Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endoplasmic reticulum-mediated organelle crosstalk in kidney disease

Abstract

The endoplasmic reticulum (ER) is a key organelle involved in a wide range of intracellular biological processes, including Ca2+ homeostasis; lipid metabolism; proteostasis through protein synthesis, folding and processing of secretory and transmembrane proteins; and signal transduction. The ER forms extensive physical interactions with various intracellular organelles through the membrane contact sites, enabling direct exchange of ions and lipids without vesicular transport. At mitochondria-associated membranes, ER–mitochondria communication governs calcium transfer, lipid synthesis, mitochondrial dynamics, the unfolded protein response and inflammation, all of which are essential for maintaining cellular homeostasis. The ER also interacts with the Golgi apparatus, endosomes and plasma membrane to facilitate transfer of calcium and lipids. Disruption of ER–organelle communication contributes to the development and progression of various kidney diseases, including diabetic kidney disease, acute kidney injury and polycystic kidney disease. Accordingly, ER–organelle communication has emerged as a promising therapeutic target. Pharmacological agents such as SGLT2 inhibitors, AMPK activators, mTOR inhibitors and RAAS blockers have been shown to restore ER–mitochondria communication and alleviate kidney injury in experimental models. Advancing our understanding of ER–organelle crosstalk may offer new mechanistic insights and contribute to the optimization of current treatment strategies for kidney disease.

Key points

  • The endoplasmic reticulum (ER) forms extensive membrane contact sites with other intracellular organelles and acts as a central hub for inter-organelle communication.

  • Mitochondria-associated membrane proteins at ER–mitochondria interfaces coordinate Ca2+ homeostasis; lipid metabolism; ER stress responses; mitochondrial dynamics including mitochondrial fusion, fission and mitophagy; and inflammatory responses, which are essential for maintaining cellular homeostasis.

  • ER communication with late endosomes and/or lysosomes, the Golgi apparatus and the plasma membrane primarily regulates intracellular Ca2+ homeostasis and non-vesicular lipid transport.

  • Therapeutic targeting of ER–organelle communication may resolve upstream dysfunctions such as Ca2+ imbalance, mitochondrial damage and ER stress, offering new opportunities for kidney disease treatment.

  • Pharmacological agents such as SGLT2 inhibitors, AMPK activators, mTOR inhibitors and RAAS inhibitors may exert nephroprotective effects by modulating ER–organelle communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roles of endoplasmic reticulum–mitochondria communication in calcium transfer and lipid homeostasis.
Fig. 2: Roles of endoplasmic reticulum–mitochondrial communication in mitochondrial homeostasis, the unfolded protein response and inflammation.
Fig. 3: Communication between the endoplasmic reticulum and late endosomes or lysosomes.
Fig. 4: Communication between the endoplasmic reticulum and the Golgi apparatus.
Fig. 5: Communication between the endoplasmic reticulum and the plasma membrane.

Similar content being viewed by others

References

  1. Hasegawa, S. & Inagi, R. Organelle stress and crosstalk in kidney disease. Kidney360 1, 1157–1164 (2020).

    Article  Google Scholar 

  2. Prinz, W. A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21, 7–24 (2020).

    Article  CAS  Google Scholar 

  3. Jain, A. & Zoncu, R. Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Mol. Metab. 60, 101481 (2022).

    Article  CAS  Google Scholar 

  4. Donahue, E. K. F., Ruark, E. M. & Burkewitz, K. Fundamental roles for inter-organelle communication in aging. Biochem. Soc. Trans. 50, 1389–1402 (2022).

    Article  CAS  Google Scholar 

  5. Bohnert, M. Tether me, tether me not — dynamic organelle contact sites in metabolic rewiring. Dev. Cell 54, 212–225 (2020).

    Article  CAS  Google Scholar 

  6. Eisenberg-Bord, M., Shai, N., Schuldiner, M. & Bohnert, M. A tether is a tether is a tether: tethering at membrane contact sites. Dev. Cell 39, 395–409 (2016).

    Article  CAS  Google Scholar 

  7. Voeltz, G. K., Sawyer, E. M., Hajnóczky, G. & Prinz, W. A. Making the connection: how membrane contact sites have changed our view of organelle biology. Cell 187, 257–270 (2024).

    Article  CAS  Google Scholar 

  8. Li, X. et al. Inhibition of SGLT2 protects podocytes in diabetic kidney disease by rebalancing mitochondria-associated endoplasmic reticulum membranes. Cell Commun. Signal. 22, 534 (2024).

    Article  CAS  Google Scholar 

  9. Li, X., Yang, Q., Liu, S., Song, S. & Wang, C. Mitochondria-associated endoplasmic reticulum membranes promote mitochondrial fission through AKAP1-Drp1 pathway in podocytes under high glucose conditions. Exp. Cell Res. 424, 113512 (2023).

    Article  CAS  Google Scholar 

  10. Li, Y. et al. Proteomic analysis of mitochondria associated membranes in renal ischemic reperfusion injury. J. Transl. Med. 22, 261 (2024).

    Article  CAS  Google Scholar 

  11. Csordás, G., Weaver, D. & Hajnóczky, G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523–540 (2018).

    Article  Google Scholar 

  12. Tamura, Y., Kawano, S. & Endo, T. Organelle contact zones as sites for lipid transfer. J. Biochem. 165, 115–123 (2019).

    Article  CAS  Google Scholar 

  13. Shimizu, S. Organelle zones in mitochondria. J. Biochem. 165, 101–107 (2019).

    Article  CAS  Google Scholar 

  14. Sasaki, K. & Yoshida, H. Organelle zones. Cell Struct. Funct. 44, 85–94 (2019).

    Article  CAS  Google Scholar 

  15. Westrate, L. M., Lee, J. E., Prinz, W. A. & Voeltz, G. K. Form follows function: the importance of endoplasmic reticulum shape. Annu. Rev. Biochem. 84, 791–811 (2015).

    Article  CAS  Google Scholar 

  16. Phillips, M. J. & Voeltz, G. K. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17, 69–82 (2016).

    Article  CAS  Google Scholar 

  17. Wu, H., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361, eaan5835 (2018).

    Article  Google Scholar 

  18. Tagliavacca, L. et al. The making of a professional secretory cell: architectural and functional changes in the ER during B lymphocyte plasma cell differentiation. Biol. Chem. 384, 1273–1277 (2003).

    Article  CAS  Google Scholar 

  19. Kirk, S. J., Cliff, J. M., Thomas, J. A. & Ward, T. H. Biogenesis of secretory organelles during B cell differentiation. J. Leukoc. Biol. 87, 245–255 (2010).

    Article  CAS  Google Scholar 

  20. Bergeron, M., Gaffiero, P. & Thiéry, G. Segmental variations in the organization of the endoplasmic reticulum of the rat nephron. A stereomicroscopic study. Cell Tissue Res. 247, 215–225 (1987).

    Article  CAS  Google Scholar 

  21. Yum, V. et al. Endoplasmic reticulum stress inhibition limits the progression of chronic kidney disease in the Dahl salt-sensitive rat. Am. J. Physiol. Renal Physiol. 312, F230–f244 (2017).

    Article  CAS  Google Scholar 

  22. Byun, J. H. et al. Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease. Nat. Rev. Nephrol. 21, 299–313 (2025).

    Article  CAS  Google Scholar 

  23. Maekawa, H. & Inagi, R. Pathophysiological role of organelle stress/crosstalk in AKI-to-CKD transition. Semin. Nephrol. 39, 581–588 (2019).

    Article  CAS  Google Scholar 

  24. Wu, D. et al. Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis. 14, 473 (2023).

    Article  CAS  Google Scholar 

  25. Hetz, C. & Papa, F. R. The unfolded protein response and cell fate control. Mol. Cell 69, 169–181 (2018).

    Article  CAS  Google Scholar 

  26. Kuznetsov, G., Bush, K. T., Zhang, P. L. & Nigam, S. K. Perturbations in maturation of secretory proteins and their association with endoplasmic reticulum chaperones in a cell culture model for epithelial ischemia. Proc. Natl Acad. Sci. USA 93, 8584–8589 (1996).

    Article  CAS  Google Scholar 

  27. Bush, K. T., George, S. K., Zhang, P. L. & Nigam, S. K. Pretreatment with inducers of ER molecular chaperones protects epithelial cells subjected to ATP depletion. Am. J. Physiol. 277, F211–F218 (1999).

    CAS  Google Scholar 

  28. Inoue, T., Maekawa, H. & Inagi, R. Organelle crosstalk in the kidney. Kidney Int. 95, 1318–1325 (2019).

    Article  CAS  Google Scholar 

  29. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    Article  CAS  Google Scholar 

  30. Bernhard, W. & Rouiller, C. Close topographical relationship between mitochondria and ergastoplasm of liver cells in a definite phase of cellular activity. J. Biophys. Biochem. Cytol. 2, 73–78 (1956).

    Article  CAS  Google Scholar 

  31. Vance, J. E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265, 7248–7256 (1990).

    Article  CAS  Google Scholar 

  32. Poston, C. N., Krishnan, S. C. & Bazemore-Walker, C. R. In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM). J. Proteom. 79, 219–230 (2013).

    Article  CAS  Google Scholar 

  33. Hayashi, T. & Su, T. P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131, 596–610 (2007).

    Article  CAS  Google Scholar 

  34. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011).

    Article  CAS  Google Scholar 

  35. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  Google Scholar 

  36. Hamasaki, M. et al. Autophagosomes form at ER–mitochondria contact sites. Nature 495, 389–393 (2013).

    Article  CAS  Google Scholar 

  37. Wilson, E. L. & Metzakopian, E. ER–mitochondria contact sites in neurodegeneration: genetic screening approaches to investigate novel disease mechanisms. Cell Death Differ. 28, 1804–1821 (2021).

    Article  CAS  Google Scholar 

  38. Li, C. et al. TraB family proteins are components of ER–mitochondrial contact sites and regulate ER–mitochondrial interactions and mitophagy. Nat. Commun. 13, 5658 (2022).

    Article  CAS  Google Scholar 

  39. Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1287 (2019).

    Article  Google Scholar 

  40. Ziegler, D. V., Martin, N. & Bernard, D. Cellular senescence links mitochondria–ER contacts and aging. Commun. Biol. 4, 1323 (2021).

    Article  Google Scholar 

  41. Bülow, M. H. & Sellin, J. New discoveries in ER–mitochondria communication. Biochem. Soc. Trans. 51, 571–577 (2023).

    Article  Google Scholar 

  42. Xue, M. et al. PACS-2 attenuates diabetic kidney disease via the enhancement of mitochondria-associated endoplasmic reticulum membrane formation. Cell Death Dis. 12, 1107 (2021).

    Article  CAS  Google Scholar 

  43. Yang, M. et al. DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. EBioMedicine 43, 607–619 (2019).

    Article  Google Scholar 

  44. Xie, Y. et al. Reticulon-1A mediates diabetic kidney disease progression through endoplasmic reticulum-mitochondrial contacts in tubular epithelial cells. Kidney Int. 102, 293–306 (2022).

    Article  CAS  Google Scholar 

  45. Wang, S. et al. Increased Ca2+ transport across the mitochondria-associated membranes by Mfn2 inhibiting endoplasmic reticulum stress in ischemia/reperfusion kidney injury. Sci. Rep. 13, 17257 (2023).

    Article  CAS  Google Scholar 

  46. Zhang, Z. et al. CGI1746 targets σ1R to modulate ferroptosis through mitochondria-associated membranes. Nat. Chem. Biol. 20, 699–709 (2024).

    Article  CAS  Google Scholar 

  47. Liu, Y. T. et al. Mitofusin2 ameliorated endoplasmic reticulum stress and mitochondrial reactive oxygen species through maintaining mitochondria-associated endoplasmic reticulum membrane integrity in cisplatin-induced acute kidney injury. Antioxid. Redox Signal. 40, 16–39 (2024).

    Article  Google Scholar 

  48. Kuo, I. Y. et al. Polycystin 2 regulates mitochondrial Ca2+ signaling, bioenergetics, and dynamics through mitofusin 2. Sci. Signal. 12, eaat7397 (2019).

    Article  Google Scholar 

  49. Onuchic, L. et al. The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion. Nat. Commun. 14, 1790 (2023).

    Article  CAS  Google Scholar 

  50. Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article  CAS  Google Scholar 

  51. Li, Y. E., Sowers, J. R., Hetz, C. & Ren, J. Cell death regulation by MAMs: from molecular mechanisms to therapeutic implications in cardiovascular diseases. Cell Death Dis. 13, 504 (2022).

    Article  CAS  Google Scholar 

  52. Rizzuto, R., De Stefani, D., Raffaello, A. & Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566–578 (2012).

    Article  CAS  Google Scholar 

  53. Cárdenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283 (2010).

    Article  Google Scholar 

  54. Giorgi, C., Marchi, S. & Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19, 713–730 (2018).

    Article  CAS  Google Scholar 

  55. Bartok, A. et al. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat. Commun. 10, 3726 (2019).

    Article  Google Scholar 

  56. Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006).

    Article  CAS  Google Scholar 

  57. Várnai, P., Balla, A., Hunyady, L. & Balla, T. Targeted expression of the inositol 1,4,5-triphosphate receptor (IP3R) ligand-binding domain releases Ca2+ via endogenous IP3R channels. Proc. Natl Acad. Sci. USA 102, 7859–7864 (2005).

    Article  Google Scholar 

  58. Schmitz, E. A., Takahashi, H. & Karakas, E. Structural basis for activation and gating of IP3 receptors. Nat. Commun. 13, 1408 (2022).

    Article  CAS  Google Scholar 

  59. Rossi, A., Pizzo, P. & Filadi, R. Calcium, mitochondria and cell metabolism: a functional triangle in bioenergetics. Biochim. Biophys. Acta Mol. Cell Res. 1866, 1068–1078 (2019).

    Article  CAS  Google Scholar 

  60. Wu, D. et al. Ischemia/reperfusion induce renal tubule apoptosis by inositol 1,4,5-trisphosphate receptor and L-type Ca2+ channel opening. Am. J. Nephrol. 28, 487–499 (2008).

    Article  CAS  Google Scholar 

  61. Xu, H. et al. IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an adriamycin nephropathy rat model. BMC Nephrol. 19, 140 (2018).

    Article  Google Scholar 

  62. Douguet, D., Patel, A. & Honoré, E. Structure and function of polycystins: insights into polycystic kidney disease. Nat. Rev. Nephrol. 15, 412–422 (2019).

    Article  Google Scholar 

  63. Li, Y. et al. Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J. Biol. Chem. 284, 36431–36441 (2009).

    Article  CAS  Google Scholar 

  64. Sammels, E. et al. Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2+ release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain. J. Biol. Chem. 285, 18794–18805 (2010).

    Article  CAS  Google Scholar 

  65. Li, Y., Wright, J. M., Qian, F., Germino, G. G. & Guggino, W. B. Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J. Biol. Chem. 280, 41298–41306 (2005).

    Article  CAS  Google Scholar 

  66. Liu, Y. et al. DJ-1 regulates the integrity and function of ER–mitochondria association through interaction with IP3R3-Grp75-VDAC1. Proc. Natl Acad. Sci. USA 116, 25322–25328 (2019).

    Article  CAS  Google Scholar 

  67. Leeds, J. et al. Protective role of DJ-1 in endotoxin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 319, F654–f663 (2020).

    Article  CAS  Google Scholar 

  68. Li, Z. et al. Overexpression of DJ-1 alleviates autosomal dominant polycystic kidney disease by regulating cell proliferation, apoptosis, and mitochondrial metabolism in vitro and in vivo. Ann. Transl. Med. 8, 1175 (2020).

    Article  CAS  Google Scholar 

  69. Hirabayashi, Y. et al. ER–mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017).

    Article  CAS  Google Scholar 

  70. De Vos, K. J. et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet. 21, 1299–1311 (2012).

    Article  Google Scholar 

  71. Paillusson, S. et al. α-Synuclein binds to the ER–mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. 134, 129–149 (2017).

    Article  CAS  Google Scholar 

  72. Stoica, R. et al. ER–mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996 (2014).

    Article  CAS  Google Scholar 

  73. Gomez-Suaga, P. et al. The ER–mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr. Biol. 27, 371–385 (2017).

    Article  CAS  Google Scholar 

  74. Obara, C. J. et al. Motion of VAPB molecules reveals ER–mitochondria contact site subdomains. Nature 626, 169–176 (2024).

    Article  CAS  Google Scholar 

  75. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  Google Scholar 

  76. Saukko-Paavola, A. J. & Klemm, R. W. Remodelling of mitochondrial function by import of specific lipids at multiple membrane-contact sites. FEBS Lett. 598, 1274–1291 (2024).

    Article  Google Scholar 

  77. Vance, J. E. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta 1841, 595–609 (2014).

    Article  CAS  Google Scholar 

  78. Yeo, H. K. et al. Phospholipid transfer function of PTPIP51 at mitochondria-associated ER membranes. EMBO Rep. 22, e51323 (2021).

    Article  CAS  Google Scholar 

  79. Galmes, R. et al. ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep. 17, 800–810 (2016).

    Article  CAS  Google Scholar 

  80. Monteiro-Cardoso, V. F. et al. ORP5/8 and MIB/MICOS link ER-mitochondria and intra-mitochondrial contacts for non-vesicular transport of phosphatidylserine. Cell Rep. 40, 111364 (2022).

    Article  CAS  Google Scholar 

  81. Hernández-Alvarez, M. I. et al. Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease. Cell 177, 881–895.e17 (2019).

    Article  Google Scholar 

  82. Chang, T. Y., Li, B. L., Chang, C. C. & Urano, Y. Acyl-coenzyme A:cholesterol acyltransferases. Am. J. Physiol. Endocrinol. Metab. 297, E1–E9 (2009).

    Article  CAS  Google Scholar 

  83. Lee, R. G., Willingham, M. C., Davis, M. A., Skinner, K. A. & Rudel, L. L. Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. J. Lipid Res. 41, 1991–2001 (2000).

    Article  CAS  Google Scholar 

  84. Kim, H. J., Moradi, H., Yuan, J., Norris, K. & Vaziri, N. D. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am. J. Physiol. Renal Physiol. 296, F1297–F1306 (2009).

    Article  CAS  Google Scholar 

  85. Liu, X. et al. Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome. Kidney Int. 98, 1275–1285 (2020).

    Article  CAS  Google Scholar 

  86. Lewin, T. M., Kim, J. H., Granger, D. A., Vance, J. E. & Coleman, R. A. Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J. Biol. Chem. 276, 24674–24679 (2001).

    Article  CAS  Google Scholar 

  87. Wang, Y. et al. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol. 51, 102262 (2022).

    Article  CAS  Google Scholar 

  88. Dai, Y. et al. Inhibition of ACSL4 ameliorates tubular ferroptotic cell death and protects against fibrotic kidney disease. Commun. Biol. 6, 907 (2023).

    Article  CAS  Google Scholar 

  89. Parton, R. G. & del Pozo, M. A. Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell Biol. 14, 98–112 (2013).

    Article  CAS  Google Scholar 

  90. Sala-Vila, A. et al. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci. Rep. 6, 27351 (2016).

    Article  CAS  Google Scholar 

  91. Bosch, M. et al. Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Curr. Biol. 21, 681–686 (2011).

    Article  CAS  Google Scholar 

  92. Fu, Y. et al. Expression of caveolin-1 enhances cholesterol efflux in hepatic cells. J. Biol. Chem. 279, 14140–14146 (2004).

    Article  CAS  Google Scholar 

  93. Bravo-Sagua, R. et al. Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria communication during the early phase of ER stress. Cell Death Differ. 26, 1195–1212 (2019).

    Article  CAS  Google Scholar 

  94. Wan, X. et al. Loss of epithelial membrane protein 2 aggravates podocyte injury via upregulation of caveolin-1. J. Am. Soc. Nephrol. 27, 1066–1075 (2016).

    Article  CAS  Google Scholar 

  95. Mehta, N. et al. Caveolin-1 regulation of Sp1 controls production of the antifibrotic protein follistatin in kidney mesangial cells. Cell Commun. Signal. 17, 37 (2019).

    Article  Google Scholar 

  96. Willière, Y. et al. Caveolin 1 promotes renal water and salt reabsorption. Sci. Rep. 8, 545 (2018).

    Article  Google Scholar 

  97. Vasuri, F. et al. Caveolin-1 in situ expression in glomerular and peritubular capillaries as a marker of ultrastructural progression and severity of renal thrombotic microangiopathy. J. Nephrol. 36, 2327–2333 (2023).

    Article  CAS  Google Scholar 

  98. Guan, T. H. et al. Caveolin-1 deficiency protects against mesangial matrix expansion in a mouse model of type 1 diabetic nephropathy. Diabetologia 56, 2068–2077 (2013).

    Article  CAS  Google Scholar 

  99. Mahmoudi, M. et al. In vivo and in vitro models demonstrate a role for caveolin-1 in the pathogenesis of ischaemic acute renal failure. J. Pathol. 200, 396–405 (2003).

    Article  CAS  Google Scholar 

  100. Tamai, O. et al. Caveolae in mesangial cells and caveolin expression in mesangial proliferative glomerulonephritis. Kidney Int. 59, 471–480 (2001).

    Article  CAS  Google Scholar 

  101. Sörensson, J. et al. Glomerular endothelial fenestrae in vivo are not formed from caveolae. J. Am. Soc. Nephrol. 13, 2639–2647 (2002).

    Article  Google Scholar 

  102. Chen, W., Zhao, H. & Li, Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal. Transduct. Target. Ther. 8, 333 (2023).

    Article  Google Scholar 

  103. Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).

    Article  CAS  Google Scholar 

  104. Naon, D. et al. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc. Natl Acad. Sci. USA 113, 11249–11254 (2016).

    Article  CAS  Google Scholar 

  105. Losón, O. C., Song, Z., Chen, H. & Chan, D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24, 659–667 (2013).

    Article  Google Scholar 

  106. Adachi, Y. et al. Drp1 tubulates the ER in a GTPase-independent manner. Mol. Cell 80, 621–632.e626 (2020).

    Article  CAS  Google Scholar 

  107. Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013).

    Article  CAS  Google Scholar 

  108. Brown, E. J. et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42, 72–76 (2010).

    Article  CAS  Google Scholar 

  109. Boyer, O. et al. INF2 mutations in Charcot–Marie–Tooth disease with glomerulopathy. N. Engl. J. Med. 365, 2377–2388 (2011).

    Article  CAS  Google Scholar 

  110. Youle, R. J. & Karbowski, M. Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol. 6, 657–663 (2005).

    Article  CAS  Google Scholar 

  111. Iwasawa, R., Mahul-Mellier, A. L., Datler, C., Pazarentzos, E. & Grimm, S. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30, 556–568 (2011).

    Article  CAS  Google Scholar 

  112. Breckenridge, D. G., Stojanovic, M., Marcellus, R. C. & Shore, G. C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 160, 1115–1127 (2003).

    Article  CAS  Google Scholar 

  113. Simmen, T. et al. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. 24, 717–729 (2005).

    Article  CAS  Google Scholar 

  114. Namba, T. BAP31 regulates mitochondrial function via interaction with Tom40 within ER-mitochondria contact sites. Sci. Adv. 5, eaaw1386 (2019).

    Article  CAS  Google Scholar 

  115. Yang, M. et al. MAMs protect against ectopic fat deposition and lipid-related kidney damage in DN patients. Front. Endocrinol. 12, 609580 (2021).

    Article  Google Scholar 

  116. Li, C. et al. PACS-2 ameliorates tubular injury by facilitating endoplasmic reticulum-mitochondria contact and mitophagy in diabetic nephropathy. Diabetes 71, 1034–1050 (2022).

    Article  CAS  Google Scholar 

  117. Chen, Y. & Dorn, G. W. 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475 (2013).

    Article  CAS  Google Scholar 

  118. McLelland, G.-L. et al. Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. eLife 7, e32866 (2018).

    Article  Google Scholar 

  119. Zhan, M., Usman, I. M., Sun, L. & Kanwar, Y. S. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J. Am. Soc. Nephrol. 26, 1304–1321 (2015).

    Article  CAS  Google Scholar 

  120. Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185 (2012).

    Article  Google Scholar 

  121. Wu, W. et al. FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy. Autophagy 12, 1675–1676 (2016).

    Article  CAS  Google Scholar 

  122. Zhang, W. et al. Mitophagy mediated by HIF-1α/FUNDC1 signaling in tubular cells protects against renal ischemia/reperfusion injury. Ren. Fail. 46, 2332492 (2024).

    Article  Google Scholar 

  123. Wang, J., Zhu, P., Li, R., Ren, J. & Zhou, H. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol. 30, 101415 (2020).

    Article  CAS  Google Scholar 

  124. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    Article  CAS  Google Scholar 

  125. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

    Article  CAS  Google Scholar 

  126. Verfaillie, T. et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19, 1880–1891 (2012).

    Article  CAS  Google Scholar 

  127. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  Google Scholar 

  128. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  Google Scholar 

  129. Shen, J., Chen, X., Hendershot, L. & Prywes, R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99–111 (2002).

    Article  CAS  Google Scholar 

  130. Muñoz, J. P. et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32, 2348–2361 (2013).

    Article  Google Scholar 

  131. Sassano, M. L. et al. PERK recruits E-Syt1 at ER-mitochondria contacts for mitochondrial lipid transport and respiration. J. Cell Biol. 222, e202206008 (2023).

    Article  CAS  Google Scholar 

  132. Carreras-Sureda, A. et al. Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nat. Cell Biol. 21, 755–767 (2019).

    Article  CAS  Google Scholar 

  133. Mori, T., Hayashi, T., Hayashi, E. & Su, T. P. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS ONE 8, e76941 (2013).

    Article  CAS  Google Scholar 

  134. Takeda, K. et al. MITOL prevents ER stress-induced apoptosis by IRE1α ubiquitylation at ER-mitochondria contact sites. EMBO J. 38, e100999 (2019).

    Article  Google Scholar 

  135. Kanekura, K., Nishimoto, I., Aiso, S. & Matsuoka, M. Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J. Biol. Chem. 281, 30223–30233 (2006).

    Article  CAS  Google Scholar 

  136. Burkewitz, K. et al. Atf-6 regulates lifespan through ER-mitochondrial calcium homeostasis. Cell Rep. 32, 108125 (2020).

    Article  CAS  Google Scholar 

  137. Gkogkas, C. et al. VAPB interacts with and modulates the activity of ATF6. Hum. Mol. Genet. 17, 1517–1526 (2008).

    Article  CAS  Google Scholar 

  138. Igwebuike, C. et al. Cross organelle stress response disruption promotes gentamicin-induced proteotoxicity. Cell Death Dis. 11, 217 (2020).

    Article  CAS  Google Scholar 

  139. Cao, Y. et al. Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway. Front. Cell Dev. Biol. 9, 769213 (2021).

    Article  Google Scholar 

  140. Jiang, M. et al. Endoplasmic reticulum stress-dependent activation of iNOS/NO-NF-κB signaling and NLRP3 inflammasome contributes to endothelial inflammation and apoptosis associated with microgravity. FASEB J. 34, 10835–10849 (2020).

    Article  CAS  Google Scholar 

  141. Menu, P. et al. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis. 3, e261 (2012).

    Article  CAS  Google Scholar 

  142. Hopfner, K. P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

    Article  CAS  Google Scholar 

  143. Civril, F. et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498, 332–337 (2013).

    Article  CAS  Google Scholar 

  144. Zhang, C. et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature 567, 394–398 (2019).

    Article  CAS  Google Scholar 

  145. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  Google Scholar 

  146. Balka, K. R. et al. TBK1 and IKKε act redundantly to mediate STING-induced NF-κB responses in myeloid cells. Cell Rep. 31, 107492 (2020).

    Article  CAS  Google Scholar 

  147. Smith, J. A. STING, the endoplasmic reticulum, and mitochondria: is three a crowd or a conversation? Front. Immunol. 11, 611347 (2020).

    Article  CAS  Google Scholar 

  148. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    Article  CAS  Google Scholar 

  149. Maekawa, H. et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 29, 1261–1273.e1266 (2019).

    Article  CAS  Google Scholar 

  150. Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799.e785 (2019).

    Article  CAS  Google Scholar 

  151. Zang, N. et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience 25, 105145 (2022).

    Article  CAS  Google Scholar 

  152. Bai, J. et al. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc. Natl Acad. Sci. USA 114, 12196–12201 (2017).

    Article  CAS  Google Scholar 

  153. Bai, J. et al. Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Commun. Biol. 3, 257 (2020).

    Article  CAS  Google Scholar 

  154. He, Y., Hara, H. & Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016).

    Article  CAS  Google Scholar 

  155. Martinvalet, D. The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses. Cell Death Dis. 9, 336 (2018).

    Article  Google Scholar 

  156. Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454–460 (2013).

    Article  CAS  Google Scholar 

  157. Subramanian, N., Natarajan, K., Clatworthy, M. R., Wang, Z. & Germain, R. N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153, 348–361 (2013).

    Article  CAS  Google Scholar 

  158. Pereira, A. C. et al. ER-mitochondria communication is involved in NLRP3 inflammasome activation under stress conditions in the innate immune system. Cell Mol. Life Sci. 79, 213 (2022).

    Article  CAS  Google Scholar 

  159. Ni, H. et al. XBP1 modulates endoplasmic reticulum and mitochondria crosstalk via regulating NLRP3 in renal ischemia/reperfusion injury. Cell Death Discov. 9, 69 (2023).

    Article  CAS  Google Scholar 

  160. Xian, H. et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 55, 1370–1385.e1378 (2022).

    Article  CAS  Google Scholar 

  161. Gaidt, M. M. et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171, 1110–1124.e1118 (2017).

    Article  CAS  Google Scholar 

  162. Wu, J. et al. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J. Clin. Invest. 131, e136329 (2021).

    Article  CAS  Google Scholar 

  163. Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481–3500 (2011).

    Article  CAS  Google Scholar 

  164. Friedman, J. R., Dibenedetto, J. R., West, M., Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol. Biol. Cell 24, 1030–1040 (2013).

    Article  CAS  Google Scholar 

  165. Vrijsen, S. et al. Inter-organellar communication in Parkinson’s and Alzheimer’s disease: looking beyond endoplasmic reticulum-mitochondria contact sites. Front. Neurosci. 16, 900338 (2022).

    Article  Google Scholar 

  166. Raiborg, C., Wenzel, E. M. & Stenmark, H. ER-endosome contact sites: molecular compositions and functions. EMBO J. 34, 1848–1858 (2015).

    Article  CAS  Google Scholar 

  167. Rowland, A. A., Chitwood, P. J., Phillips, M. J. & Voeltz, G. K. ER contact sites define the position and timing of endosome fission. Cell 159, 1027–1041 (2014).

    Article  CAS  Google Scholar 

  168. Atakpa, P., Thillaiappan, N. B., Mataragka, S., Prole, D. L. & Taylor, C. W. IP3 receptors preferentially associate with ER-lysosome contact sites and selectively deliver Ca2+ to lysosomes. Cell Rep. 25, 3180–3193.e7 (2018).

    Article  CAS  Google Scholar 

  169. Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J. Cell Biol. 185, 1209–1225 (2009).

    Article  CAS  Google Scholar 

  170. Alpy, F. et al. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. J. Cell Sci. 126, 5500–5512 (2013).

    CAS  Google Scholar 

  171. Leonzino, M., Reinisch, K. M. & De Camilli, P. Insights into VPS13 properties and function reveal a new mechanism of eukaryotic lipid transport. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866, 159003 (2021).

    Article  CAS  Google Scholar 

  172. Raiborg, C. et al. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature 520, 234–238 (2015).

    Article  CAS  Google Scholar 

  173. Elbaz-Alon, Y. et al. PDZD8 interacts with Protrudin and Rab7 at ER-late endosome membrane contact sites associated with mitochondria. Nat. Commun. 11, 3645 (2020).

    Article  CAS  Google Scholar 

  174. Shirane, M. et al. Protrudin and PDZD8 contribute to neuronal integrity by promoting lipid extraction required for endosome maturation. Nat. Commun. 11, 4576 (2020).

    Article  CAS  Google Scholar 

  175. Hasegawa, S. et al. Organelle communication maintains mitochondrial and endosomal homeostasis during podocyte lipotoxicity. JCI Insight 9, e182534 (2024).

    Article  Google Scholar 

  176. Du, X. et al. A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. J. Cell Biol. 192, 121–135 (2011).

    Article  CAS  Google Scholar 

  177. Pfeffer, S. R. NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes. J. Biol. Chem. 294, 1706–1709 (2019).

    Article  CAS  Google Scholar 

  178. Lim, C. Y. et al. ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann–Pick type C. Nat. Cell Biol. 21, 1206–1218 (2019).

    Article  CAS  Google Scholar 

  179. Kirby, A. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013).

    Article  CAS  Google Scholar 

  180. Dvela-Levitt, M. et al. Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell 178, 521–535.e523 (2019).

    Article  CAS  Google Scholar 

  181. Funato, K. & Riezman, H. Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J. Cell Biol. 155, 949–959 (2001).

    Article  CAS  Google Scholar 

  182. Brandizzi, F. & Barlowe, C. Organization of the ER–Golgi interface for membrane traffic control. Nat. Rev. Mol. Cell Biol. 14, 382–392 (2013).

    Article  CAS  Google Scholar 

  183. Peretti, D., Dahan, N., Shimoni, E., Hirschberg, K. & Lev, S. Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol. Biol. Cell 19, 3871–3884 (2008).

    Article  CAS  Google Scholar 

  184. Loewen, C. J., Roy, A. & Levine, T. P. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22, 2025–2035 (2003).

    Article  CAS  Google Scholar 

  185. Mesmin, B. et al. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155, 830–843 (2013).

    Article  CAS  Google Scholar 

  186. Duara, J. et al. Oxysterol-binding protein like 7 deficiency leads to ER stress mediated apoptosis in podocytes and proteinuria. Am. J. Physiol. Renal Physiol. 327, F340–F350 (2024).

    Article  CAS  Google Scholar 

  187. Kumagai, K. & Hanada, K. Structure, functions and regulation of CERT, a lipid-transfer protein for the delivery of ceramide at the ER-Golgi membrane contact sites. FEBS Lett. 593, 2366–2377 (2019).

    Article  CAS  Google Scholar 

  188. Bandet, C. L. et al. Ceramide transporter CERT is involved in muscle insulin signaling defects under lipotoxic conditions. Diabetes 67, 1258–1271 (2018).

    Article  CAS  Google Scholar 

  189. Liu, L. K., Choudhary, V., Toulmay, A. & Prinz, W. A. An inducible ER–Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J. Cell Biol. 216, 131–147 (2017).

    Article  CAS  Google Scholar 

  190. Green, C. D., Maceyka, M., Cowart, L. A. & Spiegel, S. Sphingolipids in metabolic disease: the good, the bad, and the unknown. Cell Metab. 33, 1293–1306 (2021).

    Article  CAS  Google Scholar 

  191. Nicholson, R. J., Holland, W. L. & Summers, S. A. Ceramides and acute kidney injury. Semin. Nephrol. 42, 151281 (2022).

    Article  CAS  Google Scholar 

  192. Bhat, O. M., Yuan, X., Li, G., Lee, R. & Li, P. L. Sphingolipids and redox signaling in renal regulation and chronic kidney diseases. Antioxid. Redox Signal. 28, 1008–1026 (2018).

    Article  CAS  Google Scholar 

  193. Mitrofanova, A., Drexler, Y., Merscher, S. & Fornoni, A. Role of sphingolipid signaling in glomerular diseases: focus on DKD and FSGS. J. Cell Signal. 1, 56–69 (2020).

    Google Scholar 

  194. Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003).

    Article  CAS  Google Scholar 

  195. Revert, F. et al. Increased Goodpasture antigen-binding protein expression induces type IV collagen disorganization and deposit of immunoglobulin A in glomerular basement membrane. Am. J. Pathol. 171, 1419–1430 (2007).

    Article  CAS  Google Scholar 

  196. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    Article  CAS  Google Scholar 

  197. Park, C. Y. et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876–890 (2009).

    Article  CAS  Google Scholar 

  198. Hanaoka, K. et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408, 990–994 (2000).

    Article  CAS  Google Scholar 

  199. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article  CAS  Google Scholar 

  200. Woodward, O. M. et al. Identification of a polycystin-1 cleavage product, P100, that regulates store operated Ca entry through interactions with STIM1. PLoS ONE 5, e12305 (2010).

    Article  Google Scholar 

  201. Yanda, M. K., Liu, Q., Cebotaru, V., Guggino, W. B. & Cebotaru, L. Role of calcium in adult onset polycystic kidney disease. Cell Signal. 53, 140–150 (2019).

    Article  CAS  Google Scholar 

  202. Saheki, Y. et al. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat. Cell Biol. 18, 504–515 (2016).

    Article  CAS  Google Scholar 

  203. Chang, C. L. & Liou, J. Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. J. Biol. Chem. 290, 14289–14301 (2015).

    Article  CAS  Google Scholar 

  204. Chung, J. et al. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349, 428–432 (2015).

    Article  CAS  Google Scholar 

  205. Ghai, R. et al. ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P2) and regulate its level at the plasma membrane. Nat. Commun. 8, 757 (2017).

    Article  Google Scholar 

  206. The Nuffield Department of Population Health Renal Studies Group & SGLT2 Inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 400, 1788–1801 (2022).

    Article  Google Scholar 

  207. Shih, J. Y. et al. Dapagliflozin suppresses ER stress and improves subclinical myocardial function in diabetes: from bedside to bench. Diabetes 70, 262–267 (2021).

    Article  CAS  Google Scholar 

  208. Swe, M. T. et al. Dapagliflozin not only improves hepatic injury and pancreatic endoplasmic reticulum stress, but also induces hepatic gluconeogenic enzymes expression in obese rats. Clin. Sci. 133, 2415–2430 (2019).

    Article  CAS  Google Scholar 

  209. Nakatsuka, A., Yamaguchi, S. & Wada, J. GRP78 contributes to the beneficial effects of SGLT2 inhibitor on proximal tubular cells in DKD. Diabetes 73, 763–779 (2024).

    Article  CAS  Google Scholar 

  210. Shibusawa, R. et al. Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci. Rep. 9, 9887 (2019).

    Article  Google Scholar 

  211. Lee, Y. H. et al. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy. Am. J. Physiol. Renal Physiol. 317, F767–F780 (2019).

    Article  CAS  Google Scholar 

  212. Martínez-Rojas, M. et al. Transient inhibition of sodium-glucose cotransporter 2 after ischemia/reperfusion injury ameliorates chronic kidney disease. JCI Insight 9, e173675 (2024).

    Article  Google Scholar 

  213. Ke, Q. et al. SGLT2 inhibitor counteracts NLRP3 inflammasome via tubular metabolite itaconate in fibrosis kidney. FASEB J. 36, e22078 (2022).

    Article  CAS  Google Scholar 

  214. Steinberg, G. R. & Hardie, D. G. New insights into activation and function of the AMPK. Nat. Rev. Mol. Cell Biol. 24, 255–272 (2023).

    Article  CAS  Google Scholar 

  215. Dagorn, P. G. et al. A novel direct adenosine monophosphate kinase activator ameliorates disease progression in preclinical models of autosomal dominant polycystic kidney disease. Kidney Int. 103, 917–929 (2023).

    Article  CAS  Google Scholar 

  216. Kikuchi, H. et al. Failure to sense energy depletion may be a novel therapeutic target in chronic kidney disease. Kidney Int. 95, 123–137 (2019).

    Article  CAS  Google Scholar 

  217. Declèves, A. E., Mathew, A. V., Cunard, R. & Sharma, K. AMPK mediates the initiation of kidney disease induced by a high-fat diet. J. Am. Soc. Nephrol. 22, 1846–1855 (2011).

    Article  Google Scholar 

  218. Han, Y. C. et al. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis. 12, 925 (2021).

    Article  CAS  Google Scholar 

  219. Trefts, E. & Shaw, R. J. AMPK: restoring metabolic homeostasis over space and time. Mol. Cell 81, 3677–3690 (2021).

    Article  CAS  Google Scholar 

  220. Arias-del-Val, J. et al. Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release from the endoplasmic reticulum by AMP-activated kinase modulators. Cell Calcium 77, 68–76 (2019).

    Article  CAS  Google Scholar 

  221. Stein, B. D. et al. Quantitative in vivo proteomics of metformin response in liver reveals AMPK-dependent and -independent signaling networks. Cell Rep. 29, 3331–3348.e3337 (2019).

    Article  CAS  Google Scholar 

  222. Lee, M. et al. Phosphorylation of Acetyl-CoA carboxylase by AMPK reduces renal fibrosis and is essential for the anti-fibrotic effect of metformin. J. Am. Soc. Nephrol. 29, 2326–2336 (2018).

    Article  CAS  Google Scholar 

  223. Li, M. et al. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res. 34, 683–670 (2024).

    Article  CAS  Google Scholar 

  224. Wikstrom, J. D. et al. AMPK regulates ER morphology and function in stressed pancreatic β-cells via phosphorylation of DRP1. Mol. Endocrinol. 27, 1706–1723 (2013).

    Article  CAS  Google Scholar 

  225. Hu, Y. et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy 17, 1142–1156 (2021).

    Article  CAS  Google Scholar 

  226. Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016).

    Article  CAS  Google Scholar 

  227. Steinberg, G. R. & Carling, D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug. Dis. 18, 527–551 (2019).

    Article  CAS  Google Scholar 

  228. Kim, H. et al. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis. Am. J. Physiol. Renal Physiol. 308, F226–F236 (2015).

    Article  CAS  Google Scholar 

  229. Chen, Q., Thompson, J., Hu, Y., Das, A. & Lesnefsky, E. J. Metformin attenuates ER stress-induced mitochondrial dysfunction. Transl. Res. 190, 40–50 (2017).

    Article  CAS  Google Scholar 

  230. Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).

    Article  CAS  Google Scholar 

  231. Lieberthal, W. & Levine, J. S. The role of the mammalian target of rapamycin (mTOR) in renal disease. J. Am. Soc. Nephrol. 20, 2493–2502 (2009).

    Article  CAS  Google Scholar 

  232. Betz, C. & Hall, M. N. Where is mTOR and what is it doing there? J. Cell Biol. 203, 563–574 (2013).

    Article  CAS  Google Scholar 

  233. Betz, C. et al. mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl Acad. Sci. USA 110, 12526–12534 (2013).

    Article  CAS  Google Scholar 

  234. Dong, G. et al. mTOR contributes to ER stress and associated apoptosis in renal tubular cells. Am. J. Physiol. Renal Physiol. 308, F267–F274 (2015).

    Article  CAS  Google Scholar 

  235. Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    Article  CAS  Google Scholar 

  236. Ito, N. et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab. Invest. 91, 1584–1595 (2011).

    Article  CAS  Google Scholar 

  237. Wang, Y. et al. PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury. Cell Death Dis. 9, 1113 (2018).

    Article  Google Scholar 

  238. Bravo-Sagua, R. et al. mTORC1 inhibitor rapamycin and ER stressor tunicamycin induce differential patterns of ER-mitochondria coupling. Sci. Rep. 6, 36394 (2016).

    Article  CAS  Google Scholar 

  239. Remuzzi, G., Perico, N., Macia, M. & Ruggenenti, P. The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int. 68, S57–S65 (2005).

    Article  Google Scholar 

  240. Mehta, P. K. & Griendling, K. K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 292, C82–C97 (2007).

    Article  CAS  Google Scholar 

  241. Escobales, N., Nuñez, R. E. & Javadov, S. Mitochondrial angiotensin receptors and cardioprotective pathways. Am. J. Physiol. Heart Circ. Physiol. 316, H1426–h1438 (2019).

    Article  CAS  Google Scholar 

  242. Delgado-Valero, B. et al. Role of endoplasmic reticulum stress in renal damage after myocardial infarction. Clin. Sci. 135, 143–159 (2021).

    Article  Google Scholar 

  243. Wang, J. et al. Involvement of endoplasmic reticulum stress in angiotensin II-induced NLRP3 inflammasome activation in human renal proximal tubular cells in vitro. Acta Pharmacol. Sin. 36, 821–830 (2015).

    Article  CAS  Google Scholar 

  244. Ferrão, F. M. et al. Exposure of luminal membranes of LLC-PK1 cells to ANG II induces dimerization of AT1/AT2 receptors to activate SERCA and to promote Ca2+ mobilization. Am. J. Physiol. Renal Physiol. 302, F875–F883 (2012).

    Article  Google Scholar 

  245. Ferrão, F. M. et al. Luminal ANG II is internalized as a complex with AT1R/AT2R heterodimers to target endoplasmic reticulum in LLC-PK1 cells. Am. J. Physiol. Renal Physiol. 313, F440–F449 (2017).

    Article  Google Scholar 

  246. Abadir, P. M. et al. Identification and characterization of a functional mitochondrial angiotensin system. Proc. Natl Acad. Sci. USA 108, 14849–14854 (2011).

    Article  CAS  Google Scholar 

  247. Friederich-Persson, M. & Persson, P. Mitochondrial angiotensin II receptors regulate oxygen consumption in kidney mitochondria from healthy and type 1 diabetic rats. Am. J. Physiol. Renal Physiol. 318, F683–F688 (2020).

    Article  Google Scholar 

  248. Micakovic, T. et al. The angiotensin II type 2 receptors protect renal tubule mitochondria in early stages of diabetes mellitus. Kidney Int. 94, 937–950 (2018).

    Article  CAS  Google Scholar 

  249. Chiang, C. K. et al. Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol. Med. 17, 1295–1305 (2011).

    Article  CAS  Google Scholar 

  250. Li, C. et al. Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. Am. J. Physiol. Renal Physiol. 310, F351–F363 (2016).

    Article  CAS  Google Scholar 

  251. Ruilope, L. M. et al. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 375, 1255–1266 (2010).

    Article  CAS  Google Scholar 

  252. Ding, J. et al. The angiotensin receptor neprilysin inhibitor LCZ696 attenuates renal fibrosis via ASK1/JNK/p38 MAPK-mediated apoptosis in unilateral ureteral obstruction. PLoS ONE 18, e0286903 (2023).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.A.H. researched data for the article and wrote the manuscript. Both authors discussed the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Reiko Inagi  (稲城玲子).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Richard Austin, Alessia Fornoni, who co-reviewed with Rachel Njeim, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y.A., Inagi, R. Endoplasmic reticulum-mediated organelle crosstalk in kidney disease. Nat Rev Nephrol (2025). https://doi.org/10.1038/s41581-025-00989-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-025-00989-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing