Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The kidney stroma in development and disease

Abstract

The kidney is one of the most complex organs in the body. It is made up of thousands of patterned epithelial and endothelial tubules that work together to maintain body chemistry. Precise spatial integration of these different cell types is essential for the organ to function optimally. A complex and heterogeneous network of cells collectively referred to as ‘stroma’ lies between the epithelial and endothelial tubules. A growing body of evidence suggests that the stroma mediates communication between the epithelia and endothelia, and functions to support a variety of processes during kidney development and in the adult kidney, with implications for disease. However, stromal cells remain far less well defined than the epithelia and endothelia, and we understand only a fraction of their functions, leading some to refer to the stroma as the ‘dark matter’ of the kidney. In this Review, we discuss the developmental origins of the stroma and describe current understanding of its roles in the growth and patterning of the renal epithelia and endothelia, and in the maintenance and repair of the adult organ. Finally, we highlight critical questions that remain unanswered and the resources that will be required to answer them so that we can fully understand the function of these enigmatic cells.

Key points

  • The kidney stroma is a heterogeneous population of vascular mural cells, fibroblasts, smooth muscle and leukocytes that arise from at least three unique cellular lineages.

  • The different stromal cell types produce a wide array a signalling proteins, small molecules and metabolites, extracellular matrix and hormones that create regional microenvironments in the kidney.

  • Studies using genetic mouse models and kidney organoids have revealed essential roles for the stroma in the development of nephrons and the vasculature.

  • Growing evidence indicates that the stroma of the adult organ is as diverse as that of the embryo, suggesting that it might have essential roles in tissue maintenance, repair and disease progression.

  • The development of new tools is expected to uncover additional roles for the stroma in both the embryonic and adult organ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stromal cells along the cortical–medullary axis of the kidney.
Fig. 2: Lineage tracing of stromal progenitors.
Fig. 3: Signalling from the stroma during ureteric bud induction and branching morphogenesis.
Fig. 4: Signals from the stroma induce mesenchymal-to-epithelial transition in a subset of nephron progenitor cells.
Fig. 5: Vascular patterning is regulated by stromal PBX1 and NTN1 signalling.
Fig. 6: Regulation of nephrogenesis by FGF and WNT.
Fig. 7: Stromal populations during embryonic development.

Similar content being viewed by others

References

  1. Webster, A. C. et al. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

    Article  Google Scholar 

  2. Yamashita, N. & Kramann, R. Mechanisms of kidney fibrosis and routes towards therapy. Trends Endocrinol. Metab. 35, 31–48 (2024).

    Article  CAS  Google Scholar 

  3. Leggatt, G. P. et al. A role for genetic modifiers in tubulointerstitial kidney diseases. Genes 14, 1582 (2023).

    Article  CAS  Google Scholar 

  4. Plikus, M. V. et al. Fibroblasts: origins, definitions, and functions in health and disease. Cell 184, 3852–3872 (2021).

    Article  CAS  Google Scholar 

  5. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  Google Scholar 

  6. Buechler, M. B. & Turley, S. J. A short field guide to fibroblast function in immunity. Semin. Immunol. 35, 48–58 (2018).

    Article  CAS  Google Scholar 

  7. Kaissling, B. & Le Hir, M. The renal cortical interstitium: morphological and functional aspects. Histochem. Cell Biol. 130, 247–262 (2008).

    Article  CAS  Google Scholar 

  8. Qi, W. et al. The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int. J. Biochem. Cell Biol. 38, 1–5 (2006).

    Article  CAS  Google Scholar 

  9. Lemley, K. V. & Kriz, W. Anatomy of the renal interstitium. Kidney Int. 39, 370–381 (1991).

    Article  CAS  Google Scholar 

  10. Kobayashi, H. et al. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J. Clin. Invest. 126, 1926–1938 (2016).

    Article  Google Scholar 

  11. Maxwell, P. H. et al. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int. 44, 1149–1162 (1993).

    Article  CAS  Google Scholar 

  12. Plotkin, M. D. & Goligorsky, M. S. Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts. Am. J. Physiol. Ren. Physiol. 291, F902–F912 (2006).

    Article  CAS  Google Scholar 

  13. Bachmann, S., Le Hir, M. & Eckardt, K. U. Co-localization of erythropoietin mRNA and ecto-5′-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J. Histochem. Cytochem. 41, 335–341 (1993).

    Article  CAS  Google Scholar 

  14. Yamazaki, S. et al. A mouse model of adult-onset anaemia due to erythropoietin deficiency. Nat. Commun. 4, 1950 (2013).

    Article  Google Scholar 

  15. Kaneko, K. et al. Lineage tracing analysis defines erythropoietin-producing cells as a distinct subpopulation of resident fibroblasts with unique behaviors. Kidney Int. 102, 280–292 (2022).

    Article  CAS  Google Scholar 

  16. Kragesteen, B. K. et al. The transcriptional and regulatory identity of erythropoietin producing cells. Nat. Med. 29, 1191–1200 (2023).

    Article  CAS  Google Scholar 

  17. Li, H. et al. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 34, 1977–1998.e9 (2022).

    Article  CAS  Google Scholar 

  18. Rudman-Melnick, V. et al. Single-cell sequencing dissects the transcriptional identity of activated fibroblasts and identifies novel persistent distal tubular injury patterns in kidney fibrosis. Sci. Rep. 14, 439 (2024).

    Article  CAS  Google Scholar 

  19. Barwinska, D. et al. Molecular characterization of the human kidney interstitium in health and disease. Sci. Adv. 7, eabd3359 (2021).

    Article  CAS  Google Scholar 

  20. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  CAS  Google Scholar 

  21. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  Google Scholar 

  22. Sims, D. E. The pericyte — a review. Tissue Cell 18, 153–174 (1986).

    Article  CAS  Google Scholar 

  23. Schiller, B. & Moran, J. Experimental glomerulosclerosis: Defektheilung of the kidney. Artif. Organs 20, 445–450 (1996).

    Article  CAS  Google Scholar 

  24. Yosypiv, I. V. Renin-angiotensin system in mammalian kidney development. Pediatr. Nephrol. 36, 479–489 (2021).

    Article  Google Scholar 

  25. Yamaguchi, H., Gomez, R. A. & Sequeira-Lopez, M. L. S. Renin cells, from vascular development to blood pressure sensing. Hypertension 80, 1580–1589 (2023).

    Article  CAS  Google Scholar 

  26. Hurtado, R., Bub, G. & Herzlinger, D. The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int. 77, 500–508 (2010).

    Article  CAS  Google Scholar 

  27. Mulţescu, R., Georgescu, D., Geavlete, A., Geavlete, B. in Retrograde Ureteroscopy Ch. 2 (ed. Geavlete, A.) 7–19 (Academic Press. 2016).

  28. Kitching, A. R. & Hickey, M. J. Immune cell behaviour and dynamics in the kidney — insights from in vivo imaging. Nat. Rev. Nephrol. 18, 22–37 (2022).

    Article  Google Scholar 

  29. Kurts, C., Ginhoux, F. & Panzer, U. Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat. Rev. Nephrol. 16, 391–407 (2020).

    Article  Google Scholar 

  30. Zimmerman, K. A. et al. Single-cell RNA sequencing identifies candidate renal resident macrophage gene expression signatures across species. J. Am. Soc. Nephrol. 30, 767–781 (2019).

    Article  CAS  Google Scholar 

  31. Zimmerman, K. A. et al. Kidney resident macrophages in the rat have minimal turnover and replacement by blood monocytes. Am. J. Physiol. Ren. Physiol. 321, F162–F169 (2021).

    Article  CAS  Google Scholar 

  32. Chew, C. et al. Kidney resident macrophages have distinct subsets and multifunctional roles. Matrix Biol. 127, 23–37 (2024).

    Article  CAS  Google Scholar 

  33. Ide, S. et al. Yolk-sac-derived macrophages progressively expand in the mouse kidney with age. Elife 9, e51756 (2020).

    Article  CAS  Google Scholar 

  34. Puranik, A. S. et al. Kidney-resident macrophages promote a proangiogenic environment in the normal and chronically ischemic mouse kidney. Sci. Rep. 8, 13948 (2018).

    Article  Google Scholar 

  35. Zimmerman, K. A. et al. Tissue-resident macrophages promote renal cystic disease. J. Am. Soc. Nephrol. 30, 1841–1856 (2019).

    Article  CAS  Google Scholar 

  36. Lever, J. M. et al. Resident macrophages reprogram toward a developmental state after acute kidney injury. JCI Insight 4, e125503 (2019).

    Article  Google Scholar 

  37. Garcia-Estan, J. & Roman, R. J. Role of renal interstitial hydrostatic pressure in the pressure diuresis response. Am. J. Physiol. 256, F63–F70 (1989).

    CAS  Google Scholar 

  38. Park, H. C. et al. Renal capsule as a stem cell niche. Am. J. Physiol. Ren. Physiol. 298, F1254–F1262 (2010).

    Article  CAS  Google Scholar 

  39. Korin, B. et al. The renal capsule: a vibrant and adaptive cell environment of the kidney in homeostasis and aging. Preprint at bioRxiv https://doi.org/10.1101/2023.05.11.540033 (2023).

  40. Michailova, K., Wassilev, W. & Wedel, T. Scanning and transmission electron microscopic study of visceral and parietal peritoneal regions in the rat. Ann. Anat. 181, 253–260 (1999).

    Article  CAS  Google Scholar 

  41. Dick, S. A. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 7, eabf7777 (2022).

    Article  CAS  Google Scholar 

  42. Albertine, K. H. & O’Morchoe, C. C. Distribution and density of the canine renal cortical lymphatic system. Kidney Int. 16, 470–480 (1979).

    Article  CAS  Google Scholar 

  43. Lee, H. W. et al. Expression of lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing mouse kidney. Cell Tissue Res. 343, 429–444 (2011).

    Article  CAS  Google Scholar 

  44. Kobayashi, A. et al. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep. 3, 650–662 (2014).

    Article  CAS  Google Scholar 

  45. Leuning, D. G. et al. The human kidney capsule contains a functionally distinct mesenchymal stromal cell population. PLoS ONE 12, e0187118 (2017).

    Article  Google Scholar 

  46. Levinson, R. S. et al. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 132, 529–539 (2005).

    Article  CAS  Google Scholar 

  47. Yallowitz, A. R. et al. Hox10 genes function in kidney development in the differentiation and integration of the cortical stroma. PLoS ONE 6, e23410 (2011).

    Article  CAS  Google Scholar 

  48. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    Article  CAS  Google Scholar 

  49. Mugford, J. W. et al. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev. Biol. 324, 88–98 (2008).

    Article  CAS  Google Scholar 

  50. James, R. G. et al. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133, 2995–3004 (2006).

    Article  CAS  Google Scholar 

  51. Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    Article  CAS  Google Scholar 

  52. Guillaume, R., Bressan, M. & Herzlinger, D. Paraxial mesoderm contributes stromal cells to the developing kidney. Dev. Biol. 329, 169–175 (2009).

    Article  CAS  Google Scholar 

  53. Wilson, S. B. & Little, M. H. The origin and role of the renal stroma. Development 148, dev199886 (2021).

    Article  CAS  Google Scholar 

  54. Bohnenpoll, T. et al. Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev. Biol. 380, 25–36 (2013).

    Article  CAS  Google Scholar 

  55. Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, 698–707 (2016).

    Article  Google Scholar 

  56. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  Google Scholar 

  57. Stamatiades, E. G. et al. Immune monitoring of trans-endothelial transport by kidney-resident macrophages. Cell 166, 991–1003 (2016).

    Article  CAS  Google Scholar 

  58. Saxen, L. Organogenesis of the Kidney (Cambridge Univ. Press, 1987). [Series Eds Barlow, P. W., Green, P. B. & Wylie, C. C. Developmental and Cell Biology Series].

  59. Packard, A., Klein, W. H. & Costantini, F. Ret signaling in ureteric bud epithelial cells controls cell movements, cell clustering and bud formation. Development 148, dev199386 (2021).

    Article  CAS  Google Scholar 

  60. Riccio, P. et al. Ret and Etv4 promote directed movements of progenitor cells during renal branching morphogenesis. PLoS Biol. 14, e1002382 (2016).

    Article  Google Scholar 

  61. Shakya, R., Watanabe, T. & Costantini, F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev. Cell 8, 65–74 (2005).

    Article  CAS  Google Scholar 

  62. Basson, M. A. et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev. Cell 8, 229–239 (2005).

    Article  CAS  Google Scholar 

  63. Michos, O. et al. Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet. 6, e1000809 (2010).

    Article  Google Scholar 

  64. Batourina, E. et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat. Genet. 27, 74–78 (2001).

    Article  CAS  Google Scholar 

  65. Mendelsohn, C. et al. Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126, 1139–1148 (1999).

    Article  CAS  Google Scholar 

  66. Rosselot, C. et al. Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137, 283–292 (2010).

    Article  CAS  Google Scholar 

  67. Niederreither, K. et al. Embryonic retinoic acid synthesis is required for forelimb growth and anteroposterior patterning in the mouse. Development 129, 3563–3574 (2002).

    Article  CAS  Google Scholar 

  68. Duester, G. Retinoic acid synthesis and signaling during early organogenesis. Cell 134, 921–931 (2008).

    Article  CAS  Google Scholar 

  69. Schuchardt, A. et al. Renal agenesis and hypodysplasia in ret-k mutant mice result from defects in ureteric bud development. Development 122, 1919–1929 (1996).

    Article  CAS  Google Scholar 

  70. Hatini, V. et al. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of winged helix transcription factor BF-2. Genes. Dev. 10, 1467–1478 (1996).

    Article  CAS  Google Scholar 

  71. Song, R., Lopez, M. & Yosypiv, I. V. Foxd1 is an upstream regulator of the renin–angiotensin system during metanephric kidney development. Pediatr. Res. 82, 855–862 (2017).

    Article  CAS  Google Scholar 

  72. Iosipiv, I. V. & Schroeder, M. A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am. J. Physiol. Ren. Physiol. 285, F199–F207 (2003).

    Article  CAS  Google Scholar 

  73. Gribouval, O. et al. Mutations in genes in the renin–angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet. 37, 964–968 (2005).

    Article  CAS  Google Scholar 

  74. Knott, P. D., Thorpe, S. S. & Lamont, C. A. Congenital renal dysgenesis possibly due to captopril. Lancet 1, 451 (1989).

    Article  CAS  Google Scholar 

  75. Sequeira-Lopez, M. L. et al. Vascular versus tubular renin: role in kidney development. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R650–R657 (2015).

    Article  CAS  Google Scholar 

  76. Takahashi, N. et al. Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J. Am. Soc. Nephrol. 16, 125–132 (2005).

    Article  Google Scholar 

  77. Yosypiv, I. V. et al. Stromal prorenin receptor is critical for normal kidney development. Am. J. Physiol. Regul. Integr. Comp. Physiol. 316, R640–R650 (2019).

    Article  CAS  Google Scholar 

  78. Song, R. et al. Deletion of the prorenin receptor from the ureteric bud causes renal hypodysplasia. PLoS ONE 8, e63835 (2013).

    Article  CAS  Google Scholar 

  79. Miyazaki, Y. et al. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J. Clin. Invest. 105, 863–873 (2000).

    Article  CAS  Google Scholar 

  80. Miyazaki, Y. et al. Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int. 63, 835–844 (2003).

    Article  CAS  Google Scholar 

  81. Brenner-Anantharam, A. et al. Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development 134, 1967–1975 (2007).

    Article  CAS  Google Scholar 

  82. Das, A. et al. Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat. Cell Biol. 15, 1035–1044 (2013).

    Article  CAS  Google Scholar 

  83. Carroll, T. J. et al. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9, 283–292 (2005).

    Article  CAS  Google Scholar 

  84. Mao, Y., Francis-West & Irvine, K. D. Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 142, 2574–2585 (2015).

    CAS  Google Scholar 

  85. Bagherie-Lachidan, M. et al. Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool. Development 142, 2564–2573 (2015).

    CAS  Google Scholar 

  86. Drake, K. A. et al. Transcription factors YAP/TAZ and SRF cooperate to specify renal myofibroblasts in the developing mouse kidney. J. Am. Soc. Nephrol. 33, 1694–1707 (2022).

    Article  CAS  Google Scholar 

  87. Reginensi, A. et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 9, e1003380 (2013).

    Article  CAS  Google Scholar 

  88. Brown, A. C. et al. Role for compartmentalization in nephron progenitor differentiation. Proc. Natl Acad. Sci. USA 110, 4640–4645 (2013).

    Article  CAS  Google Scholar 

  89. Fetting, J. L. et al. FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney. Development 141, 17–27 (2014).

    Article  CAS  Google Scholar 

  90. Karner, C. M. et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138, 1247–1257 (2011).

    Article  CAS  Google Scholar 

  91. Kumar, S. et al. ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis. JCI Insight 8, e158418 (2023).

    Article  Google Scholar 

  92. Sato, M. et al. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 112, 1486–1494 (2003).

    Article  CAS  Google Scholar 

  93. Kao, R. M. et al. Invasion of distal nephron precursors associates with tubular interconnection during nephrogenesis. J. Am. Soc. Nephrol. 23, 1682–1690 (2012).

    Article  CAS  Google Scholar 

  94. Lopez-Garcia, I. et al. Epithelial tubule interconnection driven by HGF-Met signaling in the kidney. Proc. Natl Acad. Sci. USA 121, e2416887121 (2024).

    Article  CAS  Google Scholar 

  95. Lindstrom, N. O. et al. Spatial transcriptional mapping of the human nephrogenic program. Dev. Cell 56, 2381–2398.e6 (2021).

    Article  CAS  Google Scholar 

  96. Kopan, R., Cheng, H. T. & Surendran, K. Molecular insights into segmentation along the proximal–distal axis of the nephron. J. Am. Soc. Nephrol. 18, 2014–2020 (2007).

    Article  CAS  Google Scholar 

  97. Georgas, K. et al. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev. Biol. 332, 273–286 (2009).

    Article  CAS  Google Scholar 

  98. Schneider, J. et al. Wnt signaling orients the proximal–distal axis of chick kidney nephrons. Development 142, 2686–2695 (2015).

    CAS  Google Scholar 

  99. Vanslambrouck, J. M. et al. Generation of proximal tubule-enhanced kidney organoids from human pluripotent stem cells. Nat. Protoc. 18, 3229–3252 (2023).

    Article  CAS  Google Scholar 

  100. Chandrasekaran, V. et al. Generation and characterization of iPSC-derived renal proximal tubule-like cells with extended stability. Sci. Rep. 11, 11575 (2021).

    Article  CAS  Google Scholar 

  101. Uchimura, K. et al. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Rep. 33, 108514 (2020).

    Article  CAS  Google Scholar 

  102. Shi, M. et al. Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types. Nat. Biotechnol. 41, 252–261 (2023).

    Article  CAS  Google Scholar 

  103. Tanigawa, S. et al. Generation of the organotypic kidney structure by integrating pluripotent stem cell-derived renal stroma. Nat. Commun. 13, 611 (2022).

    Article  CAS  Google Scholar 

  104. Hum, S. et al. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS ONE 9, e88400 (2014).

    Article  Google Scholar 

  105. Hurtado, R. et al. Pbx1-dependent control of VMC differentiation kinetics underlies gross renal vascular patterning. Development 142, 2653–2664 (2015).

    CAS  Google Scholar 

  106. Luo, P. M. et al. Stromal netrin 1 coordinates renal arteriogenesis and mural cell differentiation. Development 150, dev201884 (2023).

    Article  CAS  Google Scholar 

  107. Liu, Y. et al. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J. Biol. Chem. 280, 9719–9727 (2005).

    Article  CAS  Google Scholar 

  108. Yap, C. et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (Kruppel-like factor 4). Arterioscler. Thromb. Vasc. Biol. 41, 2693–2707 (2021).

    Article  CAS  Google Scholar 

  109. Honeycutt, S. E. et al. Netrin 1 directs vascular patterning and maturity in the developing kidney. Development 150, dev201886 (2023).

    Article  CAS  Google Scholar 

  110. Selleri, L. et al. Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development 128, 3543–3557 (2001).

    Article  CAS  Google Scholar 

  111. Ficara, F. et al. Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2, 484–496 (2008).

    Article  CAS  Google Scholar 

  112. Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol. Neurodegener. 5, 32 (2010).

    Article  Google Scholar 

  113. Lindblom, P. et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes. Dev. 17, 1835–1840 (2003).

    Article  CAS  Google Scholar 

  114. Leveen, P. et al. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes. Dev. 8, 1875–1887 (1994).

    Article  CAS  Google Scholar 

  115. Lindahl, P. et al. Paracrine PDGF-B/PDGF-Rβ signaling controls mesangial cell development in kidney glomeruli. Development 125, 3313–3322 (1998).

    Article  CAS  Google Scholar 

  116. Krause, M. et al. Signaling during kidney development. Cells 4, 112–132 (2015).

    Article  CAS  Google Scholar 

  117. Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  Google Scholar 

  118. Andrae, J., Gallini, R. & Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes. Dev. 22, 1276–1312 (2008).

    Article  CAS  Google Scholar 

  119. Gaengel, K. et al. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 630–638 (2009).

    Article  CAS  Google Scholar 

  120. Hellstrom, M. et al. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047–3055 (1999).

    Article  CAS  Google Scholar 

  121. Soriano, P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes. Dev. 8, 1888–1896 (1994).

    Article  CAS  Google Scholar 

  122. Mohamed, T. & Sequeira-Lopez, M. L. S. Development of the renal vasculature. Semin. Cell Dev. Biol. 91, 132–146 (2019).

    Article  Google Scholar 

  123. Sequeira Lopez, M. L. & Gomez, R. A. Development of the renal arterioles. J. Am. Soc. Nephrol. 22, 2156–2165 (2011).

    Article  Google Scholar 

  124. Eming, S. A. et al. Regulation of the spatial organization of mesenchymal connective tissue: effects of cell-associated versus released isoforms of platelet-derived growth factor. Am. J. Pathol. 154, 281–289 (1999).

    Article  CAS  Google Scholar 

  125. Wang, X. et al. YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev. Cell 42, 462–478.e7 (2017).

    Article  CAS  Google Scholar 

  126. Azad, T. et al. A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. Nat. Commun. 9, 1061 (2018).

    Article  CAS  Google Scholar 

  127. Kobayashi, S. et al. Vasculature is getting Hip(po): Hippo signaling in vascular development and disease. Dev. Cell 58, 2627–2640 (2023).

    Article  CAS  Google Scholar 

  128. Neto, F. et al. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. Elife 7, e31037 (2018).

    Article  Google Scholar 

  129. Kim, J. et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J. Clin. Invest. 127, 3441–3461 (2017).

    Article  Google Scholar 

  130. Giampietro, C. et al. The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. J. Cell Biol. 211, 1177–1192 (2015).

    Article  CAS  Google Scholar 

  131. Choi, H. J. et al. Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat. Commun. 6, 6943 (2015).

    Article  CAS  Google Scholar 

  132. Yuan, H. T. et al. Expression of angiopoietin-1, angiopoietin-2, and the Tie-2 receptor tyrosine kinase during mouse kidney maturation. J. Am. Soc. Nephrol. 10, 1722–1736 (1999).

    Article  CAS  Google Scholar 

  133. Yuan, H. T. et al. Angiopoietin-2 is a site-specific factor in differentiation of mouse renal vasculature. J. Am. Soc. Nephrol. 11, 1055–1066 (2000).

    Article  CAS  Google Scholar 

  134. Maisonpierre, P. C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    Article  CAS  Google Scholar 

  135. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  136. Zhang, Y. et al. Angiopoietin-Tie signaling pathway in endothelial cells: a computational model. iScience 20, 497–511 (2019).

    Article  CAS  Google Scholar 

  137. Saharinen, P. et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell–matrix contacts. Nat. Cell Biol. 10, 527–537 (2008).

    Article  CAS  Google Scholar 

  138. Sundberg, C. et al. Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab. Invest. 82, 387–401 (2002).

    Article  CAS  Google Scholar 

  139. Jeansson, M. et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J. Clin. Invest. 121, 2278–2289 (2011).

    Article  CAS  Google Scholar 

  140. Wakui, S. et al. Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis. Lab. Invest. 86, 1172–1184 (2006).

    Article  CAS  Google Scholar 

  141. Augustin, H. G. et al. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    Article  CAS  Google Scholar 

  142. Takabatake, Y. et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J. Am. Soc. Nephrol. 20, 1714–1723 (2009).

    Article  CAS  Google Scholar 

  143. Tachibana, K. et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393, 591–594 (1998).

    Article  CAS  Google Scholar 

  144. Haege, S. et al. CXC chemokine receptor 7 (CXCR7) regulates CXCR4 protein expression and capillary tuft development in mouse kidney. PLoS ONE 7, e42814 (2012).

    Article  CAS  Google Scholar 

  145. Boldajipour, B. et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 132, 463–473 (2008).

    Article  CAS  Google Scholar 

  146. Watanabe, E. et al. Stromal cell-derived factor 1 (SDF1) attenuates platelet-derived growth factor-B (PDGF-B)-induced vascular remodeling for adipose tissue expansion in obesity. Angiogenesis 23, 667–684 (2020).

    Article  CAS  Google Scholar 

  147. Foo, S. S. et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124, 161–173 (2006).

    Article  CAS  Google Scholar 

  148. Peuckert, C. et al. Multimodal Eph/Ephrin signaling controls several phases of urogenital development. Kidney Int. 90, 373–388 (2016).

    Article  CAS  Google Scholar 

  149. Jin, S. et al. Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells. Circ. Res. 102, 1483–1491 (2008).

    Article  CAS  Google Scholar 

  150. Boyle, S. C., Liu, Z. & Kopan, R. Notch signaling is required for the formation of mesangial cells from a stromal mesenchyme precursor during kidney development. Development 141, 346–354 (2014).

    Article  CAS  Google Scholar 

  151. Domenga, V. et al. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes. Dev. 18, 2730–2735 (2004).

    Article  CAS  Google Scholar 

  152. Lin, E. E., Sequeira-Lopez, M. L. & Gomez, R. A. RBP-J in FOXD1+ renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells. Am. J. Physiol. Ren. Physiol. 306, F249–F258 (2014).

    Article  CAS  Google Scholar 

  153. Kusaba, T. et al. Renal involvement in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Clin. Nephrol. 67, 182–187 (2007).

    Article  CAS  Google Scholar 

  154. Crawford, C. et al. An intact kidney slice model to investigate vasa recta properties and function in situ. Nephron Physiol. 120, p17–p31 (2012).

    Article  CAS  Google Scholar 

  155. Chou, Y. H. et al. Update of pericytes function and their roles in kidney diseases. J. Formos. Med. Assoc. 123, 307–317 (2024).

    Article  CAS  Google Scholar 

  156. Homma, K. et al. Rho-kinase contributes to pressure-induced constriction of renal microvessels. Keio J. Med. 63, 1–12 (2014).

    Article  CAS  Google Scholar 

  157. Chaney, C. P. et al. Integration of spatial and single nucleus transcriptomics to map gene expression in the developing mouse kidney. Preprint at bioRxiv https://doi.org/10.1101/2024.12.18.629207 (2024).

  158. Walker, K. A., Sims-Lucas, S. & Bates, C. M. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr. Nephrol. 31, 885–895 (2016).

    Article  Google Scholar 

  159. Finch, P. W. et al. Pattern of keratinocyte growth factor and keratinocyte growth factor receptor expression during mouse fetal development suggests a role in mediating morphogenetic mesenchymal-epithelial interactions. Dev. Dyn. 203, 223–240 (1995).

    Article  CAS  Google Scholar 

  160. Mason, I. J. et al. FGF-7 (keratinocyte growth factor) expression during mouse development suggests roles in myogenesis, forebrain regionalisation and epithelial-mesenchymal interactions. Mech. Dev. 45, 15–30 (1994).

    Article  CAS  Google Scholar 

  161. Qiao, J. et al. FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126, 547–554 (1999).

    Article  CAS  Google Scholar 

  162. Ohuchi, H. et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem. Biophys. Res. Commun. 277, 643–649 (2000).

    Article  CAS  Google Scholar 

  163. Hains, D. et al. Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr. Res. 64, 592–598 (2008).

    Article  CAS  Google Scholar 

  164. Yu, J. et al. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136, 161–171 (2009).

    Article  CAS  Google Scholar 

  165. Boivin, F. J. & Bridgewater, D. β-Catenin in stromal progenitors controls medullary stromal development. Am. J. Physiol. Ren. Physiol. 314, F1177–F1187 (2018).

    Article  CAS  Google Scholar 

  166. England, A. R. et al. Identification and characterization of cellular heterogeneity within the developing renal interstitium. Development 147, dev190108 (2020).

    Article  CAS  Google Scholar 

  167. McCarthy, S. S., Karolak, M. & Oxburgh, L. Smad4 controls proliferation of interstitial cells in the neonatal kidney. Development 149, dev199984 (2022).

    Article  CAS  Google Scholar 

  168. Stark, K. et al. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372, 679–683 (1994).

    Article  CAS  Google Scholar 

  169. Kispert, A., Vainio, S. & McMahon, A. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125, 4225–4234 (1998).

    Article  CAS  Google Scholar 

  170. Itaranta, P. et al. Wnt-4 signaling is involved in the control of smooth muscle cell fate via Bmp-4 in the medullary stroma of the developing kidney. Dev. Biol. 293, 473–483 (2006).

    Article  Google Scholar 

  171. DiRocco, D. P. et al. Wnt4/β-catenin signaling in medullary kidney myofibroblasts. J. Am. Soc. Nephrol. 24, 1399–1412 (2013).

    Article  CAS  Google Scholar 

  172. Drake, K. A. et al. Stromal β-catenin activation impacts nephron progenitor differentiation in the developing kidney and may contribute to Wilms tumor. Development 147, dev189597 (2020).

    Article  CAS  Google Scholar 

  173. D’Cruz, R. et al. Hedgehog signalling in Foxd1+ embryonic kidney stromal progenitors controls nephron formation via Cxcl12 and Wnt5a. J. Pathol. 261, 385–400 (2023).

    Article  Google Scholar 

  174. Rowan, C. J. et al. Hedgehog-GLI signaling in Foxd1-positive stromal cells promotes murine nephrogenesis via TGFβ signaling. Development 145, dev159947 (2018).

    Article  Google Scholar 

  175. Yu, J., Carroll, T. J. & McMahon, A. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129, 5301–5312 (2002).

    Article  CAS  Google Scholar 

  176. Bohnenpoll, T. & Kispert, A. Ureter growth and differentiation. Semin. Cell Dev. Biol. 36, 21–30 (2014).

    Article  Google Scholar 

  177. Kispert, A. Ureter development and associated congenital anomalies. Nat Rev Nephrol. 21, 366–382 (2025).

    Article  Google Scholar 

  178. Grainger, N. et al. Identification and classification of interstitial cells in the mouse renal pelvis. J. Physiol. 598, 3283–3307 (2020).

    Article  CAS  Google Scholar 

  179. Boivin, F. J. et al. Stromally expressed β-catenin modulates Wnt9b signaling in the ureteric epithelium. PLoS ONE 10, e0120347 (2015).

    Article  Google Scholar 

  180. Cain, J. E. et al. GLI3 repressor controls functional development of the mouse ureter. J. Clin. Invest. 121, 1199–1206 (2011).

    Article  CAS  Google Scholar 

  181. Mamo, T. M. et al. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum. Mol. Genet. 26, 3553–3563 (2017).

    Article  CAS  Google Scholar 

  182. Caubit, X. et al. Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135, 3301–3310 (2008).

    Article  CAS  Google Scholar 

  183. Bush, K. T. et al. Development and differentiation of the ureteric bud into the ureter in the absence of a kidney collecting system. Dev. Biol. 298, 571–584 (2006).

    Article  CAS  Google Scholar 

  184. Xu, P. X. et al. Six1 is required for the early organogenesis of mammalian kidney. Development 130, 3085–3094 (2003).

    Article  CAS  Google Scholar 

  185. Nie, X. et al. SIX1 acts synergistically with TBX18 in mediating ureteral smooth muscle formation. Development 137, 755–765 (2010).

    Article  CAS  Google Scholar 

  186. Airik, R. et al. Tbx18 regulates the development of the ureteral mesenchyme. J. Clin. Invest. 116, 663–674 (2006).

    Article  CAS  Google Scholar 

  187. Weiss, A. C. et al. Permissive ureter specification by TBX18-mediated repression of metanephric gene expression. Development 150, dev201048 (2023).

    Article  CAS  Google Scholar 

  188. Airik, R. et al. Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme. Hum. Mol. Genet. 19, 4918–4929 (2010).

    Article  CAS  Google Scholar 

  189. Alasaadi, D. N. & Mayor, R. Mechanically guided cell fate determination in early development. Cell Mol. Life Sci. 81, 242 (2024).

    Article  CAS  Google Scholar 

  190. Engler, A. J. et al. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  191. Chen, W. C., Lin, H. H. & Tang, M. J. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components. Am. J. Physiol. Ren. Physiol. 307, F695–F707 (2014).

    Article  CAS  Google Scholar 

  192. Melica, M. E. et al. Substrate stiffness modulates renal progenitor cell properties via a ROCK-mediated mechanotransduction mechanism. Cells 8, 1561 (2019).

    Article  CAS  Google Scholar 

  193. Lacueva-Aparicio, A. et al. Role of extracellular matrix components and structure in new renal models in vitro. Front. Physiol. 13, 1048738 (2022).

    Article  Google Scholar 

  194. Chakraborty, S. et al. Quantifying spatial patterns of tissue stiffness within the embryonic mouse kidney. Methods Mol. Biol. 2805, 171–186 (2024).

    Article  Google Scholar 

  195. Combes, A. N. et al. Correction: single cell analysis of the developing mouse kidney provides deeper insight into marker gene expression and ligand–receptor crosstalk (doi:10.1242/dev.178673). Development 146, dev182162 (2019).

    Article  Google Scholar 

  196. Zorn, A. M. & Wells, J. M. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25, 221–251 (2009).

    Article  CAS  Google Scholar 

  197. Tabin, C. & Wolpert, L. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes. Dev. 21, 1433–1442 (2007).

    Article  CAS  Google Scholar 

  198. Maggiore, J. C. et al. A genetically inducible endothelial niche enables vascularization of human kidney organoids with multilineage maturation and emergence of renin expressing cells. Kidney Int. 106, 1086–1100 (2024).

    Article  CAS  Google Scholar 

  199. Lipp, S. N. et al. 3D mapping reveals a complex and transient interstitial matrix during murine kidney development. J. Am. Soc. Nephrol. 32, 1649–1665 (2021).

    Article  CAS  Google Scholar 

  200. Lipp, S. N. et al. FOXD1 is required for 3D patterning of the kidney interstitial matrix. Dev. Dyn. 252, 463–482 (2023).

    Article  CAS  Google Scholar 

  201. Schrimpf, C. et al. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J. Am. Soc. Nephrol. 23, 868–883 (2012).

    Article  CAS  Google Scholar 

  202. Kramann, R. et al. Gli1+ pericyte loss induces capillary rarefaction and proximal tubular injury. J. Am. Soc. Nephrol. 28, 776–784 (2017).

    Article  CAS  Google Scholar 

  203. Schiessl, I. M. et al. Renal interstitial platelet-derived growth factor receptor-β cells support proximal tubular regeneration. J. Am. Soc. Nephrol. 29, 1383–1396 (2018).

    Article  CAS  Google Scholar 

  204. Lemos, D. R. et al. Maintenance of vascular integrity by pericytes is essential for normal kidney function. Am. J. Physiol. Ren. Physiol. 311, F1230–F1242 (2016).

    Article  CAS  Google Scholar 

  205. Tanaka, S., Portilla, D. & Okusa, M. D. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat. Rev. Nephrol. 19, 721–732 (2023).

    Article  Google Scholar 

  206. Guo, C. et al. Crosstalk between proximal tubular epithelial cells and other interstitial cells in tubulointerstitial fibrosis after renal injury. Front. Endocrinol. 14, 1256375 (2023).

    Article  Google Scholar 

  207. Sparks, M. A. et al. Vascular control of kidney epithelial transporters. Am. J. Physiol. Ren. Physiol. 320, F1080–F1092 (2021).

    Article  CAS  Google Scholar 

  208. Bankir, L. & de Rouffignac, C. Urinary concentrating ability: insights from comparative anatomy. Am. J. Physiol. 249, R643–R666 (1985).

    CAS  Google Scholar 

  209. Swanson, R. A., Ying, W. & Kauppinen, T. M. Astrocyte influences on ischemic neuronal death. Curr. Mol. Med. 4, 193–205 (2004).

    Article  CAS  Google Scholar 

  210. Rangel-Gomez, M. et al. Neuron–glial interactions: implications for plasticity, behavior, and cognition. J. Neurosci. 44, e1231242024 (2024).

    Article  CAS  Google Scholar 

  211. Ding, H. et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am. J. Physiol. Ren. Physiol. 313, F561–F575 (2017).

    Article  CAS  Google Scholar 

  212. Shen, Y. et al. Tubule-derived lactate is required for fibroblast activation in acute kidney injury. Am. J. Physiol. Ren. Physiol. 318, F689–F701 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and wrote the article. L.O. and T.J.C. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Thomas J. Carroll.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Sunder Sims-Lucas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusco, A.N., Oxburgh, L. & Carroll, T.J. The kidney stroma in development and disease. Nat Rev Nephrol (2025). https://doi.org/10.1038/s41581-025-00985-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-025-00985-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing