care across world countries and regions. Lancet Glob. Health 12, e382–e395 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Lopez, D. S., Hernandez Vargas, J. A., Urina-Jassir, M., Urina-Triana, M. & Franco, O. H. Reducing the gap of chronic kidney disease in low- and middle-income countries: what is missing? Lancet Reg. Health Am. 28, 100625 (2023).

    PubMed  PubMed Central  Google Scholar 

  41. Stanifer, J. W., Muiru, A., Jafar, T. H. & Patel, U. D. Chronic kidney disease in low- and middle-income countries. Nephrol. Dial. Transpl. 31, 868–874 (2016).

    Article  Google Scholar 

  42. Torreggiani, M. et al. Unmet needs for CKD care: from the general population to the CKD clinics — how many patients are we missing? Clin. Kidney J. 14, 2246–2254 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Williams, D. & Davison, J. Chronic kidney disease in pregnancy. BMJ 336, 211–215 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vrijlandt, W. A. L. et al. Prevalence of chronic kidney disease in women of reproductive age and observed birth rates. J. Nephrol. 36, 1341–1347 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. United Nations Department of Economic and Social Affairs. World Population Prospects 2022: Summary of Results (UNDESA, 2022).

  46. World Health Organization. Trends in Maternal Mortality 2000 to 2020: Estimates by WHO, UNICEF, UNFPA, World Bank Group and UNDESA/Population Division (WHO, 2023).

  47. Wheeler, S. M., Myers, S. O., Swamy, G. K. & Myers, E. R. Estimated prevalence of risk factors for preeclampsia among individuals giving birth in the US in 2019. JAMA Netw. Open 5, e2142343 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hannan, M. et al. Risk factors for CKD progression: overview of findings from the CRIC study. Clin. J. Am. Soc. Nephrol. 16, 648–659 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Dilmaghani, D., Nath, K. A. & Garovic, V. D. Increasing maternal mortality in the United States: looking beneath and beyond the numbers. Mayo Clin. Proc. 99, 873–877 (2024).

    Article  PubMed  Google Scholar 

  50. Daly, A. L. et al. Risk factors associated with hypertensive disorders of pregnancy within an urban indigenous population in south western Sydney. Intern. Med. J. 48, 269–275 (2018).

    Article  PubMed  Google Scholar 

  51. Austin, C. The impact of social determinants of health of Australian indigenous women on access and engagement in maternal child health services. J. Adv. Nurs. 79, 1815–1829 (2023).

    Article  PubMed  Google Scholar 

  52. Kendall, S., Lighton, S., Sherwood, J., Baldry, E. & Sullivan, E. A. Incarcerated aboriginal women’s experiences of accessing healthcare and the limitations of the ‘equal treatment’ principle. Int. J. Equity Health 19, 48 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hoy, W. E., Hughson, M. D., Singh, G. R., Douglas-Denton, R. & Bertram, J. F. Reduced nephron number and glomerulomegaly in Australian aborigines: a group at high risk for renal disease and hypertension. Kidney Int. 70, 104–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Hoy, W. E., Mott, S. A. & Mc Donald, S. P. An expanded nationwide view of chronic kidney disease in aboriginal Australians. Nephrology 21, 916–922 (2016).

    Article  PubMed  Google Scholar 

  55. Sorensen, C. & Garcia-Trabanino, R. A new era of climate medicine — addressing heat-triggered renal disease. N. Engl. J. Med. 381, 693–696 (2019).

    Article  PubMed  Google Scholar 

  56. Gebremedhin, A. T., Nyadanu, S. D., Hanigan, I. C. & Pereira, G. Maternal exposure to bioclimatic stress and hypertensive disorders of pregnancy in Western Australia: identifying potential critical windows of susceptibility. Env. Sci. Pollut. Res. Int. 31, 52279–52292 (2024).

    Article  CAS  Google Scholar 

  57. Rao, I. R. et al. Chronic kidney disease of unknown aetiology: a comprehensive review of a global public health problem. Trop. Med. Int. Health 28, 588–600 (2023).

    Article  PubMed  Google Scholar 

  58. Khan, A. E. et al. Salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in coastal Bangladesh: a case-control study. PLoS ONE 9, e108715 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mondal, R., Banik, P. C., Faruque, M., Mashreky, S. R. & Ali, L. Association of exposure to salinity in groundwater with chronic kidney disease among diabetic population in Bangladesh. PLoS ONE 18, e0284126 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scheelbeek, P. F., Khan, A. E., Mojumder, S., Elliott, P. & Vineis, P. Drinking water sodium and elevated blood pressure of healthy pregnant women in salinity-affected coastal areas. Hypertension 68, 464–470 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Demissie, M., Molla, G., Tayachew, A. & Getachew, F. Risk factors of preeclampsia among pregnant women admitted at labor ward of public hospitals, low income country of Ethiopia; case control study. Pregnancy Hypertens. 27, 36–41 (2022).

    Article  PubMed  Google Scholar 

  62. Beyuo, T. K. et al. Impact of antenatal care on severe maternal and neonatal outcomes in pregnancies complicated by preeclampsia and eclampsia in Ghana. Pregnancy Hypertens. 33, 46–51 (2023).

    Article  PubMed  Google Scholar 

  63. Nava, J. et al. Successful pregnancy in a CKD patient on a low-protein, supplemented diet: an opportunity to reflect on CKD and pregnancy in Mexico, an emerging country. J. Nephrol. 30, 877–882 (2017).

    Article  PubMed  Google Scholar 

  64. Orozco-Guillien, A. O. et al. Quality or quantity of proteins in the diet for CKD patients: does “Junk Food” make a difference? lessons from a high-risk pregnancy. Kidney Blood Press. Res. 46, 1–10 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Tyrmi, J. S. et al. Genetic risk factors associated with preeclampsia and hypertensive disorders of pregnancy. JAMA Cardiol. 8, 674–683 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Reidy, K. J. et al. Fetal-not maternal-APOL1 genotype associated with risk for preeclampsia in those with African ancestry. Am. J. Hum. Genet. 103, 367–376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dizon-Townson, D. et al. Impact of smoking during pregnancy on functional coagulation testing. Am. J. Perinatol. 29, 225–230 (2012).

    Article  PubMed  Google Scholar 

  68. Loisel, D. A. et al. The maternal HLA-G 1597ΔC null mutation is associated with increased risk of pre-eclampsia and reduced HLA-G expression during pregnancy in African-American women. Mol. Hum. Reprod. 19, 144–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Conklin, M. B. et al. Understanding health disparities in preeclampsia: a literature review. Am. J. Perinatol. 41, e1291–e1300 (2024).

    Article  PubMed  Google Scholar 

  70. Levine, R. J. et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 350, 672–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thadhani, R. et al. Circulating angiogenic factor levels in hypertensive disorders of pregnancy. NEJM Evid. 1, EVIDoa2200161 (2022).

    Article  PubMed  Google Scholar 

  73. US Food and Drug Administration. FDA roundup: May 19, 2023. FDA https://www.fda.gov/news-events/press-announcements/fda-roundup-may-19-2023 (2023).

  74. Dupont, V. et al. Impaired renal reserve contributes to preeclampsia via the kynurenine and soluble fms-like tyrosine kinase 1 pathway. J. Clin. Invest. 132, e158346 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Broekhuizen, M., Danser, A. H. J., Reiss, I. K. M. & Merkus, D. The function of the kynurenine pathway in the placenta: a novel pharmacotherapeutic target? Int. J. Environ. Res. Public Health 18, 11545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yagel, S. et al. Expert review: preeclampsia type I and type II. Am. J. Obstet. Gynecol. MFM 5, 101203 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Kidney Disease: Improving Global Outcomes Working Group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 105, S117–S314 (2024).

    Article  Google Scholar 

  78. Garovic, V. D. et al. Urinary podocyte excretion as a marker for preeclampsia. Am. J. Obstet. Gynecol. 196, 320.e1–320.e7 (2007).

    Article  PubMed  Google Scholar 

  79. Jim, B. et al. Podocyturia as a diagnostic marker for preeclampsia amongst high-risk pregnant patients. J. Pregnancy 2012, 984630 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jim, B. et al. A comparison of podocyturia, albuminuria and nephrinuria in predicting the development of preeclampsia: a prospective study. PLoS ONE 9, e101445 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nakamura, T. et al. Urinary podocytes for the assessment of disease activity in lupus nephritis. Am. J. Med. Sci. 320, 112–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Fisher, K. A., Luger, A., Spargo, B. H. & Lindheimer, M. D. Hypertension in pregnancy: clinical-pathological correlations and remote prognosis. Medicine 60, 267–276 (1981).

    Article  CAS  PubMed  Google Scholar 

  83. Gilani, S. I. et al. Urinary extracellular vesicles of podocyte origin and renal injury in preeclampsia. J. Am. Soc. Nephrol. 28, 3363–3372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Weissgerber, T. L., Milic, N. M., Milin-Lazovic, J. S. & Garovic, V. D. Impaired flow-mediated dilation before, during, and after preeclampsia: a systematic review and meta-analysis. Hypertension 67, 415–423 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Vikse, B. E., Hallan, S., Bostad, L., Leivestad, T. & Iversen, B. M. Previous preeclampsia and risk for progression of biopsy-verified kidney disease to end-stage renal disease. Nephrol. Dial. Transpl. 25, 3289–3296 (2010).

    Article  Google Scholar 

  86. Oliverio, A. L. et al. Renal complications in pregnancy preceding glomerulonephropathy diagnosis. Kidney Int. Rep. 4, 159–162 (2019).

    Article  PubMed  Google Scholar 

  87. Cabiddu, G. et al. History of preeclampsia in patients undergoing a kidney biopsy: a biphasic, multiple-hit pathogenic hypothesis. Kidney Int. Rep. 7, 547–557 (2022).

    Article  PubMed  Google Scholar 

  88. Conti-Ramsden, F. I. et al. Pregnancy-related acute kidney injury in preeclampsia: risk factors and renal outcomes. Hypertension 74, 1144–1151 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Gaber, L. W., Spargo, B. H. & Lindheimer, M. D. Renal pathology in pre-eclampsia. Baillieres Clin. Obstet. Gynaecol. 8, 443–468 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Kincaid-Smith, P. The renal lesion of preeclampsia revisited. Am. J. Kidney Dis. 17, 144–148 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Stillman, I. E. & Karumanchi, S. A. The glomerular injury of preeclampsia. J. Am. Soc. Nephrol. 18, 2281–2284 (2007).

    Article  PubMed  Google Scholar 

  92. Meibody, F. et al. Post-partum acute kidney injury: sorting placental and non-placental thrombotic microangiopathies using the trajectory of biomarkers. Nephrol. Dial. Transpl. 35, 1538–1546 (2020).

    Article  CAS  Google Scholar 

  93. Villie, P. et al. Why kidneys fail post-partum: a tubulocentric viewpoint. J. Nephrol. 31, 645–651 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Rodriguez-Benitez, P. et al. Maternal-perinatal variables in patients with severe preeclampsia who develop acute kidney injury. J. Clin. Med. 10, 5629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sahay, M., Dogra, L., Ismal, K. & Vali, S. Pregnancy-related acute kidney injury in public hospital in South India: changing trends. J. Assoc. Physicians India 70, 11–12 (2022).

    PubMed  Google Scholar 

  96. Trakarnvanich, T., Ngamvichchukorn, T. & Susantitaphong, P. Incidence of acute kidney injury during pregnancy and its prognostic value for adverse clinical outcomes: a systematic review and meta-analysis. Medicine 101, e29563 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shalaby, A. S. & Shemies, R. S. Pregnancy-related acute kidney injury in the African continent: where do we stand? A systematic review. J. Nephrol. 35, 2175–2189 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Karimi, Z., Malekmakan, L. & Farshadi, M. The prevalence of pregnancy-related acute renal failure in Asia: a systematic review. Saudi J. Kidney Dis. Transpl. 28, 1–8 (2017).

    Article  PubMed  Google Scholar 

  99. Prakash, J. et al. Acute renal failure in pregnancy in a developing country: twenty years of experience. Ren. Fail. 28, 309–313 (2006).

    Article  PubMed  Google Scholar 

  100. Berhe, E. et al. Characteristics and outcome of pregnancy-related acute kidney injury in a teaching hospital in a low-resource setting: a five-year retrospective review. BMC Nephrol. 25, 182 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Shah, S. et al. Pregnancy-related acute kidney injury in the United States: clinical outcomes and health care utilization. Am. J. Nephrol. 51, 216–226 (2020).

    Article  PubMed  Google Scholar 

  102. Meazaw, M. W., Chojenta, C., Muluneh, M. D. & Loxton, D. Systematic and meta-analysis of factors associated with preeclampsia and eclampsia in sub-Saharan Africa. PLoS ONE 15, e0237600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Filali Khattabi, Z. et al. Chronic kidney disease in preeclamptic patients: not found unless searched for-is a nephrology evaluation useful after an episode of preeclampsia? J. Nephrol. 32, 977–987 (2019).

    Article  PubMed  Google Scholar 

  104. Ibarra-Hernandez, M. et al. Challenges in managing pregnancy in underserved women with chronic kidney disease. Am. J. Nephrol. 49, 386–396 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Hall, D. R. & Conti-Ramsden, F. Acute kidney injury in pregnancy including renal disease diagnosed in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 57, 47–59 (2019).

    Article  PubMed  Google Scholar 

  106. Facca, T. A. et al. Pregnancy as an early stress test for cardiovascular and kidney disease diagnosis. Pregnancy Hypertens. 12, 169–173 (2018).

    Article  PubMed  Google Scholar 

  107. Kaul, A. et al. Pregnancy check point for diagnosis of CKD in developing countries. J. Obstet. Gynaecol. India 68, 440–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Rivera, J. C. H. et al. Delayed initiation of hemodialysis in pregnant women with chronic kidney disease: logistical problems impact clinical outcomes. an experience from an emerging country. J. Clin. Med. 8, 475 (2019).

    Article  PubMed  Google Scholar 

  109. National Institute for Health Care and Excellence. Hypertension in Pregnancy: Follow-up Care and Postnatal Review (NICE, 2023).

  110. National Institute for Health Care and Excellence. Hypertension in Pregnancy: Diagnosis and Management (NICE, 2023).

  111. Smart, N. A., Dieberg, G., Ladhani, M. & Titus, T. Early referral to specialist nephrology services for preventing the progression to end-stage kidney disease. Cochrane Database Syst. Rev. 18, CD007333 (2014).

    Google Scholar 

  112. Huisman, R. M. The deadly risk of late referral. Nephrol. Dial. Transpl. 19, 2175–2180 (2004).

    Article  Google Scholar 

  113. Al Khalaf, S. et al. Chronic kidney disease and adverse pregnancy outcomes: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 226, 656–670.e32 (2022).

    Article  PubMed  Google Scholar 

  114. Jeyaraman, D. et al. Adverse pregnancy outcomes in pregnant women with chronic kidney disease: a systematic review and meta-analysis. BJOG 131, 1331–1340 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. Marek-Iannucci, S. et al. Association of chronic kidney dysfunction and preeclampsia: insights of the nationwide inpatient sample. Am. J. Obstet. Gynecol. MFM 5, 100928 (2023).

    Article  PubMed  Google Scholar 

  116. Piccoli, G. B. et al. Any reduction in maternal kidney mass makes a difference during pregnancy in gestational and fetal outcome. Kidney Int. 105, 865–876 (2024).

    Article  PubMed  Google Scholar 

  117. Piccoli, G. B. et al. Risk of adverse pregnancy outcomes in women with CKD. J. Am. Soc. Nephrol. 26, 2011–2022 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tangren, J. S. et al. Metabolic and hypertensive complications of pregnancy in women with nephrolithiasis. Clin. J. Am. Soc. Nephrol. 13, 612–619 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tangren, J. S. et al. Pregnancy outcomes after clinical recovery from AKI. J. Am. Soc. Nephrol. 28, 1566–1574 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Tangren, J. S. et al. Risk of preeclampsia and pregnancy complications in women with a history of acute kidney injury. Hypertension 72, 451–459 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Pippias, M. et al. Pregnancy after living kidney donation, a systematic review of the available evidence, and a review of the current guidance. Am. J. Transpl. 22, 2360–2380 (2022).

    Article  Google Scholar 

  122. He, Y. et al. Pregnancy in patients with stage 3–5 CKD: maternal and fetal outcomes. Pregnancy Hypertens. 29, 86–91 (2022).

    Article  PubMed  Google Scholar 

  123. Wiles, K. et al. The impact of chronic kidney disease Stages 3–5 on pregnancy outcomes. Nephrol. Dial. Transpl. 36, 2008–2017 (2021).

    Article  Google Scholar 

  124. Imbasciati, E. et al. Pregnancy in CKD stages 3 to 5: fetal and maternal outcomes. Am. J. Kidney Dis. 49, 753–762 (2007).

    Article  PubMed  Google Scholar 

  125. Piccoli, G. B. What is superimposed preeclampsia (and does it actually exist)? Kidney Int. Rep. 4, 759–762 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wiles, K. et al. Placental and endothelial biomarkers for the prediction of superimposed pre-eclampsia in chronic kidney disease. Pregnancy Hypertens. 24, 58–64 (2021).

    Article  PubMed  Google Scholar 

  127. Bramham, K. et al. Predisposition to superimposed preeclampsia in women with chronic hypertension: endothelial, renal, cardiac, and placental factors in a prospective longitudinal cohort. Hypertens. Pregnancy 39, 326–335 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Akbari, A. et al. Circulating angiogenic factors in a pregnant woman on intensive hemodialysis: a case report. Can. J. Kidney Health Dis. 3, 7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Shanmugalingam, R., Cole-Clark, A., Lowrie, E., Hennessy, A. & Makris, A. Clinical use of angiogenic factors in managing a pregnant woman on hemodialysis to term. Kidney Int. Rep. 6, 1449–1453 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Morisawa, H. et al. Difficulty of predicting early-onset super-imposed preeclampsia in pregnant women with hemodialysis due to diabetic nephropathy by serum levels of sFlt-1, PlGF, and sEng. CEN Case Rep. 9, 101–105 (2020).

    Article  PubMed  Google Scholar 

  131. Gosselink, M. E. et al. A nationwide Dutch cohort study shows relatively good pregnancy outcomes after kidney transplantation and finds risk factors for adverse outcomes. Kidney Int. 102, 866–875 (2022).

    Article  PubMed  Google Scholar 

  132. Hewawasam, E. et al. Determinants of perinatal outcomes in dialyzed and transplanted women in Australia. Kidney Int. Rep. 7, 1318–1331 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Shah, S. et al. Pregnancy outcomes in women with kidney transplant: metaanalysis and systematic review. BMC Nephrol. 20, 24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Lu, J. et al. Preeclampsia after kidney transplantation: rates and association with graft survival and function. Clin. J. Am. Soc. Nephrol. 18, 920–929 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dines, V., D’Costa, M., Fidler, M. & Kattah, A. The role of kidney biopsy in diagnosis of preeclampsia in kidney transplant patients. Hypertens. Pregnancy 39, 418–422 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Majak, G. B. et al. Preeclampsia in kidney transplanted women; outcomes and a simple prognostic risk score system. PLoS ONE 12, e0173420 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Vannevel, V. et al. Preeclampsia and long-term renal function in women who underwent kidney transplantation. Obstet. Gynecol. 131, 57–62 (2018).

    Article  PubMed  Google Scholar 

  138. Park, S. et al. Pregnancy in women with immunoglobulin A nephropathy: are obstetrical complications associated with renal prognosis? Nephrol. Dial. Transpl. 33, 459–465 (2018).

    Article  CAS  Google Scholar 

  139. Luyckx, V. A. & Brenner, B. M. Clinical consequences of developmental programming of low nephron number. Anat. Rec. 303, 2613–2631 (2020).

    Article  Google Scholar 

  140. Li, F. et al. Adverse pregnancy outcomes among mothers with hypertensive disorders in pregnancy: a meta-analysis of cohort studies. Pregnancy Hypertens. 24, 107–117 (2021).

    Article  PubMed  Google Scholar 

  141. Wu, C. S. et al. Health of children born to mothers who had preeclampsia: a population-based cohort study. Am. J. Obstet. Gynecol. 201, 269.e1–269.e10 (2009).

    Article  PubMed  Google Scholar 

  142. Koulouraki, S. et al. Short- and long-term outcomes of preeclampsia in offspring: review of the literature. Children 10, 826 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Turbeville, H. R. & Sasser, J. M. Preeclampsia beyond pregnancy: long-term consequences for mother and child. Am. J. Physiol. Renal Physiol. 318, F1315–F1326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ratsep, M. T. et al. Impact of preeclampsia on cognitive function in the offspring. Behav. Brain Res. 302, 175–181 (2016).

    Article  PubMed  Google Scholar 

  145. Kokori, E. et al. Maternal and fetal neurocognitive outcomes in preeclampsia and eclampsia; a narrative review of current evidence. Eur. J. Med. Res. 29, 470 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Bokslag, A., van Weissenbruch, M., Mol, B. W. & de Groot, C. J. Preeclampsia; short and long-term consequences for mother and neonate. Early Hum. Dev. 102, 47–50 (2016).

    Article  PubMed  Google Scholar 

  147. Chappell, L. C. et al. Planned early delivery or expectant management for late preterm pre-eclampsia (PHOENIX): a randomised controlled trial. Lancet 394, 1181–1190 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wang, Y. et al. Aspirin for the prevention of preeclampsia: a systematic review and meta-analysis of randomized controlled studies. Front. Cardiovasc. Med. 9, 936560 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Roberge, S. et al. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis. Am. J. Obstet. Gynecol. 216, 110–120 e116 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. North, R. A., Ferrier, C., Gamble, G., Fairley, K. F. & Kincaid-Smith, P. Prevention of preeclampsia with heparin and antiplatelet drugs in women with renal disease. Aust. N. Z. J. Obstet. Gynaecol. 35, 357–362 (1995).

    Article  CAS  PubMed  Google Scholar 

  151. de Vries, J. I. et al. Low-molecular-weight heparin added to aspirin in the prevention of recurrent early-onset pre-eclampsia in women with inheritable thrombophilia: the FRUIT-RCT. J. Thromb. Haemost. 10, 64–72 (2012).

    Article  PubMed  Google Scholar 

  152. van Hoorn, M. E. et al. Low-molecular-weight heparin and aspirin in the prevention of recurrent early-onset pre-eclampsia in women with antiphospholipid antibodies: the FRUIT-RCT. Eur. J. Obstet. Gynecol. Reprod. Biol. 197, 168–173 (2016).

    Article  PubMed  Google Scholar 

  153. Martinelli, I. et al. Heparin in pregnant women with previous placenta-mediated pregnancy complications: a prospective, randomized, multicenter, controlled clinical trial. Blood 119, 3269–3275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Haddad, B. et al. Enoxaparin and aspirin compared with aspirin alone to prevent placenta-mediated pregnancy complications: a randomized controlled trial. Obstet. Gynecol. 128, 1053–1063 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Wang, X. & Gao, H. Prevention of preeclampsia in high-risk patients with low-molecular-weight heparin: a meta-analysis. J. Matern. Fetal Neonatal Med. 33, 2202–2208 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. McLaughlin, K., Scholten, R. R., Parker, J. D., Ferrazzi, E. & Kingdom, J. C. P. Low molecular weight heparin for the prevention of severe preeclampsia: where next? Br. J. Clin. Pharmacol. 84, 673–678 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Cruz-Lemini, M., Vazquez, J. C., Ullmo, J. & Llurba, E. Low-molecular-weight heparin for prevention of preeclampsia and other placenta-mediated complications: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 226, S1126–S1144.e17 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Dwarkanath, P. et al. Two randomized trials of low-dose calcium supplementation in pregnancy. N. Engl. J. Med. 390, 143–153 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Woo Kinshella, M. L. et al. Calcium for pre-eclampsia prevention: a systematic review and network meta-analysis to guide personalised antenatal care. BJOG 129, 1833–1843 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Evenepoel, P. et al. Recommended calcium intake in adults and children with chronic kidney disease — a European consensus statement. Nephrol. Dial. Transpl. 39, 341–366 (2024).

    Article  CAS  Google Scholar 

  161. Aguilar, A. et al. Pathophysiology of bone disease in chronic kidney disease: from basics to renal osteodystrophy and osteoporosis. Front. Physiol. 14, 1177829 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. World Health Organisation. WHO Recommendation: Calcium Supplementation during Pregnancy for the Prevention of Pre-eclampsia and its Complications (WHO, 2018).

  163. Hofmeyr, G. J., Lawrie, T. A., Atallah, A. N. & Torloni, M. R. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst. Rev. 10, CD001059 (2018).

    PubMed  Google Scholar 

  164. Bhowmik, B. et al. Maternal BMI and nutritional status in early pregnancy and its impact on neonatal outcomes at birth in Bangladesh. BMC Pregnancy Childbirth 19, 413 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. World Health organization. WHO Antenatal Care Recommendations for a Positive Pregnancy Experience — Nutritional Interventions Update: Vitamin D Supplements during Pregnancy (WHO, 2020).

  166. Palacios, C., Kostiuk, L. L., Cuthbert, A. & Weeks, J. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 7, CD008873 (2024).

    PubMed  Google Scholar 

  167. Holick, M. F. et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1911–1930 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Vadillo-Ortega, F. et al. Effect of supplementation during pregnancy with L-arginine and antioxidant vitamins in medical food on pre-eclampsia in high risk population: randomised controlled trial. BMJ 342, d2901 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Taliento, C. et al. Effect of physical activity during pregnancy on the risk of hypertension disorders and gestational diabetes: evidence generated by new RCTs and systematic reviews. J. Clin. Med. 13, 2198 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  170. European Commission. Dietary recommendations for protein intake for pregnant and lactating women. EC https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/dietary-protein-dietary-intake-pregnant-4_en (2021).

  171. Ikizler, T. A. et al. KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Am. J. Kidney Dis. 76, S1–S107 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Institute of Medicine of the National Academies. Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids (National Academies, 2005).

  173. Perry, A., Stephanou, A. & Rayman, M. P. Dietary factors that affect the risk of pre-eclampsia. BMJ Nutr. Prev. Health 5, 118–133 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Raghavan, R. et al. Dietary patterns before and during pregnancy and birth outcomes: a systematic review. Am. J. Clin. Nutr. 109, 729S–756S (2019).

    Article  PubMed  Google Scholar 

  175. Brantsaeter, A. L. et al. A dietary pattern characterized by high intake of vegetables, fruits, and vegetable oils is associated with reduced risk of preeclampsia in nulliparous pregnant Norwegian women. J. Nutr. 139, 1162–1168 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hall, K. D. et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 30, 226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Attini, R. et al. Plant-based diets improve maternal-fetal outcomes in CKD pregnancies. Nutrients 14, 4203 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Piccoli, G. B. et al. Vegetarian supplemented low-protein diets. A safe option for pregnant CKD patients: report of 12 pregnancies in 11 patients. Nephrol. Dial. Transpl. 26, 196–205 (2011).

    Article  CAS  Google Scholar 

  179. Piccoli, G. B. et al. Association of low-protein supplemented diets with fetal growth in pregnant women with CKD. Clin. J. Am. Soc. Nephrol. 9, 864–873 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Vilar-Compte, M. et al. Urban poverty and nutrition challenges associated with accessibility to a healthy diet: a global systematic literature review. Int. J. Equity Health 20, 40 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Syngelaki, A. et al. Metformin versus placebo in obese pregnant women without diabetes mellitus. N. Engl. J. Med. 374, 434–443 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Alqudah, A. et al. Risk of pre-eclampsia in women taking metformin: a systematic review and meta-analysis. Diabet. Med. 35, 160–172 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Costantine, M. M. et al. Safety and pharmacokinetics of pravastatin used for the prevention of preeclampsia in high-risk pregnant women: a pilot randomized controlled trial. Am. J. Obstet. Gynecol. 214, 720.e1–720.e17 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Costantine, M. M. et al. A randomized pilot clinical trial of pravastatin versus placebo in pregnant patients at high risk of preeclampsia. Am. J. Obstet. Gynecol. 225, 666.e1–666.e15 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Akbar, M. I. A. et al. INOVASIA study: a multicenter randomized clinical trial of pravastatin to prevent preeclampsia in high-risk patients. Am. J. Perinatol. 41, 1203–1211 (2024).

    Article  PubMed  Google Scholar 

  186. Ahmed, A. et al. Pravastatin for early-onset pre-eclampsia: a randomised, blinded, placebo-controlled trial. BJOG 127, 478–488 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Rozas-Villanueva, M. F., Casanello, P. & Retamal, M. A. Role of ROS/RNS in preeclampsia: are connexins the missing piece? Int. J. Mol. Sci. 21, 4698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Brownfoot, F. C. et al. Effects of simvastatin, rosuvastatin and pravastatin on soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sENG) secretion from human umbilical vein endothelial cells, primary trophoblast cells and placenta. BMC Pregnancy Childbirth 16, 117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Meijerink, L. et al. Statins in pre-eclampsia or fetal growth restriction: a systematic review and meta-analysis on maternal blood pressure and fetal growth across species. BJOG 130, 577–585 (2023).

    Article  PubMed  Google Scholar 

  190. Kattah, A. et al. Complement C5 inhibition as a novel therapeutic approach in severe pre-eclampsia. Mayo Clin. Proc. 97, 1580–1583 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Thadhani, R. et al. Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia. Circulation 124, 940–950 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Gilbert, J. S. et al. Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placental ischemia-induced hypertension. Hypertension 55, 380–385 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Hamano, T. Women with a history of preeclampsia should be monitored for the onset and progression of chronic kidney disease. Nat. Clin. Pract. Nephrol. 5, 8–9 (2009).

    Article  PubMed  Google Scholar 

  194. Piccoli, G. B. et al. The ABCs of post-preeclampsia outpatient nephrology care: the Le Mans strategy. J. Nephrol. 37, 2481–2489 (2024).

    Article  PubMed  Google Scholar 

  195. Inversetti, A. et al. Update on long-term cardiovascular risk after pre-eclampsia: a systematic review and meta-analysis. Eur. Heart J. Qual. Care Clin. Outcomes 10, 4–13 (2024).

    Article  PubMed  Google Scholar 

  196. Staff, A. C., Costa, M. L., Dechend, R., Jacobsen, D. P. & Sugulle, M. Hypertensive disorders of pregnancy and long-term maternal cardiovascular risk: bridging epidemiological knowledge into personalized postpartum care and follow-up. Pregnancy Hypertens. 36, 101127 (2024).

    Article  PubMed  Google Scholar 

  197. Daubert, M. A. et al. Early postpartum blood pressure screening is associated with increased detection of cardiovascular risk factors in women with hypertensive disorders of pregnancy. Am. Heart J. 273, 130–139 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Ackerman-Banks, C. M. et al. Seizing the window of opportunity within 1 year postpartum: early cardiovascular screening. J. Am. Heart Assoc. 11, e024443 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Conti-Ramsden, F., Bramham, K. & de Marvao, A. Long-term cardiovascular disease after pre-eclampsia: time to move from epidemiology to action. Eur. Heart J. Qual. Care Clin. Outcomes 10, 1–3 (2024).

    Article  PubMed  Google Scholar 

  200. Wu, P. et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ. Cardiovasc. Qual. Outcomes 10, e003497 (2017).

    Article  PubMed  Google Scholar 

  201. Lo, C. C. W. et al. Future cardiovascular disease risk for women with gestational hypertension: a systematic review and meta-analysis. J. Am. Heart Assoc. 9, e013991 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Tannor, E. K., Nlandu, Y. M., Elrggal, M. E., Chika, O. U. & Nzana, V. Kidney health for all — bridging the gap to better kidney care in Africa. Afr. J. Nephrol. 25, 108–115 (2022).

    Google Scholar 

  203. Talle, M. A. et al. Status of cardiac arrhythmia services in Africa in 2018: a PASCAR sudden cardiac death task force report. Cardiovasc. J. Afr. 29, 115–121 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Gonçalves, M. A. A., Morais, H., Oliveira, G. M. M. D. & Mesquita, C. T. Challenges and perspectives for cardiology in the developing world: joint views from Africa and Latin America. Int. J. Cardiovasc. Sci. 37, e20240002 (2024).

    Google Scholar 

  205. Anumudu, S. J. & Fadem, S. Z. in Nephrology Worldwide (eds Moura-Neto, J. A., Divino-Filho, J. C. & Ronco, C.) 173–186 (Springer, 2021).

  206. Bellasi, A. et al. in Nephrology Worldwide (eds Moura-Neto, J. A., Divino-Filho, J. C. & Ronco, C.) 557–568 (Springer, 2021).

  207. European Society of Cardiology. Cardiologists (total) (per million people). ESC https://eatlas.escardio.org/Data/Cardiovascular-healthcare-delivery/Cardiological-specialists/chr_card_1m_r-cardiologists-total-per-million-people (2024).

  208. Canaud, B. & Choukroun, G. in Nephrology Worldwide (eds Moura-Neto, J. A., Divino-Filho, J. C. & Ronco, C.) 521–541 (Springer, 2021).

  209. European Society of Cardiology. French Society of Cardiology. ESC https://www.escardio.org/The-ESC/Member-National-Cardiac-Societies/French-Society-of-Cardiology (2024).

  210. Schulz, C. et al. Characteristics of outpatients referred for a first consultation with a nephrologist: impact of different guidelines. J. Nephrol. 35, 1375–1385 (2022).

    Article  PubMed  Google Scholar 

  211. Jesudason, S. Implementing referral systems for nephrology services: real world practice versus guidelines. J. Nephrol. 35, 1369–1370 (2022).

    Article  PubMed  Google Scholar 

  212. Li, K. et al. Use of kidney failure risk equation as a tool to evaluate referrals from primary care to specialist nephrology care. Intern. Med. J. 54, 1126–1135 (2024).

    Article  PubMed  Google Scholar 

  213. Francis, A. et al. Chronic kidney disease and the global public health agenda: an international consensus. Nat. Rev. Nephrol. 20, 473–485 (2024).

    Article  PubMed  Google Scholar 

  214. Carrero, J. J., Hecking, M., Chesnaye, N. C. & Jager, K. J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 14, 151–164 (2018).

    Article  PubMed  Google Scholar 

  215. Li, L. et al. Trophoblast-targeted nanomedicine modulates placental sFLT1 for preeclampsia treatment. Front. Bioeng. Biotechnol. 8, 64 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Turanov, A. A. et al. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat. Biotechnol. 36, 1164–1173 (2018).

    Article  CAS  Google Scholar 

  217. PRNewswire. Comanche Biopharma receives US FDA fast track designation for CBP-4888 for the treatment of sFlt-1 mediated pre-term preeclampsia. PRNewswire https://www.prnewswire.com/news-releases/comanche-biopharma-drug-receives-fda-fast-track-designation-301908285.html (2023).

  218. Wang, Y. et al. Heparin-mediated extracorporeal low density lipoprotein precipitation as a possible therapeutic approach in preeclampsia. Transfus. Apher. Sci. 35, 103–110 (2006).

    Article  PubMed  Google Scholar 

  219. Winkler, K. et al. Treatment of very preterm preeclampsia via heparin-mediated extracorporeal LDL-precipitation (H.E.L.P.) apheresis: the Freiburg preeclampsia H.E.L.P.-apheresis study. Pregnancy Hypertens. 12, 136–143 (2018).

    Article  CAS  PubMed  Google Scholar 

  220. Nakakita, B. et al. Case of soluble fms-like tyrosine kinase 1 apheresis in severe pre-eclampsia developed at 15 weeks’ gestation. J. Obstet. Gynaecol. Res. 41, 1661–1663 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Gubensek, J. et al. Treatment of preeclampsia at extremely preterm gestation with therapeutic plasma exchange. Clin. Nephrol. 96, 101–106 (2021).

    Article  PubMed  Google Scholar 

  222. Thadhani, R. et al. Removal of soluble Fms-like tyrosine kinase-1 by dextran sulfate apheresis in preeclampsia. J. Am. Soc. Nephrol. 27, 903–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Haddad, B. et al. LDL-apheresis to decrease sFlt-1 during early severe preeclampsia: report of two cases from a discontinued phase II trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 231, 70–74 (2018).

    Article  PubMed  Google Scholar 

  224. Logue, O. C., Mahdi, F., Chapman, H., George, E. M. & Bidwell, G. L. 3rd A maternally sequestered, biopolymer-stabilized vascular endothelial growth factor (VEGF) chimera for treatment of preeclampsia. J. Am. Heart Assoc. 6, e007216 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Waller, J. P., Howell, J. A., Peterson, H., George, E. M. & Bidwell, G. L. 3rd Elastin-like polypeptide: VEGF-B fusion protein for treatment of preeclampsia. Hypertension 78, 1888–1901 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Engel, J. E. et al. Recovery of renal function following kidney-specific VEGF therapy in experimental renovascular disease. Am. J. Nephrol. 51, 891–902 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Kadife, E. et al. Hydroxychloroquine reduces soluble Flt-1 secretion from human cytotrophoblast, but does not mitigate markers of endothelial dysfunction in vitro. PLoS ONE 17, e0271560 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. de Moreuil, C., Alavi, Z. & Pasquier, E. Hydroxychloroquine may be beneficial in preeclampsia and recurrent miscarriage. Br. J. Clin. Pharmacol. 86, 39–49 (2020).

    Article  PubMed  Google Scholar 

  229. Pierik, E. et al. Dysregulation of complement activation and placental dysfunction: a potential target to treat preeclampsia? Front. Immunol. 10, 3098 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Morales, E. et al. Eculizumab in early-stage pregnancy. Kidney Int. Rep. 5, 2383–2387 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Neri, I., Jasonni, V. M., Gori, G. F., Blasi, I. & Facchinetti, F. Effect of L-arginine on blood pressure in pregnancy-induced hypertension: a randomized placebo-controlled trial. J. Matern. Fetal Neonatal Med. 19, 277–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  232. Winer, N. et al. Oral citrulline supplementation in pregnancies with preeclampsia: a multicenter, randomized, double-blind clinical trial. Am. J. Clin. Nutr. 121, 488–496 (2025).

    Article  CAS  PubMed  Google Scholar 

  233. Saleh, L. et al. Low soluble Fms-like tyrosine kinase-1, endoglin, and endothelin-1 levels in women with confirmed or suspected preeclampsia using proton pump inhibitors. Hypertension 70, 594–600 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Cluver, C. A. et al. Esomeprazole to treat women with preterm preeclampsia: a randomized placebo controlled trial. Am. J. Obstet. Gynecol. 219, 388.e1–388.e17 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Kobayashi, T. et al. Treatment of severe preeclampsia with antithrombin concentrate: results of a prospective feasibility study. Semin. Thromb. Hemost. 29, 645–652 (2003).

    Article  CAS  PubMed  Google Scholar 

  236. Maki, M. et al. Antithrombin therapy for severe preeclampsia: results of a double-blind, randomized, placebo-controlled trial. BI51.017 study group. Thromb. Haemost. 84, 583–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  237. Paidas, M. J. et al. Prospective, randomized, double-blind, placebo-controlled evaluation of the pharmacokinetics, safety and efficacy of recombinant antithrombin versus placebo in preterm preeclampsia. Am. J. Obstet. Gynecol. 223, 739.e1–739.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Chen, J., Huai, J. & Yang, H. Low-molecular-weight heparin for the prevention of preeclampsia in high-risk pregnancies without thrombophilia: a systematic review and meta-analysis. BMC Pregnancy Childbirth 24, 68 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Socha, M. W., Chmielewski, J., Pietrus, M. & Wartega, M. Endogenous digitalis-like factors as a key molecule in the pathophysiology of pregnancy-induced hypertension and a potential therapeutic target in preeclampsia. Int. J. Mol. Sci. 24, 12743 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. GBD 2021 Fertility and Forecasting Collaborators. Global fertility in 204 countries and territories, 1950-2021, with forecasts to 2100: a comprehensive demographic analysis for the Global burden of disease study 2021. Lancet 403, 2057–2099 (2024).

    Article  Google Scholar 

  241. Brouwers, L. et al. Recurrence of pre-eclampsia and the risk of future hypertension and cardiovascular disease: a systematic review and meta-analysis. BJOG 125, 1642–1654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.S. researched data for the article. N.S., G.C., R.A., A.O., R.S., S.J. and F.F. made substantial contributions to discussions of the content. G.B.P., M.T., F.F. and V.D.G. wrote the manuscript. G.B.P., M.T. and V.D.G. reviewed or edited the manuscript before submission.

Corresponding authors

Correspondence to Giorgina Barbara Piccoli or Vesna D. Garovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Kate Bramham, Titia Lely and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccoli, G.B., Torreggiani, M., Schwotzer, N. et al. Kidney health outcomes of hypertensive disorders of pregnancy. Nat Rev Nephrol 21, 671–686 (2025). https://doi.org/10.1038/s41581-025-00977-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-025-00977-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing