Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Collagen IV in Gould syndrome and Alport syndrome

Abstract

Collagen IV is a basement membrane component that is encoded by six genes in mammals (COL4Α1COL4A6). The α-chains encoded by these genes assemble into three known heterotrimers — collagen α1α1α2(IV), α3α4α5(IV) and α5α5α6(IV) — that provide structure and act as multifunctional signalling platforms. The ancestral collagen superfamily members collagen alpha-1(IV) chain (COL4Α1) and collagen alpha-2(IV) chain (COL4Α2) are present throughout the animal kingdom and in all developing and most mature mammalian tissues. Consistent with this broad distribution, variants in COL4A1 and COL4A2 cause a congenital multisystem disorder called Gould syndrome (GS), which is characterized by cerebral, ocular, muscular and kidney defects. The main clinical consequences involve the cerebral vasculature (porencephaly, small-vessel disease, leukoencephalopathy and intracerebral haemorrhage). However, the full clinical spectrum, including the organs affected and acquired phenotypes such as vascular dementia, is still being defined. By contrast, variants in COL4A3, COL4A4 or COL4A5 cause Alport syndrome (AS), a disorder of variable severity that affects the kidney, ear and eye. AS nephropathies often progress from haematuria to proteinuria, renal impairment and kidney failure. The auditory features include sensorineural hearing loss, whereas the ocular features comprise corneal dystrophy, lenticonus, dot-and-fleck retinopathy and maculopathy. Although GS and AS have little clinical resemblance, the high conservation of the genes and proteins suggests common elements of underlying pathophysiology. Conventional therapies that modify haemodynamics have lengthened the time to kidney failure for patients living with AS. However, no curative or mechanism-based interventions exist for GS. Gene-editing approaches hold promise for both disorders.

Key points

  • Collagen IV is component of basement membranes that is encoded by six α-chain genes (COL4Α1COL4A6) that assemble into three known heterotrimers: collagen α1α1α2(IV), α3α4α5(IV) and α5α5α6(IV).

  • COL4Α1 and COL4Α2 variants cause Gould syndrome (GS), which is characterized by cerebral, ocular, muscular and renal manifestations, whereas COL4Α3, COL4Α4 and COL4Α5 variants cause Alport syndrome (AS), which is characterized by a spectrum of pathologies affecting the kidney, ear and eye.

  • GS nephropathies are variable, include haematuria, proteinuria and the presence of cysts and can progress to kidney failure; AS nephropathies are also variable, begin with haematuria and often progress to proteinuria, renal impairment and kidney failure.

  • As no effective treatment options for GS exist, current interventions are aimed at managing the symptoms.

  • Although no curative treatment for AS is available, interventions that target the renin–angiotensin–aldosterone system are efficient at slowing disease progression, delaying kidney failure and increasing life expectancy.

  • Potential shared therapeutic avenues for GS and AS include promoting secretion of defective collagen IV and attenuating TGFβ signalling; gene therapies and gene-editing approaches are also promising treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Collagen IV gene and protein structures.
Fig. 2: The deposition pattern of collagen IV heterotrimers in the glomerulus.
Fig. 3: Symptoms of Gould syndrome and Alport syndrome.
Fig. 4: Collagen IV biosynthesis and potential targeted therapeutic strategies for Gould syndrome and Alport syndrome.

Similar content being viewed by others

References

  1. Fidler, A. L. et al. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. Elife 6, e24176 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fidler, A. L., Boudko, S. P., Rokas, A. & Hudson, B. G. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution. J. Cell Sci. 131, jcs203950 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khoshnoodi, J., Pedchenko, V. & Hudson, B. G. Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boutaud, A. et al. Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J. Biol. Chem. 275, 30716–30724 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Meehan, D. T. et al. Biomechanical strain causes maladaptive gene regulation, contributing to Alport glomerular disease. Kidney Int. 76, 968–976 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Davis, J. M., Boswell, B. A. & Bächinger, H. P. Thermal stability and folding of type IV procollagen and effect of peptidyl-prolyl cis-trans-isomerase on the folding of the triple helix. J. Biol. Chem. 264, 8956–8962 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramachandran, G. N. & Kartha, G. Structure of collagen. Nature 176, 593–595 (1955).

    Article  CAS  PubMed  Google Scholar 

  9. Salo, A. M. et al. A connective tissue disorder caused by mutations of the lysyl hydroxylase 3 gene. Am. J. Hum. Genet. 83, 495–503 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miyatake, S. et al. Biallelic COLGALT1 variants are associated with cerebral small vessel disease. Ann. Neurol. 84, 843–853 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Ishikawa, Y. et al. Lysyl hydroxylase 3-mediated post-translational modifications are required for proper biosynthesis of collagen ɑ1ɑ1ɑ2(IV). J. Biol. Chem. 298, 102713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aypek, H. et al. Loss of the collagen IV modifier prolyl 3-hydroxylase 2 causes thin basement membrane nephropathy. J. Clin. Invest. 132, e147253 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koide, T., Takahara, Y., Asada, S. & Nagata, K. Xaa-Arg-Gly triplets in the collagen triple helix are dominant binding sites for the molecular chaperone HSP47. J. Biol. Chem. 277, 6178–6182 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Natsume, T., Koide, T., Yokota, S., Hirayoshi, K. & Nagata, K. Interactions between collagen-binding stress protein HSP47 and collagen. Analysis of kinetic parameters by surface plasmon resonance biosensor. J. Biol. Chem. 269, 31224–31228 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Ono, T., Miyazaki, T., Ishida, Y., Uehata, M. & Nagata, K. Direct in vitro and in vivo evidence for interaction between Hsp47 protein and collagen triple helix. J. Biol. Chem. 287, 6810–6818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saga, S., Nagata, K., Chen, W. T. & Yamada, K. M. pH-dependent function, purification, and intracellular location of a major collagen-binding glycoprotein. J. Cell Biol. 105, 517–527 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Tasab, M., Batten, M. R. & Bulleid, N. J. Hsp47: a molecular chaperone that interacts with and stabilizes correctly-folded procollagen. EMBO J. 19, 2204–2211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malhotra, V. & Erlmann, P. Protein export at the ER: loading big collagens into COPII carriers. EMBO J. 30, 3475–3480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malhotra, V., Erlmann, P. & Nogueira, C. Procollagen export from the endoplasmic reticulum. Biochem. Soc. Trans. 43, 104–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Wilson, D. G. et al. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. J. Cell Biol. 193, 935–951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Christiansen, H. E. et al. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am. J. Hum. Genet. 86, 389–398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alanay, Y. et al. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am. J. Hum. Genet. 86, 551–559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barnes, A. M. et al. Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. N. Engl. J. Med. 362, 521–528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fang, M. et al. Lifetime risk and projected burden of dementia. Nat. Med. 31, 772–776 (2025).

    Article  CAS  PubMed  Google Scholar 

  25. Merkuryeva, E. S. et al. Presentation of rare phenotypes associated with the FKBP10 gene. Genes 15, 674 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nagai, N. et al. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J. Cell Biol. 150, 1499–1506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poschl, E. et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131, 1619–1628 (2004).

    Article  PubMed  Google Scholar 

  28. Cummings, C. F. et al. Extracellular chloride signals collagen IV network assembly during basement membrane formation. J. Cell Biol. 213, 479–494 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vanacore, R. et al. A sulfilimine bond identified in collagen IV. Science 325, 1230–1234 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhave, G. et al. Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Nat. Chem. Biol. 8, 784–790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCall, A. S. et al. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 157, 1380–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Timpl, R., Wiedemann, H., van Delden, V., Furthmayr, H. & Kuhn, K. A network model for the organization of type IV collagen molecules in basement membranes. Eur. J. Biochem. 120, 203–211 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Anazco, C. et al. Lysyl oxidase-like-2 cross-links collagen IV of glomerular basement membrane. J. Biol. Chem. 291, 25999–26012 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lopez-Jimenez, A. J., Basak, T. & Vanacore, R. M. Proteolytic processing of lysyl oxidase-like-2 in the extracellular matrix is required for crosslinking of basement membrane collagen IV. J. Biol. Chem. 292, 16970–16982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hofmann, H., Voss, T., Kuhn, K. & Engel, J. Localization of flexible sites in thread-like molecules from electron micrographs. Comparison of interstitial, basement membrane and intima collagens. J. Mol. Biol. 172, 325–343 (1984).

    Article  CAS  PubMed  Google Scholar 

  36. Bella, J., Liu, J., Kramer, R., Brodsky, B. & Berman, H. M. Conformational effects of Gly-X-Gly interruptions in the collagen triple helix. J. Mol. Biol. 362, 298–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Brazel, D. et al. Completion of the amino acid sequence of the ɑ1 chain of human basement membrane collagen (type IV) reveals 21 non-triplet interruptions located within the collagenous domain. Eur. J. Biochem. 168, 529–536 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Leinonen, A., Mariyama, M., Mochizuki, T., Tryggvason, K. & Reeders, S. T. Complete primary structure of the human type IV collagen ɑ4(IV) chain. Comparison with structure and expression of the other ɑ(IV) chains. J. Biol. Chem. 269, 26172–26177 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, J., Ding, M., Zhao, Z. & Reeders, S. T. Complete primary structure of the sixth chain of human basement membrane collagen, ɑ6(IV). Isolation of the cDNAs for ɑ6(IV) and comparison with five other type IV collagen chains. J. Biol. Chem. 269, 13193–13199 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Abrahamson, D. R., Hudson, B. G., Stroganova, L., Borza, D. B. & St John, P. L. Cellular origins of type IV collagen networks in developing glomeruli. J. Am. Soc. Nephrol. 20, 1471–1479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miner, J. H. & Sanes, J. R. Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J. Cell Biol. 127, 879–891 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Borza, D. B. et al. The NC1 domain of collagen IV encodes a novel network composed of the ɑ1, ɑ2, ɑ5, and ɑ6 chains in smooth muscle basement membranes. J. Biol. Chem. 276, 28532–28540 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Peissel, B. et al. Comparative distribution of the alpha 1(IV), alpha 5(IV), and alpha 6(IV) collagen chains in normal human adult and fetal tissues and in kidneys from X-linked Alport syndrome patients. J. Clin. Invest. 96, 1948–1957 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harvey, S. J. et al. Role of distinct type IV collagen networks in glomerular development and function. Kidney Int. 54, 1857–1866 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Ninomiya, Y. et al. Differential expression of two basement membrane collagen genes, COL4A6 and COL4A5, demonstrated by immunofluorescence staining using peptide-specific monoclonal antibodies. J. Cell Biol. 130, 1219–1229 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Kuo, D. S., Labelle-Dumais, C. & Gould, D. B. COL4A1 and COL4A2 mutations and disease: insights into pathogenic mechanisms and potential therapeutic targets. Hum. Mol. Genet. 21, R97–R110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mao, M., Alavi, M. V., Labelle-Dumais, C. & Gould, D. B. Type IV collagens and basement membrane diseases: cell biology and pathogenic mechanisms. Curr. Top. Membr. 76, 61–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Jeanne, M. & Gould, D. B. Genotype-phenotype correlations in pathology caused by collagen type IV alpha 1 and 2 mutations. Matrix Biol. 57-58, 29–44 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Labelle-Dumais, C. et al. COL4A1 mutations cause neuromuscular disease with tissue-specific mechanistic heterogeneity. Am. J. Hum. Genet. 104, 847–860 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoneda, Y. et al. Phenotypic spectrum of COL4A1 mutations: porencephaly to schizencephaly. Ann. Neurol. 73, 48–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Meuwissen, M. E. et al. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet. Med. 17, 843–853 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Zagaglia, S. et al. Neurologic phenotypes associated with COL4A1/2 mutations: expanding the spectrum of disease. Neurology 91, e2078–e2088 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gasparini, S. et al. Multiorgan manifestations of COL4A1 and COL4A2 variants and proposal for a clinical management protocol. Am. J. Med. Genet. C. Semin. Med. Genet. 196, e32099 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Whittaker, E. et al. Systematic review of cerebral phenotypes associated with monogenic cerebral small-vessel disease. J. Am. Heart Assoc. 11, e025629 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Thaung, C. et al. Novel ENU-induced eye mutations in the mouse: models for human eye disease. Hum. Mol. Genet. 11, 755–767 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Favor, J. et al. Type IV procollagen missense mutations associated with defects of the eye, vascular stability, the brain, kidney function and embryonic or postnatal viability in the mouse, Mus musculus: an extension of the Col4a1 allelic series and the identification of the first two Col4a2 mutant alleles. Genetics 175, 725–736 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gould, D. B. et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 308, 1167–1171 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Gould, D. B. et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N. Engl. J. Med. 354, 1489–1496 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Breedveld, G. et al. Novel mutations in three families confirm a major role of COL4A1 in hereditary porencephaly. J. Med. Genet. 43, 490–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Vahedi, K. et al. Clinical and brain MRI follow-up study of a family with COL4A1 mutation. Neurology 69, 1564–1568 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Van Agtmael, T. et al. Dominant mutations of Col4a1 result in basement membrane defects which lead to anterior segment dysgenesis and glomerulopathy. Hum. Mol. Genet. 14, 3161–3168 (2005).

    Article  PubMed  Google Scholar 

  62. Chen, Z. et al. HANAC syndrome Col4a1 mutation causes neonate glomerular hyperpermeability and adult glomerulocystic kidney disease. J. Am. Soc. Nephrol. 27, 1042–1054 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Gupta, M. C., Graham, P. L. & Kramer, J. M. Characterization of ɑ1(IV) collagen mutations in Caenorhabditis elegans and the effects of ɑ1 and ɑ2(IV) mutations on type IV collagen distribution. J. Cell Biol. 137, 1185–1196 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sibley, M. H., Graham, P. L., von Mende, N. & Kramer, J. M. Mutations in the alpha 2(IV) basement membrane collagen gene of Caenorhabditis elegans produce phenotypes of differing severities. EMBO J. 13, 3278–3285 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Verdura, E. et al. Disruption of a miR-29 binding site leading to COL4A1 upregulation causes pontine autosomal dominant microangiopathy with leukoencephalopathy. Ann. Neurol. 80, 741–753 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Yoneda, Y. et al. De novo and inherited mutations in COL4A2, encoding the type IV collagen ɑ2 chain cause porencephaly. Am. J. Hum. Genet. 90, 86–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Verbeek, E. et al. COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur. J. Hum. Genet. 20, 844–851 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gunda, B. et al. COL4A2 mutation causing adult onset recurrent intracerebral hemorrhage and leukoencephalopathy. J. Neurol. 261, 500–503 (2014).

    Article  PubMed  Google Scholar 

  69. Maurice, P. et al. Prevalence of COL4A1 and COL4A2 mutations in severe fetal multifocal hemorrhagic and/or ischemic cerebral lesions. Ultrasound Obstet. Gynecol. 57, 783–789 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Coste, T. et al. COL4A1/COL4A2 and inherited platelet disorder gene variants in fetuses showing intracranial hemorrhage. Prenat. Diagn. 42, 601–610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. George, E. et al. Spectrum of fetal intraparenchymal hemorrhage in COL4A1/A2-related disorders. Pediatr. Neurol. 147, 63–67 (2023).

    Article  PubMed  Google Scholar 

  72. Gubana, F. et al. Prenatal diagnosis of COL4A1 mutations in eight cases: further delineation of the neurohistopathological phenotype. Pediatr. Dev. Pathol. 25, 435–446 (2022).

    Article  PubMed  Google Scholar 

  73. Boyce, D., McGee, S., Shank, L., Pathak, S. & Gould, D. Epilepsy and related challenges in children with COL4A1 and COL4A2 mutations: a Gould syndrome patient registry. Epilepsy Behav. 125, 108365 (2021).

    Article  PubMed  Google Scholar 

  74. Fehlings, D. L. et al. Comprehensive whole-genome sequence analyses provide insights into the genomic architecture of cerebral palsy. Nat. Genet. 56, 585–594 (2024).

    Article  CAS  PubMed  Google Scholar 

  75. Corriveau, R. A. et al. The science of vascular contributions to cognitive impairment and dementia (VCID): a framework for advancing research priorities in the cerebrovascular biology of cognitive decline. Cell Mol. Neurobiol. 36, 281–288 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Goodman, R. A. et al. Prevalence of dementia subtypes in United States Medicare fee-for-service beneficiaries, 2011–2013. Alzheimers Dement. 13, 28–37 (2017).

    Article  PubMed  Google Scholar 

  78. Uemura, M., Tanaka, N., Ando, S., Yanagihara, T. & Onodera, O. Missense variants in COL4A1/2 are associated with cerebral aneurysms: a case report and literature review. Neurol. Int. 16, 226–238 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Aloui, C. et al. An AluYa5 insertion in the 3’UTR of COL4A1 and cerebral small vessel disease. JAMA Netw. Open. 7, e247034 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ruigrok, Y. M. et al. Evidence in favor of the contribution of genes involved in the maintenance of the extracellular matrix of the arterial wall to the development of intracranial aneurysms. Hum. Mol. Genet. 15, 3361–3368 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Livingston, J. et al. COL4A1 mutations associated with a characteristic pattern of intracranial calcification. Neuropediatrics 42, 227–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. O’Donnell, C. J. et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation 124, 2855–2864 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zheng, Q., Ma, Y., Chen, S., Che, Q. & Chen, D. The integrated landscape of biological candidate causal genes in coronary artery disease. Front. Genet. 11, 320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Adi, D. et al. Polymorphisms of COL4A1 gene are associated with arterial pulse wave velocity in healthy Han Chinese and Uygur subjects. Int. J. Clin. Exp. Med. 8, 2693–2701 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Tarasov, K. V. et al. COL4A1 is associated with arterial stiffness by genome-wide association scan. Circ. Cardiovasc. Genet. 2, 151–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rannikmae, K. et al. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology 84, 918–926 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ayrignac, X. et al. Adult-onset genetic leukoencephalopathies: a MRI pattern-based approach in a comprehensive study of 154 patients. Brain 138, 284–292 (2015).

    Article  PubMed  Google Scholar 

  88. Di Donato, I., Dotti, M. T. & Federico, A. Update on several/certain adult-onset genetic leukoencephalopathies: clinical signs and molecular confirmation. J. Alzheimers Dis. 42, S27–S35 (2014).

    Article  PubMed  Google Scholar 

  89. Traylor, M. et al. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke. Neurology 86, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lanfranconi, S. & Markus, H. S. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 41, e513–e518 (2010).

    Article  PubMed  Google Scholar 

  91. Persyn, E. et al. Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nat. Commun. 11, 2175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sargurupremraj, M. et al. Cerebral small vessel disease genomics and its implications across the lifespan. Nat. Commun. 11, 6285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Taylor-Bateman, V. et al. Cardiovascular risk factors and MRI markers of cerebral small vessel disease: a Mendelian randomization study. Neurology 98, e343–e351 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Jeanne, M., Jorgensen, J. & Gould, D. B. Molecular and genetic analyses of collagen type IV mutant mouse models of spontaneous intracerebral hemorrhage identify mechanisms for stroke prevention. Circulation 131, 1555–1565 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cozzitorto, C. et al. Evaluating neural crest cell migration in a Col4a1 mutant mouse model of ocular anterior segment dysgenesis. Cell Dev. 179, 203926 (2024).

    Article  CAS  Google Scholar 

  96. Ratelade, J. et al. Reducing hypermuscularization of the transitional segment between arterioles and capillaries protects against spontaneous intracerebral hemorrhage. Circulation 141, 2078–2094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Branyan, K. et al. Elevated TGFβ signaling contributes to cerebral small vessel disease in mouse models of Gould syndrome. Matrix Biol. 115, 48–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Yamasaki, E. et al. Impaired intracellular Ca2+ signaling contributes to age-related cerebral small vessel disease in Col4a1 mutant mice. Sci. Signal. 16, eadi3966 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yamasaki, E. et al. Faulty TRPM4 channels underlie age-dependent cerebral vascular dysfunction in Gould syndrome. Proc. Natl Acad. Sci. USA 120, e2217327120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Thakore, P. et al. PI3K block restores age-dependent neurovascular coupling defects associated with cerebral small vessel disease. Proc. Natl Acad. Sci. USA 120, e2306479120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gould, D. B., Marchant, J. K., Savinova, O. V., Smith, R. S. & John, S. W. Col4a1 mutation causes endoplasmic reticulum stress and genetically modifiable ocular dysgenesis. Hum. Mol. Genet. 16, 798–807 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Sibon, I. et al. COL4A1 mutation in Axenfeld–Rieger anomaly with leukoencephalopathy and stroke. Ann. Neurol. 62, 177–184 (2007).

    Article  PubMed  Google Scholar 

  103. Coupry, I. et al. Ophthalmological features associated with COL4A1 mutations. Arch. Ophthalmol. 128, 483–489 (2010).

    Article  PubMed  Google Scholar 

  104. Rodahl, E. et al. Variants of anterior segment dysgenesis and cerebral involvement in a large family with a novel COL4A1 mutation. Am. J. Ophthalmol. 155, 946–953 (2013).

    Article  PubMed  Google Scholar 

  105. Mao, M., Kiss, M., Ou, Y. & Gould, D. B. Genetic dissection of anterior segment dysgenesis caused by a Col4a1 mutation in mouse. Dis. Model. Mech. 10, 475–485 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Labelle-Dumais, C. et al. COL4A1 mutations cause ocular dysgenesis, neuronal localization defects, and myopathy in mice and Walker-Warburg syndrome in humans. PLoS Genet. 7, e1002062 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rannikmae, K. et al. Beyond the brain: systematic review of extracerebral phenotypes associated with monogenic cerebral small vessel disease. Stroke 51, 3007–3017 (2020).

    Article  PubMed  Google Scholar 

  108. Ma, A. et al. Revealing hidden genetic diagnoses in the ocular anterior segment disorders. Genet. Med. 22, 1623–1632 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gould, D. B., Smith, R. S. & John, S. W. Anterior segment development relevant to glaucoma. Int. J. Dev. Biol. 48, 1015–1029 (2004).

    Article  PubMed  Google Scholar 

  110. Gould, D. B. & John, S. W. Anterior segment dysgenesis and the developmental glaucomas are complex traits. Hum. Mol. Genet. 11, 1185–1193 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Kupfer, C. & Kaiser-Kupfer, M. I. New hypothesis of developmental anomalies of the anterior chamber associated with glaucoma. Trans. Ophthalmol. Soc. U K. 98, 213–215 (1978).

    CAS  PubMed  Google Scholar 

  112. Kupfer, C. & Kaiser-Kupfer, M. I. Observations on the development of the anterior chamber angle with reference to the pathogenesis of congenital glaucomas. Am. J. Ophthalmol. 88, 424–426 (1979).

    Article  CAS  PubMed  Google Scholar 

  113. Noden, D. M. An analysis of migratory behavior of avian cephalic neural crest cells. Dev. Biol. 42, 106–130 (1975).

    Article  CAS  PubMed  Google Scholar 

  114. Trainor, P. A. & Tam, P. P. Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121, 2569–2582 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Mao, M., Labelle-Dumais, C., Tufa, S. F., Keene, D. R. & Gould, D. B. Elevated TGFβ signaling contributes to ocular anterior segment dysgenesis in Col4a1 mutant mice. Matrix Biol. 110, 151–173 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mao, M. et al. TGFβ signaling dysregulation may contribute to COL4A1-related glaucomatous optic nerve damage. Invest. Ophthalmol. Vis. Sci. 65, 15 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Plaisier, E. et al. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N. Engl. J. Med. 357, 2687–2695 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Guiraud, S. et al. HANAC Col4a1 mutation in mice leads to skeletal muscle alterations due to a primary vascular defect. Am. J. Pathol. 187, 505–516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fox, M. A. et al. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129, 179–193 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Kuo, D. S. et al. Allelic heterogeneity contributes to variability in ocular dysgenesis, myopathy and brain malformations caused by Col4a1 and Col4a2 mutations. Hum. Mol. Genet. 23, 1709–1722 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Kelemen-Valkony, I. et al. Drosophila basement membrane collagen col4a1 mutations cause severe myopathy. Matrix Biol. 31, 29–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Kiss, A. A. et al. Type IV collagen is essential for proper function of integrin-mediated adhesion in Drosophila muscle fibers. Int. J. Mol. Sci. 20, 5124 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lv, J. C. & Zhang, L. X. Prevalence and disease burden of chronic kidney disease. Adv. Exp. Med. Biol. 1165, 3–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Canadas-Garre, M. et al. Genetic susceptibility to chronic kidney disease — some more pieces for the heritability puzzle. Front. Genet. 10, 453 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Plaisier, E. et al. Novel COL4A1 mutations associated with HANAC syndrome: a role for the triple helical CB3[IV] domain. Am. J. Med. Genet. A 152A, 2550–2555 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Meuwissen, M. E. et al. Sporadic COL4A1 mutations with extensive prenatal porencephaly resembling hydranencephaly. Neurology 76, 844–846 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Gale, D. P. et al. A novel COL4A1 frameshift mutation in familial kidney disease: the importance of the C-terminal NC1 domain of type IV collagen. Nephrol. Dial. Transpl. 31, 1908–1914 (2016).

    Article  CAS  Google Scholar 

  128. Cornec-Le Gall, E. et al. The value of genetic testing in polycystic kidney diseases illustrated by a family with PKD2 and COL4A1 mutations. Am. J. Kidney Dis. 72, 302–308 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Mao, M. et al. Strain-dependent anterior segment dysgenesis and progression to glaucoma in Col4a1 mutant mice. Invest. Ophthalmol. Vis. Sci. 56, 6823–6831 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mao, M. et al. Identification of fibronectin 1 as a candidate genetic modifier in a Col4a1 mutant mouse model of Gould syndrome. Dis. Model. Mech. 14, dmm048231 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jeanne, M. et al. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am. J. Hum. Genet. 90, 91–101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jones, F. E. et al. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice. Dis. Model. Mech. 9, 165–176 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jones, F. E. et al. 4-Sodium phenyl butyric acid has both efficacy and counter-indicative effects in the treatment of Col4a1 disease. Hum. Mol. Genet. 28, 628–638 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Hudson, B. G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E. G. Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N. Engl. J. Med. 348, 2543–2556 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Barker, D. F. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248, 1224–1227 (1990).

    Article  CAS  PubMed  Google Scholar 

  136. Alport, A. C. Hereditary familial congenital haemorrhagic nephritis. Br. Med. J. 1, 504–506 (1927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Spear, G. S. Pathology of the kidney in Alport’s syndrome. Pathol. Annu. 9, 93–138 (1974).

    CAS  PubMed  Google Scholar 

  138. Williamson, D. A. Alport’s syndrome of hereditary nephritis with deafness. Lancet 2, 1321–1323 (1961).

    Article  CAS  PubMed  Google Scholar 

  139. Grunfeld, J. P. Contemporary diagnostic approach in Alport’s syndrome. Ren. Fail. 22, 759–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Kashtan, C. E. Familial hematuric syndromes — Alport syndrome, thin glomerular basement membrane disease and Fechtner/Epstein syndromes. Contrib. Nephrol. 79–99 (2001).

  141. Daga, S. et al. The 2019 and 2021 international workshops on Alport syndrome. Eur. J. Hum. Genet. 30, 507–516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gibson, J. et al. Prevalence estimates of predicted pathogenic COL4A3–COL4A5 variants in a population sequencing database and their implications for Alport syndrome. J. Am. Soc. Nephrol. 32, 2273–2290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Malone, A. F. et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 86, 1253–1259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Voskarides, K. et al. COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J. Amer. Soc. Nephrol. 18, 3004–3016 (2007).

    Article  CAS  Google Scholar 

  145. Furlano, M. et al. Clinical and genetic features of autosomal dominant Alport syndrome: a cohort study. Am. J. Kidney Dis. 78, 560–570.e561 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Matthaiou, A., Poulli, T. & Deltas, C. Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: a systematic review. Clin. Kidney J. 13, 1025–1036 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tryggvason, K. Complex genetics of Alport and Goodpasture syndromes. Nat. Rev. Nephrol. 17, 635–636 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Savige, J., Huang, M., Croos Dabrera, M. S., Shukla, K. & Gibson, J. Genotype-phenotype correlations for pathogenic COL4A3–COL4A5 variants in X-linked, autosomal recessive, and autosomal dominant Alport syndrome. Front. Med. 9, 865034 (2022).

    Article  Google Scholar 

  149. Pieri, M. et al. Evidence for activation of the unfolded protein response in collagen IV nephropathies. J. Am. Soc. Nephrol. 25, 260–275 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Wang, D. et al. The chemical chaperone, PBA, reduces ER stress and autophagy and increases collagen IV ɑ5 expression in cultured fibroblasts from men with X-linked Alport syndrome and missense mutations. Kidney Int. Rep. 2, 739–748 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Wickman, L. et al. Podocyte depletion in thin GBM and Alport syndrome. PLoS ONE 11, e0155255 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Yamamura, T. et al. Genotype-phenotype correlations influence the response to angiotensin-targeting drugs in Japanese patients with male X-linked Alport syndrome. Kidney Int. 98, 1605–1614 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Said, S. M. et al. Negative staining for COL4A5 correlates with worse prognosis and more severe ultrastructural alterations in males with Alport syndrome. Kidney Int. Rep. 2, 44–52 (2017).

    Article  PubMed  Google Scholar 

  154. Solanki, K. V. et al. The phenotypic spectrum of COL4A3 heterozygotes. Kidney Int. Rep. 8, 2088–2099 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Pierides, A. et al. Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/ COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney disease from focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 24, 2721–2729 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Savige, J. & Harraka, P. Pathogenic variants in the genes affected in Alport syndrome (COL4A3COL4A5) and their association with other kidney conditions: a review. Am. J. Kidney Dis. 78, 857–864 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Pagniez, M. S. et al. Challenging the narrative of Alport syndrome spectrum: no link with cystic phenotype. Nephrol. Dial. Transplant. 40, 1408–1415 (2025).

    Article  PubMed  Google Scholar 

  158. Dufek, B. et al. Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease. Kidney Int. 90, 300–310 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Clark, S. D., Nabity, M. B., Cianciolo, R. E., Dufek, B. & Cosgrove, D. X-linked Alport dogs demonstrate mesangial filopodial invasion of the capillary tuft as an early event in glomerular damage. PLoS ONE 11, e0168343 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Randles, M. J. et al. Three-dimensional electron microscopy reveals the evolution of glomerular barrier injury. Sci. Rep. 6, 35068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cosgrove, D. et al. Integrin ɑ1β1 and transforming growth factor-β1 play distinct roles in Alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am. J. Pathol. 157, 1649–1659 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rubel, D. et al. Collagen receptors integrin alpha2beta1 and discoidin domain receptor 1 regulate maturation of the glomerular basement membrane and loss of integrin alpha2beta1 delays kidney fibrosis in COL4A3 knockout mice. Matrix Biol. 34, 13–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Quinlan, C. & Rheault, M. N. Genetic basis of type IV collagen disorders of the kidney. Clin. J. Am. Soc. Nephrol. 16, 1101–1109 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gunwar, S. et al. Glomerular basement membrane. Identification of a novel disulfide-cross- linked network of ɑ3, ɑ4, and ɑ5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J. Biol. Chem. 273, 8767–8775 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Kalluri, R., Gattone, V. H. 2nd & Hudson, B. G. Identification and localization of type IV collagen chains in the inner ear cochlea. Connect. Tissue Res. 37, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. Cosgrove, D. et al. Ultrastructural, physiological, and molecular defects in the inner ear of a gene-knockout mouse model for autosomal Alport syndrome. Hear. Res. 121, 84–98 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Chavez, E., Goncalves, S., Rheault, M. N. & Fornoni, A. Alport syndrome. Adv. Kidney Dis. Health 31, 170–179 (2024).

    Article  PubMed  Google Scholar 

  168. Ungar, O. J., Nadol, J. B. & Santos, F. Temporal bone histopathology of X-linked inherited Alport syndrome. Laryngoscope Investig. Otolaryngol. 3, 311–314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Merchant, S. N. et al. Temporal bone histopathology in Alport syndrome. Laryngoscope 114, 1609–1618 (2004).

    Article  PubMed  Google Scholar 

  170. Jais, J. P. et al. X-linked Alport syndrome: natural history in 195 families and genotype- phenotype correlations in males. J. Am. Soc. Nephrol. 11, 649–657 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Jais, J. P. et al. X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a “European Community Alport Syndrome Concerted Action” study. J. Am. Soc. Nephrol. 14, 2603–2610 (2003).

    Article  PubMed  Google Scholar 

  172. Bai, X., Dilworth, D. J., Weng, Y. C. & Gould, D. B. Developmental distribution of collagen IV isoforms and relevance to ocular diseases. Matrix Biol. 28, 194–201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Savige, J. et al. Ocular features in Alport syndrome: pathogenesis and clinical significance. Clin. J. Am. Soc. Nephrol. 10, 703–709 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Nozu, K. et al. Characterization of contiguous gene deletions in COL4A6 and COL4A5 in Alport syndrome — diffuse leiomyomatosis. J. Hum. Genet. 62, 733–735 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Zhou, J. et al. Deletion of the paired ɑ5(IV) and ɑ6(IV) collagen genes in inherited smooth muscle tumors. Science 261, 1167–1169 (1993).

    Article  CAS  PubMed  Google Scholar 

  176. Rost, S. et al. Novel form of X-linked nonsyndromic hearing loss with cochlear malformation caused by a mutation in the type IV collagen gene COL4A6. Eur. J. Hum. Genet. 22, 208–215 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. O’Brien, A. et al. Confirmation of COL4A6 variants in X-linked nonsyndromic hearing loss and its clinical implications. Eur. J. Hum. Genet. 30, 7–12 (2022).

    Article  PubMed  Google Scholar 

  178. Tang, S. et al. Lack of collagen ɑ6(IV) chain in mice does not cause severe-to-profound hearing loss or cochlear malformation, a distinct phenotype from nonsyndromic hearing loss with COL4A6 missense mutation. PLoS ONE 16, e0249909 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Meehan, D. T. et al. Endothelin-1 mediated induction of extracellular matrix genes in strial marginal cells underlies strial pathology in Alport mice. Hear. Res. 341, 100–108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mancuso, M. et al. Monogenic cerebral small-vessel diseases: diagnosis and therapy. Consensus recommendations of the European Academy of Neurology. Eur. J. Neurol. 27, 909–927 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Tambala, D. et al. COL4A1 and COL4A2-related disorders – clinical features, diagnostic guidelines, and management. Genet. Med. (in the press).

  182. Savige, J. et al. Guidelines for genetic testing and management of Alport syndrome. Clin. J. Am. Soc. Nephrol. 17, 143–154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gross, O. et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 81, 494–501 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Gross, O. et al. A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport’s syndrome. Kidney Int. 97, 1275–1286 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Kashtan, C. E. & Gross, O. Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults — an update for 2020. Pediatr. Nephrol. 36, 711–719 (2021).

    Article  PubMed  Google Scholar 

  186. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04573920 (2025).

  187. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05003986 (2025).

  188. Cosgrove, D. et al. Dual inhibition of the endothelin and angiotensin receptor ameliorates renal and inner ear pathologies in Alport mice. J. Pathol. 260, 353–364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tuttle, K. R. et al. SGLT2 inhibition for CKD and cardiovascular disease in type 2 diabetes: report of a scientific workshop sponsored by the National Kidney Foundation. Am. J. Kidney Dis. 77, 94–109 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Chertow, G. M. et al. Effects of dapagliflozin in chronic kidney disease, with and without other cardiovascular medications: DAPA-CKD trial. J. Am. Heart Assoc. 12, e028739 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Gross, O. et al. Protocol and rationale for a randomized controlled SGLT2 inhibitor trial in paediatric and young adult populations with chronic kidney disease: DOUBLE PRO-TECT Alport. Nephrol. Dial. Transplant. 40, 679–687 (2025).

    Article  PubMed  Google Scholar 

  193. Zhu, Z. et al. Finerenone added to RAS/SGLT2 blockade for CKD in Alport syndrome. results of a randomized controlled trial with Col4a3−/− mice. J. Am. Soc. Nephrol. 34, 1513–1520 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Lin, X., Suh, J. H., Go, G. & Miner, J. H. Feasibility of repairing glomerular basement membrane defects in Alport syndrome. J. Am. Soc. Nephrol. 25, 687–692 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04774536 (2024).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04426669 (2025).

  197. Daga, S. et al. New frontiers to cure Alport syndrome: COL4A3 and COL4A5 gene editing in podocyte-lineage cells. Eur. J. Hum. Genet. 28, 480–490 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Funk, S. D., Bayer, R. H. & Miner, J. H. Endothelial cell-specific collagen type IV-ɑ3 expression does not rescue Alport syndrome in Col4a3−/− mice. Am. J. Physiol. Renal Physiol. 316, F830–F837 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Caruso, S. M., Quinn, P. M., da Costa, B. L. & Tsang, S. H. CRISPR/Cas therapeutic strategies for autosomal dominant disorders. J. Clin. Invest. 132, e158287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yamamura, T. et al. Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nat. Commun. 11, 2777 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hayashi, G., Labelle-Dumais, C. & Gould, D. B. Use of sodium 4-phenylbutyrate to define therapeutic parameters for reducing intracerebral hemorrhage and myopathy in Col4a1 mutant mice. Dis. Model. Mech. 11, dmm034157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Weng, Y. C. et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann. Neurol. 71, 470–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  204. Elborn, J. S. et al. Efficacy and safety of lumacaftor/ivacaftor combination therapy in patients with cystic fibrosis homozygous for Phe508del CFTR by pulmonary function subgroup: a pooled analysis. Lancet Respir. Med. 4, 617–626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Germain, D. P. et al. Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N. Engl. J. Med. 375, 545–555 (2016).

    Article  CAS  PubMed  Google Scholar 

  206. Yu, S. et al. Tauroursodeoxycholic acid ameliorates renal injury induced by COL4A3 mutation. Kidney Int. 106, 433–449 (2024).

    Article  CAS  PubMed  Google Scholar 

  207. Wang, X., Harris, R. E., Bayston, L. J. & Ashe, H. L. Type IV collagens regulate BMP signalling in Drosophila. Nature 455, 72–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Paralkar, V. M., Vukicevic, S. & Reddi, A. H. Transforming growth factor β type 1 binds to collagen IV of basement membrane matrix: implications for development. Dev. Biol. 143, 303–308 (1991).

    Article  CAS  PubMed  Google Scholar 

  209. Ma, M., Cao, X., Dai, J. & Pastor-Pareja, J. C. Basement membrane manipulation in Drosophila wing discs affects Dpp retention but not growth mechanoregulation. Dev. Cell 42, 97–106.e104 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Bunt, S. et al. Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev. Cell 19, 296–306 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E. & Border, W. A. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc. Natl Acad. Sci. USA 90, 1814–1818 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yoshioka, K. et al. Transforming growth factor-beta protein and mRNA in glomeruli in normal and diseased human kidneys. Lab. Invest. 68, 154–163 (1993).

    CAS  PubMed  Google Scholar 

  213. Sato, M., Muragaki, Y., Saika, S., Roberts, A. B. & Ooshima, A. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 112, 1486–1494 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Moon, J. A., Kim, H. T., Cho, I. S., Sheen, Y. Y. & Kim, D. K. IN-1130, a novel transforming growth factor-beta type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int. 70, 1234–1243 (2006).

    Article  CAS  PubMed  Google Scholar 

  215. Williams, M. J. et al. The activin receptor is stimulated in the skeleton, vasculature, heart, and kidney during chronic kidney disease. Kidney Int. 93, 147–158 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Puapatanakul, P. & Miner, J. H. Alport syndrome and Alport kidney diseases — elucidating the disease spectrum. Curr. Opin. Nephrol. Hypertens. 33, 283–290 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05267262 (2025).

  218. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05448755 (2022).

  219. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06226896 (2024).

  220. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06274489 (2025).

  221. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06425055 (2025).

Download references

Acknowledgements

J.H.M. acknowledges funding from the NIH (R01DK128660, U54DK137332), the Alport Syndrome Foundation and Kidney Research UK under a contract from the University of Manchester. D.B.G. acknowledges funding from the NIH (R33NS115132, RF1NS128217, R21NS133610, R21DK140866). The UCSF Department of Ophthalmology is supported by a Core Grant from the National Eye Institute (P30EY002162) and an unrestricted grant from Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to writing the article, and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Jeffrey H. Miner or Douglas B. Gould.

Ethics declarations

Competing interests

J.H.M. is a member of the Alport Syndrome Foundation’s Scientific Advisory Research Network, has ownership interest in Sintra Therapeutics and has consultancy relationships with Eloxx Pharmaceuticals, Sintra Therapeutics and Bayer AG. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Daniel Gale, Rachel Lennon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Porencephaly

A cerebrovascular condition characterized by the presence of cystic cavities, which are caused by destructive vascular lesions in the germinal matrix.

Schizencephaly

A rare congenital cerebral condition characterized by unilateral or bilateral abnormal clefts or splits of the cerebral hemispheres.

Stria vascularis

A capillary loop within the cochlea that produces endolymph for the scala media, one of the three fluid-filled compartments of the cochlea.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massoudi, D., Miner, J.H. & Gould, D.B. Collagen IV in Gould syndrome and Alport syndrome. Nat Rev Nephrol (2025). https://doi.org/10.1038/s41581-025-00982-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-025-00982-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing