Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

Microbiota and kidney disease: the road ahead

Abstract

More than 850 million individuals worldwide, accounting for 10–15% of the adult population, are estimated to have chronic kidney disease. Each of these individuals is host to tens of trillions of microorganisms that are collectively referred to as microbiota — a dynamic ecosystem that both influences host health and is itself influenced by changes in the host. Available evidence supports the existence of functional connections between resident microorganisms and kidney health that are altered in the context of specific kidney diseases, including acute kidney injury, chronic kidney disease and renal stone disease. Moreover, promising data from preclinical studies suggest that targeting of gut microbial pathways may provide new therapeutic opportunities for the treatment of kidney disease. This Roadmap describes current understanding of the mechanisms by which microorganisms regulate host organ function, the effects of kidney disease on the gut microbiome, and how these insights may contribute to the development of microbe-targeted therapeutics. We highlight key knowledge gaps that remain to be addressed and strategies for addressing these, outlining both the promise and the potential pitfalls of leveraging our understanding of the gut microbiota to better understand and treat kidney disease.

Key points

  • A bidirectional relationship exists between microorganisms and kidney disease: microorganisms can influence host health, and are themselves influenced by changes in host health.

  • The relationship between microorganisms and renal disease is likely to be at least somewhat specific to each disease type.

  • Further studies are needed to determine the prognostic value of gut microorganisms in kidney disease.

  • Available evidence suggests that interactions occur between microorganisms and drugs used to treat kidney disease; further studies are needed to determine the nature and consequences of these interactions.

  • There is also promise in the possibility of targeting gut microorganisms as a therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interactions between the kidney and gut microbiota.

Similar content being viewed by others

References

  1. Hill, N. R. et al. Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS ONE 11, e0158765 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Snelson, M. et al. A renal clinician’s guide to the gut microbiota. J. Ren. Nutr. 30, 384–395 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lambert, K. et al. Targeting the gut microbiota in kidney disease: the future in renal nutrition and metabolism. J. Ren. Nutr. 33, S30–S39 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stanford, J. et al. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature. BMC Nephrol. 21, 215 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Holle, J. et al. Inflammation in children with CKD linked to gut dysbiosis and metabolite imbalance. J. Am. Soc. Nephrol. 33, 2259–2275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holle, J. et al. Gut microbiome alterations precede graft rejection in kidney transplantation patients. Am. J. Transpl. 18, S1600–S6135 (2025).

    Google Scholar 

  7. Vaziri, N. D. et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 83, 308–315 (2013).

    Article  PubMed  Google Scholar 

  8. Nishiyama, K. et al. Chronic kidney disease after 5/6 nephrectomy disturbs the intestinal microbiota and alters intestinal motility. J. Cell Physiol. 234, 6667–6678 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Mishima, E. et al. Canagliflozin reduces plasma uremic toxins and alters the intestinal microbiota composition in a chronic kidney disease mouse model. Am. J. Physiol. Renal Physiol. 315, F824–F833 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Vaziri, N. D., Yuan, J. & Norris, K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am. J. Nephrol. 37, 1–6 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Chaves, L. D. et al. Chronic kidney disease, uremic milieu, and its effects on gut bacterial microbiota dysbiosis. Am. J. Physiol. Renal Physiol. 315, F487–F502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong, J. et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 39, 230–237 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, X. et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 69, 2131–2142 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Laiola, M. et al. Toxic microbiome and progression of chronic kidney disease: insights from a longitudinal CKD-Microbiome Study. Gut https://doi.org/10.1136/gutjnl-2024-334634 (2025).

  15. Noel, S. et al. Gut microbiota-immune system interactions during acute kidney injury. Kidney360 2, 528–531 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Noel, S. et al. Metagenomic sequencing reveals distinct gut microbiome profiles in patients with AKI compared to CKD and normals: KPMP project. Am. Soc. Neph. https://doi.org/10.1681/ASN.2024k2n81acd (2024).

  17. Mishima, E. et al. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 92, 634–645 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Avery, E. G. et al. Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage. Cardiovasc. Res. 119, 1441–1452 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Jang, H. R. et al. Early exposure to germs modifies kidney damage and inflammation after experimental ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 297, F1457–F1465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Al, K. F. et al. Multi-site microbiota alteration is a hallmark of kidney stone formation. Microbiome 11, 263 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moore, B. N. et al. Commensal microbiota regulate aldosterone. Am. J. Physiol. Renal Physiol. 326, F1032–F1038 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moore, B. N. & Pluznick, J. L. Commensal microbiota regulate renal gene expression in a sex-specific manner. Am. J. Physiol. Renal Physiol. 324, F511–F520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu, J. et al. Microbes regulate glomerular filtration rate in health and chronic kidney disease in mice. Prerit at bioRxiv https://doi.org/10.1101/2025.04.08.647647 (2025).

  24. Gupta, N. et al. Targeted inhibition of gut microbial trimethylamine N-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscler. Thromb. Vasc. Biol. 40, 1239–1255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, M. et al. The gut microbial metabolite trimethylamine N -oxide, incident CKD, and kidney function decline. J. Am. Soc. Nephrol. 35, 749–760 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Andrikopoulos, P. et al. Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide. Nat. Commun. 14, 5843 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Witkowski, M., Weeks, T. L. & Hazen, S. L. Gut microbiota and cardiovascular disease. Circ. Res. 127, 553–570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holle, J. et al. Gut dysbiosis contributes to TMAO accumulation in CKD. Nephrol. Dial. Transpl. 39, 1923–1926 (2024).

    Article  CAS  Google Scholar 

  29. Gryp, T. et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 97, 1230–1242 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Agudelo, J. & Miller, A. W. A perspective on the metabolic potential for microbial contributions to urolithiasis. Kidney360 2, 1170–1173 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Miller, A. W. et al. Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nat. Rev. Urol. 19, 695–707 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stepanova, N. Role of impaired oxalate homeostasis in cardiovascular disease in patients with end-stage renal disease: an opinion article. Front. Pharmacol. 12, 692429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nazzal, L., Puri, S. & Goldfarb, D. S. Enteric hyperoxaluria: an important cause of end-stage kidney disease. Nephrol. Dialysis Transplant. 31, 375–382 (2015).

    Article  Google Scholar 

  34. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Tang, W. H. W. & Hazen, S. L. Unraveling the complex relationship between gut microbiome and cardiovascular diseases. Circulation 149, 1543–1545 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johnson, A. J. et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 25, 789–802.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Mailing, L. J. et al. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc. Sport. Sci. Rev. 47, 75–85 (2019).

    Article  PubMed  Google Scholar 

  38. Vandecruys, M. et al. Revitalizing the gut microbiome in chronic kidney disease: a comprehensive exploration of the therapeutic potential of physical activity. Toxins 16, 242 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biruete, A. et al. Phosphate binders and nonphosphate effects in the gastrointestinal tract. J. Ren. Nutr. 30, 4–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Asnicar, F. et al. Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut 70, 1665–1674 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. O’Donnell, J. A. et al. The gut microbiome and hypertension. Nat. Rev. Nephrol. 19, 153–167 (2023).

    Article  PubMed  Google Scholar 

  43. Byndloss, M. et al. The gut microbiota and diabetes: research, translation, and clinical applications-2023 diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetes Care 47, 1491–1508 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Teixeira, R. R. et al. Gut microbiota profile of patients on peritoneal dialysis: comparison with household contacts. Eur. J. Clin. Nutr. 77, 90–97 (2022).

    Article  PubMed  Google Scholar 

  45. Poesen, R. et al. The influence of CKD on colonic microbial metabolism. J. Am. Soc. Nephrol. 27, 1389–1399 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Wiese, G. N. et al. Gut microbiota and uremic retention solutes in adults with moderate CKD: a 6-day controlled feeding study. J. Ren. Nutr. 34, 26–34 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wu, G. et al. A core microbiome signature as an indicator of health. Cell 187, 6550–6565.e11 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, F. et al. Sex-specific dysbiotic bladder microbiome in CKD uncovered via high-throughput sequencing and culture. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3407275/v1 (2023).

  49. Hrbacek, J. et al. Bladder microbiota are associated with clinical conditions that extend beyond the urinary tract. Microorganisms 10, 874 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kachroo, N. et al. Meta-analysis of clinical microbiome studies in urolithiasis reveal age, stone composition, and study location as the predominant factors in urolithiasis-associated microbiome composition. Mbio 12, e02007-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liang, J. & Liu, Y. Animal models of kidney disease: challenges and perspectives. Kidney360 4, 1479–1493 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abdill, R. J., Adamowicz, E. M. & Blekhman, R. Public human microbiome data are dominated by highly developed countries. PLoS Biol. 20, e3001536 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muralitharan, R. R. et al. Guidelines for microbiome studies in renal physiology. Am. J. Physiol. Renal Physiol. 325, F345–F362 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Wensel, C. R. et al. Next-generation sequencing: insights to advance clinical investigations of the microbiome. J. Clin. Invest. 132, e154944 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nasko, D. J. et al. RefSeq database growth influences the accuracy of k-mer-based lowest common ancestor species identification. Genome Biol. 19, 165 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Smith, R. H. et al. Investigating the impact of database choice on the accuracy of metagenomic read classification for the rumen microbiome. Anim. Microbiome 4, 57 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mills, S. et al. Precision nutrition and the microbiome, part I: current state of the science. Nutrients 11, 1468 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sommer, F. & Bäckhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Walter, J. & Ley, R. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65, 411–429 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Meijers, B., Evenepoel, P. & Anders, H. J. Intestinal microbiome and fitness in kidney disease. Nat. Rev. Nephrol. 15, 531–545 (2019).

    Article  PubMed  Google Scholar 

  62. Mulle, J. G., Sharp, W. G. & Cubells, J. F. The gut microbiome: a new frontier in autism research. Curr. Psychiatry Rep. 15, 337 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pluznick, J. L. The gut microbiota in kidney disease. Science 369, 1426–1427 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Harrison, M. A. et al. Production of p-cresol by decarboxylation of p-HPA by all five lineages of Clostridioides difficile provides a growth advantage. Front. Cell. Infect. Microbiol. 11, 757599 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fishbane, S. N. & Nigwekar, S. Phosphate absorption and hyperphosphatemia management in kidney disease: a physiology-based review. Kidney Med. 3, 1057–1064 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Weiner, I. D., Mitch, W. E. & Sands, J. M. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin. J. Am. Soc. Nephrol. 10, 1444–1458 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Tonelli, M., Karumanchi, S. A. & Thadhani, R. Epidemiology and mechanisms of uremia-related cardiovascular disease. Circulation 133, 518–536 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, Y. et al. Kidney clearance of secretory solutes is associated with progression of CKD: the CRIC study. J. Am. Soc. Nephrol. 31, 817–827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, Y. et al. Association of tubular solute clearances with the glomerular filtration rate and complications of chronic kidney disease: the chronic renal insufficiency cohort study. Nephrol. Dial. Transpl. 36, 1271–1281 (2020).

    Article  Google Scholar 

  70. Lim, Y. J. et al. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins 13, 142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Owada, S. et al. Indoxyl sulfate reduces superoxide scavenging activity in the kidneys of normal and uremic rats. Am. J. Nephrol. 28, 446–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Niwa, T. Indoxyl sulfate is a nephro-vascular toxin. J. Ren. Nutr. 20, S2–S6 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Liu, W. C., Tomino, Y. & Lu, K. C. Impacts of indoxyl sulfate and p-cresol sulfate on chronic kidney disease and mitigating effects of AST-120. Toxins 10, 367 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Al-mansouri, A. et al. Assessment of treatment burden and its impact on quality of life in dialysis-dependent and pre-dialysis chronic kidney disease patients. Res. Soc. Adm. Pharm. 17, 1937–1944 (2021).

    Article  Google Scholar 

  75. Tang, W. H. et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 116, 448–455 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Meijers, B. K. et al. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1182–1189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ren, X. et al. Plasma metabolomics of dietary intake of protein-rich foods and kidney disease progression in children. J. Ren. Nutr. 34, 95–104 (2024).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, J. et al. Effect of dapagliflozin on proteomics and metabolomics of serum from patients with type 2 diabetes. Diabetol. Metab. Syndr. 15, 251 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saito, Y. et al. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol. Ecol. 94, fiy125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Whittaker, R. Evolution and measurement of species diversity. Taxon 21, 213–251 (1972).

    Article  Google Scholar 

  83. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  84. Knights, D. et al. Human-associated microbial signatures: examining their predictive value. Cell Host Microbe 10, 292–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Hu, X. et al. Characterizing the gut microbiota in patients with chronic kidney disease. Postgrad. Med. 132, 495–505 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Ren, Z. et al. Alterations of the human gut microbiome in chronic kidney disease. Adv. Sci. 7, 2001936 (2020).

    Article  CAS  Google Scholar 

  87. Yu, W. et al. The gut microbiome in differential diagnosis of diabetic kidney disease and membranous nephropathy. Ren. Fail. 42, 1100–1110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Khasnobish, A. et al. Dysbiosis in the salivary microbiome associated with IgA nephropathy — a Japanese cohort study. Microbes Env. 36, ME21006 (2021).

    Article  Google Scholar 

  89. Du, X. et al. Alteration of gut microbial profile in patients with diabetic nephropathy. Endocrine 73, 71–84 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Yu, B. et al. The gut microbiome in microscopic polyangiitis with kidney involvement: common and unique alterations, clinical association and values for disease diagnosis and outcome prediction. Ann. Transl. Med. 9, 1286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xiang, L. et al. Prediction of the occurrence of calcium oxalate kidney stones based on clinical and gut microbiota characteristics. World J. Urol. 40, 221–227 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Shi, X. et al. Alterations of gut microbial pathways and virulence factors in hemodialysis patients. Front. Cell Infect. Microbiol. 12, 904284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dong, Y. et al. Development and validation of diagnostic models for immunoglobulin A nephropathy based on gut microbes. Front. Cell Infect. Microbiol. 12, 1059692 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tang, Y. et al. Aberrant gut microbiome contributes to barrier dysfunction, inflammation, and local immune responses in IgA nephropathy. Kidney Blood Press. Res. 48, 261–276 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Chen, T. H. et al. Exploring the relevance between gut microbiota-metabolites profile and chronic kidney disease with distinct pathogenic factor. Microbiol. Spectr. 11, e0280522 (2023).

    Article  PubMed  Google Scholar 

  96. Cai, F. et al. Systematic microbiome dysbiosis is associated with IgA nephropathy. Microbiol. Spectr. 11, e0520222 (2023).

    Article  PubMed  Google Scholar 

  97. Jiang, Y. et al. Combination of the gut microbiota and clinical indicators as a potential index for differentiating idiopathic membranous nephropathy and minimal change disease. Ren. Fail. 45, 2209392 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tang, S. et al. Guild-level signature of gut microbiome for diabetic kidney disease. mBio 15, e0073524 (2024).

    Article  PubMed  Google Scholar 

  99. Lee, A. M. et al. Using machine learning to identify metabolomic signatures of pediatric chronic kidney disease etiology. J. Am. Soc. Nephrol. 33, 375–386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hu, J. et al. Location-specific oral microbiome possesses features associated with CKD. Kidney Int. Rep. 3, 193–204 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yang, Y. et al. The genetics of urinary microbiome, an exploration of the trigger in calcium oxalate stone. Front. Genet. 14, 1260278 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. NIH/FDA. BEST (Biomarkers, EndpointS, and other Tools) Resource. ncbi.nlm.nih.gov https://www.ncbi.nlm.nih.gov/books/NBK326791/ (FDA, 2016).

  103. Bennett, M. & Devarajan, P. in Biomarkers of Kidney Disease (ed. Edelstein, C.) 1–24 (Academic, 2011).

  104. Yu, Y. et al. Assessing and mitigating batch effects in large-scale omics studies. Genome Biol. 25, 254 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Agudelo, J. et al. Delineating the role of the urinary metabolome in the lithogenesis of calcium-based kidney stones. Urology 167, 49–55 (2022).

    Article  PubMed  Google Scholar 

  106. Vaswani, A. et al. Attention is all you need. In 31st Conference on Neural Information Processing Systems (NIPS) (eds. Guyon, I. et al.) https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (2017).

  107. Theodosiou, A. A. & Read, R. C. Artificial intelligence, machine learning and deep learning: potential resources for the infection clinician. J. Infect. 87, 287–294 (2023).

    Article  PubMed  Google Scholar 

  108. Trepka, K. R. et al. Pharma[e]cology: how the gut microbiome contributes to variations in drug response. Annu. Rev. Pharmacol. Toxicol. 65, 355–373 (2024).

    Article  PubMed  Google Scholar 

  109. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Simpson, J. B. et al. Metagenomics combined with activity-based proteomics point to gut bacterial enzymes that reactivate mycophenolate. Gut Microbes 14, 2107289 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Yang, T. et al. Identification of a gut commensal that compromises the blood pressure-lowering effect of ester angiotensin-converting enzyme inhibitors. Hypertension 79, 1591–1601 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Kyoung, J. & Yang, T. Depletion of the gut microbiota enhances the blood pressure-lowering effect of captopril: implication of the gut microbiota in resistant hypertension. Hypertens. Res. 45, 1505–1510 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Vallon, V. & Verma, S. Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annu. Rev. Physiol. 83, 503–528 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Billing, A. M. et al. Metabolic communication by SGLT2 inhibition. Circulation 149, 860–884 (2024).

    Article  CAS  PubMed  Google Scholar 

  116. Chrysopoulou, M. & Rinschen, M. M. Metabolic rewiring and communication: an integrative view of kidney proximal tubule function. Annu. Rev. Physiol. 86, 405–427 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Szymczak-Pajor, I. et al. The gut microbiota-related antihyperglycemic effect of metformin. Pharmaceuticals 18, 55 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nigam, S. K. The SLC22 transporter family: a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease. Annu. Rev. Pharmacol. Toxicol. 58, 663–687 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hakimi, S., Dutta, P. & Layton, A. T. Renal calcium and magnesium handling during pregnancy: modeling and analysis. Am. J. Physiol. Renal Physiol. 327, F77–F90 (2024).

    Article  CAS  PubMed  Google Scholar 

  120. Stadt, M. M. & Layton, A. T. A modeling analysis of whole body potassium regulation on a high-potassium diet: proximal tubule and tubuloglomerular feedback effects. Am. J. Physiol. Regul. Integr. Comp. Physiol. 326, R401–R415 (2024).

    Article  CAS  PubMed  Google Scholar 

  121. Jariwala, P. B. et al. Discovering the microbial enzymes driving drug toxicity with activity-based protein profiling. ACS Chem. Biol. 15, 217–225 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Rinschen, M. M. et al. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nat. Commun. 13, 4099 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Andrade-Oliveira, V. et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 26, 1877–1888 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Emal, D. et al. Depletion of gut microbiota protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 28, 1450–1461 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Nakade, Y. et al. Gut microbiota-derived D-serine protects against acute kidney injury. JCI Insight 3, e97957 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zhu, H. et al. The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease. Cell Metab. 33, 1926–1942.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Yang, Z. et al. The prevention effect of Limosilactobacillus reuteri on acute kidney injury by regulating gut microbiota. Microbiol. Immunol. 68, 213–223 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. Gharaie, S. et al. Microbiome modulation after severe acute kidney injury accelerates functional recovery and decreases kidney fibrosis. Kidney Int. 104, 470–491 (2023).

    Article  CAS  PubMed  Google Scholar 

  129. Li, H.-B. et al. Faecalibacterium prausnitzii attenuates CKD via butyrate-renal GPR43 axis. Circulation Res. 131, e120–e134 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Shankaranarayanan, D. & Raj, D. S. Gut microbiome and kidney disease: reconciling optimism and skepticism. Clin. J. Am. Soc. Nephrol. 17, 1694–1696 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. He, M. et al. Gut microbial metabolites SCFAs and chronic kidney disease. J. Transl. Med. 22, 172 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Tang, Z., Yu, S. & Pan, Y. The gut microbiome tango in the progression of chronic kidney disease and potential therapeutic strategies. J. Transl. Med. 21, 689 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gao, B. et al. Butyrate producing microbiota are reduced in chronic kidney diseases. Sci. Rep. 11, 23530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Guo, X. et al. Novel metabolites to improve glomerular filtration rate estimation. Kidney Blood Press. Res. 48, 287–296 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Yamaguchi, Y. et al. Plasma metabolites associated with chronic kidney disease and renal function in adults from the Baltimore longitudinal study of aging. Metabolomics 17, 1–11 (2021).

    Article  Google Scholar 

  136. Peng, H. et al. A metabolomics study of metabolites associated with the glomerular filtration rate. BMC Nephrol. 24, 105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, T. et al. Consistency of metabolite associations with measured glomerular filtration rate in children and adults. Clin. Kidney J. 17, sfae108 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Roberts, A. B. et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24, 1407–1417 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Graboski, A. L. et al. Mechanism-based inhibition of gut microbial tryptophanases reduces serum indoxyl sulfate. Cell Chem. Biol. 30, 1402–1413.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Winkler, M. K. H. & van Loosdrecht, M. C. M. Intensifying existing urban wastewater. Science 375, 377–378 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Candry, P. et al. Tailoring polyvinyl alcohol-sodium alginate (PVA-SA) hydrogel beads by controlling crosslinking pH and time. Sci. Rep. 12, 20822 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Godfrey, B. et al. Co-immobilization of AOA strains with Anammox bacteria in three different synthetic bio-granules maintained under two substrate-level conditions. Chemosphere 342, 140192 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Gottshall, E. Y. et al. Sustained nitrogen loss in a symbiotic association of comammox Nitrospira and anammox bacteria. Water Res. 202, 117426 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Landreau, M. et al. Immobilization of active ammonia-oxidizing archaea in hydrogel beads. npj Clean Water 4, 43 (2021).

    Article  CAS  Google Scholar 

  145. Li, B. et al. Mainstream nitrogen removal from low temperature and low ammonium strength municipal wastewater using hydrogel-encapsulated comammox and anammox. Water Res. 242, 120303 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Saingam, P. et al. Towards an effective delivery system of a microbial sink of the uremic toxin, p-cresol; an in vitro study with Thauera aminoaromatica S2. Front. Microbiol. 16, 1577556 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ogawa, T. et al. Oral administration of Bifidobacterium longum in a gastro-resistant seamless capsule decreases serum phosphate levels in patients receiving haemodialysis. Nephrol. Dialysis Transplant. 5, 373–374 (2012).

    Google Scholar 

  148. Wang, I.-K. et al. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef. Microbes 6, 423–430 (2015).

    Article  PubMed  Google Scholar 

  149. Soleimani, A. et al. Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects. Kidney Int. 91, 435–442 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Taki, K., Takayama, F. & Niwa, T. Beneficial effects of bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J. Ren. Nutr. 15, 77–80 (2005).

    Article  PubMed  Google Scholar 

  151. Ikizler, T. A. et al. KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Am. J. Kidney Dis. 76, S1–S107 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Stanford, J. et al. High-diversity plant-based diet and gut microbiome, plasma metabolome, and symptoms in adults with CKD. Clin. J. Am. Soc. Nephrol. 20, 619–631 (2025).

    Article  PubMed  Google Scholar 

  153. Felizardo, R. J. F. et al. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms. FASEB J. 33, 11894–11908 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Li, Y. J. et al. Dietary fiber protects against diabetic nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A. J. Am. Soc. Nephrol. 31, 1267–1281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, Y. J. et al. Short-chain fatty acids directly exert anti-inflammatory responses in podocytes and tubular epithelial cells exposed to high glucose. Front. Cell Dev. Biol. 11, 1182570 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Corte-Iglesias, V. et al. Propionate and butyrate counteract renal damage and progression to chronic kidney disease. Nephrol. Dial. Transpl. 40, 133–150 (2024).

    Article  Google Scholar 

  157. Lobel, L. et al. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function. Science 369, 1518–1524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Linares, L. et al. Epidemiology and outcomes of multiple antibiotic-resistant bacterial infection in renal transplantation. Transpl. Proc. 39, 2222–2224 (2007).

    Article  CAS  Google Scholar 

  159. Magruder, M. et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat. Commun. 10, 5521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shimasaki, T. et al. Increased relative abundance of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae within the gut microbiota is associated with risk of bloodstream infection in long-term acute care hospital patients. Clin. Infect. Dis. 68, 2053–2059 (2019).

    Article  PubMed  Google Scholar 

  161. Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ghani, R. et al. Disease prevention not decolonization: a model for fecal microbiota transplantation in patients colonized with multidrug-resistant organisms. Clin. Infect. Dis. 72, 1444–1447 (2021).

    Article  PubMed  Google Scholar 

  163. Mangalea, M. R. et al. Decolonization and pathogen reduction approaches to prevent antimicrobial resistance and healthcare-associated infections. Emerg. Infect. Dis. 30, 1069 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Roman, Y. M. The role of uric acid in human health: insights from the uricase gene. J. Pers. Med. 13, 1409 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Krishnan, E. Reduced glomerular function and prevalence of gout: NHANES 2009-10. PLoS ONE 7, e50046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sorensen, L. B. Role of the intestinal tract in the elimination of uric acid. Arthritis Rheum. 8, 694–706 (1965).

    Article  CAS  PubMed  Google Scholar 

  167. Vargas-Santos, A. B. & Neogi, T. Management of gout and hyperuricemia in CKD. Am. J. Kidney Dis. 70, 422–439 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu, Y. et al. A widely distributed gene cluster compensates for uricase loss in hominids. Cell 186, 3400–3413 e20 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kasahara, K. et al. Gut bacterial metabolism contributes to host global purine homeostasis. Cell Host Microbe 31, 1038–1053.e10 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Moe, O. W. Kidney stones: pathophysiology and medical management. Lancet 367, 333–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Filler, G. et al. In focus: perplexing increase of urinary stone disease in children, adolescent and young adult women and its economic impact. Front. Med. 10, 1272900 (2023).

    Article  Google Scholar 

  172. Vo, A. K. et al. Measuring quality of life in patients with kidney stone disease: is it the future in endourology? Curr. Opin. Urol. 34, 91–97 (2024).

    Article  PubMed  Google Scholar 

  173. Hatch, M. et al. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 69, 691–698 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Campieri, C. et al. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int. 60, 1097–1105 (2001).

    Article  CAS  PubMed  Google Scholar 

  175. Lieske, J. C. et al. Use of a probiotic to decrease enteric hyperoxaluria. Kidney Int. 68, 1244–1249 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Goldfarb, D. S., Modersitzki, F. & Asplin, J. R. A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria. Clin. J. Am. Soc. Nephrol. 2, 745–749 (2007).

    Article  PubMed  Google Scholar 

  177. Lieske, J. C. et al. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 78, 1178–1185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Siener, R. et al. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria. J. Transl. Med. 11, 306 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Tavasoli, S. et al. Effect of a probiotic supplement containing Lactobacillus acidophilus and Bifidobacterium animalis lactis on urine oxalate in calcium stone formers with hyperoxaluria: a randomized, placebo-controlled, double-blind and in-vitro trial. Urol. J. 19, 179–188 (2021).

    PubMed  Google Scholar 

  180. Hoppe, B. et al. A randomised phase I/II trial to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Pediatr. Nephrol. 32, 781–790 (2017).

    Article  PubMed  Google Scholar 

  181. Hoppe, B. et al. Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol. Dial. Transpl. 26, 3609–3615 (2011).

    Article  Google Scholar 

  182. Milliner, D., Hoppe, B. & Groothoff, J. A randomised phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 46, 313–323 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Mukherjee, S. D. et al. Complex system modeling reveals oxalate homeostasis is driven by diverse oxalate-degrading bacteria. eLife 14, RP104121 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Duranton, F. et al. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 23, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Waikar, S. S. et al. Association of urinary oxalate excretion with the risk of chronic kidney disease progression. JAMA Intern. Med. 179, 542–551 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Ermer, T. et al. Oxalate, inflammasome, and progression of kidney disease. Curr. Opin. Nephrol. Hypertens. 25, 363–371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Pfau, A. et al. High oxalate concentrations correlate with increased risk for sudden cardiac death in dialysis patients. J. Am. Soc. Nephrol. 32, 2375–2385 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Choy, W. H. et al. Deficient butyrate metabolism in the intestinal microbiome is a potential risk factor for recurrent kidney stone disease. Urolithiasis 52, 38 (2024).

    Article  CAS  PubMed  Google Scholar 

  189. Zampini, A. et al. Defining dysbiosis in patients with urolithiasis. Sci. Rep. 9, 5425 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Agudelo, J. et al. Cefazolin shifts the kidney microbiota to promote a lithogenic environment. Nat. Commun. 15, 10509 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chesnaye, N. C. et al. Differences in the epidemiology, management and outcomes of kidney disease in men and women. Nat. Rev. Nephrol. 20, 7–20 (2024).

    Article  PubMed  Google Scholar 

  192. de la Cuesta-Zuluaga, J. et al. Age- and sex-dependent patterns of gut microbial diversity in human adults. mSystems 4, e00261-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Perez, M. et al. A synthetic consortium of 100 gut commensals modulates the composition and function in a colon model of the microbiome of elderly subjects. Gut Microbes 13, 1–19 (2021).

    Article  PubMed  Google Scholar 

  194. El Houari, A. et al. Development of an in vitro model of human gut microbiota for screening the reciprocal interactions with antibiotics, drugs, and xenobiotics. Front. Microbiol. 13, 828359 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Cheng, A. G. et al. Design, construction, and in vivo augmentation of a complex gut microbiome. Cell 185, 3617–3636.e19 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wang, M. et al. Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome. Cell 186, 2839–2852.e21 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Pascal Andreu, V. et al. gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota. Nat. Biotechnol. 41, 1416–1423 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Mei, X. et al. Genetically engineered Lactobacillus paracasei rescues colonic angiotensin converting enzyme 2 (ACE2) and attenuates hypertension in female Ace2 knock out rats. Pharmacol. Res. 196, 106920 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Guo, C. J. et al. Depletion of microbiome-derived molecules in the host using clostridium genetics. Science 366, eaav1282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  201. Brödel, A. K. et al. In situ targeted base editing of bacteria in the mouse gut. Nature 632, 877–884 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Ali, N. et al. Advances in CRISPR-Cas systems for gut microbiome. Prog. Mol. Biol. Transl. Sci. 208, 59–81 (2024).

    Article  CAS  PubMed  Google Scholar 

  203. Kelly, C. R. et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am. J. Gastroenterol. 109, 1065–1071 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Cheng, Y.-W. et al. Fecal microbiota transplantation for the treatment of recurrent and severe Clostridium difficile infection in solid organ transplant recipients: a multicenter experience. Am. J. Transplant. 19, 501–511 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Peery, A. F. et al. AGA clinical practice guideline on fecal microbiota–based therapies for select gastrointestinal diseases. Gastroenterology 166, 409–434 (2024).

    Article  CAS  PubMed  Google Scholar 

  206. Carlson, P. E. Regulatory considerations for fecal microbiota transplantation products. Cell Host Microbe 27, 173–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Woodworth, M. H. et al. Fecal microbiota transplantation promotes reduction of antimicrobial resistance by strain replacement. Sci. Transl. Med. 15, eabo2750 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tang, Q. et al. Current sampling methods for gut microbiota: a call for more precise devices. Front. Cell. Infect. Microbiol. 10, 151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhang, X. & Figeys, D. Perspective and guidelines for metaproteomics in microbiome studies. J. Proteome Res. 18, 2370–2380 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat. Immunol. 21, 343–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Anandakumar, H. et al. Segmental patterning of microbiota and immune cells in the murine intestinal tract. Gut Microbes 16, 2398126 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Folz, J. et al. Human metabolome variation along the upper intestinal tract. Nat. Metab. 5, 777–788 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Culver, R. N. et al. Improved mouse models of the small intestine microbiota using region-specific sampling from humans. Preprint at bioRxiv https://doi.org/10.1101/2024.04.24.590999 (2024).

Download references

Acknowledgements

The authors would like to acknowledge the workshop sponsored by the National Institutes of Health (NIH) on 28 and 29 May 2024 entitled “Gut Microbiota and Kidney Disease” and hosted by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The authors would specifically like to acknowledge D. Nihalani for helping to develop the workshop and bringing this expert panel together. They would also like to acknowledge other members of the NIDDK — P. Perrin, R. Lunsford, C. Maric-Bilkan, C. Mullins, C. J. Ketchum, and D. Gossett — who also helped to develop the workshop. The authors are grateful for funding that has supported their work: P.P.B. was supported by NIDDK grant K23 DK138239, and a research grant from Vedanta Biosciences, Inc.; K.L.P. was supported by NIH grant U24 DK127726; M.-K.H.W. was supported by NIH Katz Early Investigator Award R01 DK130815; S.L.H. was supported by NIH grants R01 HL172805, R01 HL103866 and P01 HL147823; J.A. was supported by the Urology Care Foundation grant UCF202-JA and ISAC award 22AU4279; A. Babiker was supported by an Antibacterial Resistance Leadership Group Early Faculty Seedling Award (NIAID) UM1 AI104681; D.D. was supported by NIH grants R35 GM142873 and R01 AT011396, the Stanford Microbiome Therapies Initiative and an OHF-ASN Foundation for Kidney Research Career Development Award; K.C.H. was supported by NIH grant RM1 GM135102; B.J. was supported by NHLBI grant R01 HL171401; A.W.M. was supported by NIDDK grant R01 DK121689; A.S. was supported by NIH grants R01 DK125256, U01 DK099914, and U01 DK099924; P.J.T. was supported by NIH grants R01 DK114034, R01 HL122593 and R01 CA255116; A.W.W. and the Rowett Institute were supported by core funding from the Scottish Government’s Rural and Environment Science and Analytical Services Division; N.W. was supported by the European Research Council grant 852796 under the European Union’s Horizon 2020 research and innovation programme, Corona-Stiftung grant S199/10080/2019, German Federal Ministry of Education and Research TAhRget grant 01EJ2202A and German Research Foundation (DFG) grant CRC 1470, 437531118; J.X. was supported by American Heart Association Career Development Award 23CDA1050485; T.Y. was supported by American Heart Association Career Development Award 852969, NIH grant R21 AG079357 and the University of Toledo Startup Fund; J.H. was supported by NIH grants UH3 TR003288, U2CTR004867, U01 DK133090, U24 DK114886, R01 DK133177 and R01 DK130815; M.R.R. is supported by NIH R35 GM152079; G.D.W. was supported by NIH grant R01 DK107566, the Center for Molecular Studies in Digestive and Liver Diseases under NIH grant P30 DK 050306, the PennCHOP MIcrobiome Program and the Penn Center for Nutritional Science and Medicine; H.R. was supported by NIDDK grants R01 DK123342 and R01 DK132278; M.H.W. was supported by NIAID grant K23 AI144036 and the US Centers for Disease Control and Prevention grant U54 CK000601; A.L.A. was supported by NIDDK grants K08 DK118176 and R01 DK138121, NCCIH grant R61 AT013008, DOD grant W81XWH2110644, the ISAC Award program, SUFU Foundation, Bristol Meyers Squibb Foundation, Cures Within Reach and the Urology Care Foundation; S.W. was supported by NIH grants R01 AI118807, R01 DK138912, R21 AI166263 and R21 AI171537 and Burroughs Wellcome Fund grant 1017880; M.M.R. was supported by DFG grants RI 2811/2-2 and SFB1192-project B10, Young Investigator Award NNF19OC0056043 from the Novo Nordisk Foundation, the Carlsberg Young Investigator fellowship and a grant by the Augustinusfonden, Denmark; A. Biruete was supported by NIH grant K12 TR004415 and the Showalter Trust Fund; A.H.A. was supported by NIH grants R01 DK107566, U24 DK060990, U24 DK137318 and UM1 TR004771; J.L.P. was supported by an American Heart Association Established Investigator Award and NIH grants R21 AG081683, R01 DK137762, R01 DK139021 and U54 DK137331.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Patricia P. Bloom or Jennifer L. Pluznick.

Ethics declarations

Competing interests

P.P.B. has received research funding from Vedanta Biosciences and consults for Nexilico and Boehringer Ingelheim. W.S.G. has received research funding from Merck, Sharpe & Dohme, and Astellas Pharmaceuticals. and serves on the scientific advisory boards of Empress Therapeutics, Freya Biosciences, Sail Biosciences and Seres Therapeutics. S.L.H. is a co-inventor on patents relating to diagnostics and therapeutics with a right to receive royalty payments for inventions or discoveries related to diagnostics or therapeutics from Cleveland Heart Lab, a fully owned subsidiary of Quest Diagnostics, and is a consultant for and receives research funds from Zehna Therapeutics. A. Babiker has served on a clinical advisory board for Beckman Coulter. M.A.F. is a co-founder of Kelonia and Revolution Medicines, a co-founder and director of Azalea Therapeutics, a member of the scientific advisory boards of the Chan Zuckerberg Initiative, NGM Biopharmaceuticals and TCG Labs/Soleil Labs, and an innovation partner at The Column Group. C.H. serves on the scientific advisory committee for Seres Therapeutics and Empress Therapeutics. K.K.-Z. has received honoraria from Fresenius Kabi. R.K. is a scientific advisory board member and consultant for BiomeSense, Inc., through which he has equity and receives income, is a scientific advisory board member and has equity in GenCirq, is a consultant for and receives income from DayTwo, has equity in and acts as a consultant for Cybele, is a co-founder of and has equity in Biota, Inc., and is a cofounder and scientific advisory board member of and has equity in Micronoma; the terms of these arrangements have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies. A.W.M. has received funding from Coloplast and is a scientific advisory board member for the Oxalosis and Hyperoxaluria Foundation. H.R. is a scientific advisory board member for Renibus Therapeutics and Rapafusyn Pharmaceuticals. W.H.W.T. serves as consultant for Sequana Medical, Cardiol Therapeutics, Genomics plc, Zehna Therapeutics, WhiteSwell, Boston Scientific, CardiaTec Biosciences, Bristol Myers Squibb, Alleviant Medical, Alexion Pharmaceuticals, Salubris Biotherapeutics and BioCardia, and has received honoraria from Springer, Belvoir Media Group and the American Board of Internal Medicine. A.W.W. has a research grant from ZOE, Ltd. and consults for EnteroBiotix, Ltd. M.R.R. has received research funding from Merck and Lilly, and is a founder of Symberix, Inc. N.W. received speaker honoraria from Novartis and Bayer. G.D.W. is an advisory board member for Danone and BioCodex and receives research support from Intercept Pharmaceuticals. A.L.A. has received consulting fees from AbbVie, Inc., holds stock options in Watershed Medical and serves on advisory boards for GlaxoSmithKline and Desert Harvest. M.M.R. has received research funding from Novo Nordisk A/S, Copenhagen. H.A.H. is the co-founder, president and Chief Scientific Officer of Oxalo Therapeutics, and is a scientific advisory council member of Oxalosis and the Hyperoxaluria Foundation. A. Biruete has received honoraria from Ardelyx, FMC North America, Dialysis Clinic Inc. and the National Kidney Foundation, and is part of the NextGen Scientist Cohort of the National Dairy Council. All other authors declare that they have no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Sang-Kyung Jo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Disclaimer

This report does not represent the official view of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Allergy and Infectious Diseases (NIAID), the National Institutes of Health (NIH), the Department of Health and Human Services (HHS) or any part of the US Federal Government. No official support or endorsement of this article by the NIDDK, NIAID or NIH is intended or should be inferred. This content is solely the responsibility of the authors and does not necessarily represent the official views of the Centers for Disease Control and Prevention (CDC).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloom, P.P., Garrett, W.S., Penniston, K.L. et al. Microbiota and kidney disease: the road ahead. Nat Rev Nephrol 21, 702–716 (2025). https://doi.org/10.1038/s41581-025-00988-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-025-00988-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing