Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Improving outcomes in kidney transplantation through advances in donor organ perfusion

Abstract

The global shortage of suitable donor kidneys is the primary challenge in kidney transplantation, and it is exacerbated by ageing donors with increased numbers of health issues. Improving organ assessment, preservation and conditioning could enhance organ utilization and patient outcomes. Hypothermic machine perfusion (HMP) is associated with better results than static cold storage by reducing delayed graft function and improving short-term graft survival, especially in kidneys recovered from marginal-quality donors. Although HMP is useful for organ preservation, it is difficult to assess organ viability during HMP because of the reduced metabolic activity at low temperatures, and the adoption of HMP has faced logistical challenges. The addition of oxygen during HMP is aimed at reducing ischaemia–reperfusion injury, but has shown mixed results in kidney transplantation, often depending on the duration of perfusion, although some studies found that the addition of oxygen improved outcomes in higher-risk donors. Normothermic machine perfusion helps to restore kidney function by delivering oxygen and nutrients at body temperature, potentially reducing ischaemia–reperfusion injury. Early studies suggest its safety, but clinical benefits remain unproven. Normothermic machine perfusion also holds promise for assessing organ viability pre-transplantation by enabling real-time evaluation. In this Review, we will summarize the different methods of kidney preservation, providing details of the effect that each method has on graft and patient outcomes and the strengths and limitations of each method.

Key points

  • The primary limitation in kidney transplantation globally is the scarcity of suitable donor organs, which is worsening with an ageing donor population with increasing co-morbidities; therefore, we must focus on improving donor organ assessment, preservation and conditioning.

  • Hypothermic machine perfusion (HMP) has demonstrated clear benefits over static cold storage in reducing delayed graft function and improving graft survival and is the new clinical standard in kidney preservation, but organ viability cannot be assessed during HMP.

  • Continuous hypothermic oxygenated machine perfusion demonstrated improved 1-year kidney function and reduced rejection rates compared with HMP alone; however, use of hypothermic oxygenated machine perfusion for a brief period immediately before transplantation showed no benefit over static cold storage alone.

  • Normothermic machine perfusion (NMP) is aimed at restoring aerobic respiration and metabolic activity in donor kidneys by providing oxygen and nutrients at physiological temperatures; early studies show that both NMP and normothermic regional perfusion (an in situ method before donor organs are procured) are safe and feasible.

  • Ex situ NMP holds potential for assessing kidney viability before transplantation by restoring metabolic activity and enabling real-time evaluation of biomarkers, tissue samples and imaging data.

  • Ex situ NMP also provides a promising platform for delivering targeted therapies to isolated donor kidneys before transplantation, enabling real-time intervention and therapeutic modulation of organ function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different donor types, including the Maastricht classification for donation after circulatory death donors, and the ischaemic injury that each donor type sustains.
Fig. 2: Numbers of patients on kidney transplant waiting lists in the USA and the UK.
Fig. 3: An overview of the different types of preservation and machine perfusion that can be applied in kidney transplantation.

Similar content being viewed by others

References

  1. Summers, D. M. et al. Analysis of factors that affect outcome after transplantation of kidneys donated after cardiac death in the UK: a cohort study. Lancet 376, 1303–1311 (2010).

    Article  PubMed  Google Scholar 

  2. Summers, D. M. et al. Effect of donor age and cold storage time on outcome in recipients of kidneys donated after circulatory death in the UK: a cohort study. Lancet 381, 727–734 (2013).

    Article  PubMed  Google Scholar 

  3. Querard, A. H. et al. Comparison of survival outcomes between expanded criteria donor and standard criteria donor kidney transplant recipients: a systematic review and meta-analysis. Transpl. Int. 29, 403–415 (2016).

    Article  PubMed  Google Scholar 

  4. Husain, S. A. et al. Association between declined offers of deceased donor kidney allograft and outcomes in kidney transplant candidates. JAMA Netw. Open. 2, e1910312 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pippias, M. et al. Temporal trends in the quality of deceased donor kidneys and kidney transplant outcomes in Europe: an analysis by the ERA-EDTA Registry. Nephrol. Dial. Transpl. 37, 175–186 (2021).

    Article  Google Scholar 

  6. Statistics and Clinical Research, NHS Blood and Transplant. Summary of activity and kidney activity. https://www.odt.nhs.uk/statistics-and-reports/annual-activity-report/ (NHSBT, 2025).

  7. OPTN. Donor: donation year by organs recovered. https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/# (accessed 11 July 2025).

  8. The UK’s Clinical Study Registry. Statins for improving organ outcome in transplantation. https://www.isrctn.com/ISRCTN11440354 (2021).

  9. Malinoski, D. et al. Hypothermia or machine perfusion in kidney donors. N. Engl. J. Med. 388, 418–426 (2023).

    Article  PubMed  CAS  Google Scholar 

  10. Damman, J. et al. Systemic complement activation in deceased donors is associated with acute rejection after renal transplantation in the recipient. Transplantation 92, 163–169 (2011).

    Article  PubMed  CAS  Google Scholar 

  11. Nijboer, W. N. et al. Effect of brain death on gene expression and tissue activation in human donor kidneys. Transplantation 78, 978–986 (2004).

    Article  PubMed  Google Scholar 

  12. Poppelaars, F. & Seelen, M. A. Complement-mediated inflammation and injury in brain dead organ donors. Mol. Immunol. 84, 77–83 (2017).

    Article  PubMed  CAS  Google Scholar 

  13. Vieira, R. F. et al. 17β-Estradiol protects against lung injuries after brain death in male rats. J. Heart Lung Transpl. 37, 1381–1387 (2018).

    Article  Google Scholar 

  14. Kelpke, S. S. et al. Sodium nitrite protects against kidney injury induced by brain death and improves post-transplant function. Kidney Int. 82, 304–313 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Aubert, O. et al. Disparities in acceptance of deceased donor kidneys between the United States and France and estimated effects of increased US acceptance. JAMA Intern. Med. 179, 1365–1374 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. van Ittersum, F. J. et al. Increased risk of graft failure and mortality in Dutch recipients receiving an expanded criteria donor kidney transplant. Transpl. Int. 30, 14–28 (2017).

    Article  PubMed  Google Scholar 

  17. Chen, S., Chen, L. & Jiang, H. Prognosis and risk factors of chronic kidney disease progression in patients with diabetic kidney disease and non-diabetic kidney disease: a prospective cohort CKD-ROUTE study. Ren. Fail. 44, 1309–1318 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Eurotransplant. Annual Report https://www.eurotransplant.org/wp-content/uploads/2024/06/ETP_AR2023_LowRes.pdf (2023).

  19. OPTN. Donor, kidney, age and BMI. https://optn.transplant.hrsa.gov/data/view-data-reports/build-advanced/ (accessed 11 July 2025).

  20. NHS Blood and Transplant. Annual Report on Kidney Transplantation. https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/34295/nhsbt-kidney-transplantation-report-2324.pdf (2024).

  21. Mico-Carnero, M. et al. A potential route to reduce ischemia/reperfusion injury in organ preservation. Cells 11, 2763 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rabbani, N. & Thornalley, P. J. Hexokinase-2 glycolytic overload in diabetes and ischemia-reperfusion injury. Trends Endocrinol. Met. 30, 419–431 (2019).

    Article  CAS  Google Scholar 

  24. Martin, J. L. et al. Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation. Nat. Metab. 1, 966–974 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bernardi, P. et al. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ. 30, 1869–1885 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Vance, R. E. How DNA sensing drives inflammation. N. Engl. J. Med. 391, 1456–1458 (2024).

    Article  PubMed  Google Scholar 

  27. Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7, 971–981 (2014).

    Article  PubMed  CAS  Google Scholar 

  29. Weissenbacher, A. et al. Hemodynamics and metabolic parameters in normothermic kidney preservation are linked with donor factors, perfusate cells, and cytokines. Front. Med. 8, 801098 (2021).

    Article  Google Scholar 

  30. Zaza, G. et al. Proteomics reveals specific biological changes induced by the normothermic machine perfusion of donor kidneys with a significant up-regulation of Latexin. Sci. Rep. 13, 5920 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. de Haan, M. J. A. et al. A cell-free nutrient-supplemented perfusate allows four-day ex vivo metabolic preservation of human kidneys. Nat. Commun. 15, 3818 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kawamura, M. et al. Normothermic ex vivo kidney perfusion preserves mitochondrial and graft function after warm ischemia and is further enhanced by AP39. Nat. Commun. 15, 8086 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Collins, G. M., Bravo-Shugarman, M. & Terasaki, P. I. Kidney preservation for transportation. Initial perfusion and 30 hours’ ice storage. Lancet 2, 1219–1222 (1969).

    Article  PubMed  CAS  Google Scholar 

  34. Calne, R. Y., Pegg, D. E., Pryse-Davies, J. & Brown, F. L. Renal preservation by ice-cooling: an experimental study relating to kidney transplantation from cadavers. Br. Med. J. 2, 651–655 (1963).

    Article  PubMed  CAS  Google Scholar 

  35. Belzer, F. O., Ashby, B. S., Gulyassy, P. F. & Powell, M. Successful seventeen-hour preservation and transplantation of human-cadaver kidney. N. Engl. J. Med. 278, 608–610 (1968).

    Article  PubMed  CAS  Google Scholar 

  36. Hosgood, S. A. & Nicholson, M. L. First in man renal transplantation after ex vivo normothermic perfusion. Transplantation 92, 735–738 (2011).

    Article  PubMed  Google Scholar 

  37. Fondevila, C. et al. Liver transplant using donors after unexpected cardiac death: novel preservation protocol and acceptance criteria. Am. J. Transpl. 7, 1849–1855 (2007).

    Article  CAS  Google Scholar 

  38. Levy, M. N. Oxygen consumption and blood flow in the hypothermic, perfused kidney. Am. J. Physiol. 197, 1111–1114 (1959).

    Article  PubMed  CAS  Google Scholar 

  39. Boudjema, K. et al. Effect of oxidized and reduced glutathione in liver preservation. Transplantation 50, 948–951 (1990).

    Article  PubMed  CAS  Google Scholar 

  40. Gores, G. J., Nieminen, A. L., Wray, B. E., Herman, B. & Lemasters, J. J. Intracellular pH during “chemical hypoxia” in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death. J. Clin. Invest. 83, 386–396 (1989).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kosieradzki, M. et al. Prognostic significance of free radicals: mediated injury occurring in the kidney donor. Transplantation 75, 1221–1227 (2003).

    Article  PubMed  Google Scholar 

  42. Bonventre, J. V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121, 4210–4221 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhao, H., Alam, A., Soo, A. P., George, A. J. T. & Ma, D. Ischemia-reperfusion injury reduces long term renal graft survival: mechanism and beyond. EBioMedicine 28, 31–42 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Moers, C. et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N. Engl. J. Med. 360, 7–19 (2009).

    Article  PubMed  CAS  Google Scholar 

  45. Jochmans, I. et al. Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: a multicenter, randomized, controlled trial. Ann. Surg. 252, 756–764 (2010).

    Article  PubMed  Google Scholar 

  46. Gallinat, A. et al. Machine perfusion versus static cold storage in expanded criteria donor kidney transplantation: 3-year follow-up data. Transpl. Int. 26, E52–E53 (2013).

    Article  PubMed  Google Scholar 

  47. Peng, P. et al. Hypothermic machine perfusion versus static cold storage in deceased donor kidney transplantation: a systematic review and meta-analysis of randomized controlled trials. Artif. Organs 43, 478–489 (2019).

    Article  PubMed  Google Scholar 

  48. Jiao, B. et al. Hypothermic machine perfusion reduces delayed graft function and improves one-year graft survival of kidneys from expanded criteria donors: a meta-analysis. PLoS ONE 8, e81826 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tingle, S. J. et al. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst. Rev. 3, CD011671 (2019).

    PubMed  Google Scholar 

  50. Tingle, S. J. et al. Hypothermic machine perfusion is superior to static cold storage in deceased donor kidney transplantation: a meta-analysis. Clin. Transpl. 34, e13814 (2020).

    Article  Google Scholar 

  51. Tingle, S. J. et al. Normothermic and hypothermic machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst. Rev. 7, CD011671 (2024).

    PubMed  Google Scholar 

  52. Watson, C. J. et al. Cold machine perfusion versus static cold storage of kidneys donated after cardiac death: a UK multicenter randomized controlled trial. Am. J. Transpl. 10, 1991–1999 (2010).

    Article  CAS  Google Scholar 

  53. Summers, D. M. et al. Cold pulsatile machine perfusion versus static cold storage for kidneys donated after circulatory death: a multicenter randomized controlled trial. Transplantation 104, 1019–1025 (2020).

    Article  PubMed  Google Scholar 

  54. Groen, H. et al. Cost-effectiveness of hypothermic machine preservation versus static cold storage in renal transplantation. Am. J. Transpl. 12, 1824–1830 (2012).

    Article  CAS  Google Scholar 

  55. Chang, A., Schaubel, D. E., Chen, M., Abt, P. L. & Bittermann, T. Trends and outcomes of hypothermic machine perfusion preservation of kidney allografts in simultaneous liver and kidney transplantation in the United States. Transpl. Int. 35, 10345 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tedesco-Silva, H. J. et al. Randomized trial of machine perfusion versus cold storage in recipients of deceased donor kidney transplants with high incidence of delayed graft function. Transpl. Direct 3, e155 (2017).

    Article  Google Scholar 

  57. de Sandes-Freitas, T. V. et al. The impact of hypothermic pulsatile machine perfusion versus static cold storage: a donor-matched paired analysis in a scenario of high incidence of delayed kidney graft function. Ann. Transpl. 25, e927010 (2020).

    Google Scholar 

  58. Chatauret, N. et al. Mechanistic analysis of nonoxygenated hypothermic machine perfusion’s protection on warm ischemic kidney uncovers greater eNOS phosphorylation and vasodilation. Am. J. Transpl. 14, 2500–2514 (2014).

    Article  CAS  Google Scholar 

  59. Jochmans, I. et al. The prognostic value of renal resistance during hypothermic machine perfusion of deceased donor kidneys. Am. J. Transpl. 11, 2214–2220 (2011).

    Article  CAS  Google Scholar 

  60. Nath, J. et al. Metabolic differences between cold stored and machine perfused porcine kidneys: a 1H NMR based study. Cryobiology 74, 115–120 (2017).

    Article  PubMed  CAS  Google Scholar 

  61. Tozzi, M. et al. Impact of static cold storage VS hypothermic machine preservation on ischemic kidney graft: inflammatory cytokines and adhesion molecules as markers of ischemia/reperfusion tissue damage. Our preliminary results. Int. J. Surg. 11, S110–S114 (2013).

    Article  PubMed  Google Scholar 

  62. Zhang, Y. et al. Hypothermic machine perfusion decreases renal cell apoptosis during ischemia/reperfusion injury via the Ezrin/AKT pathway. Artif. Organs 40, 129–135 (2016).

    Article  PubMed  CAS  Google Scholar 

  63. Meister, F. A. et al. Decrease of renal resistance during hypothermic oxygenated machine perfusion is associated with early allograft function in extended criteria donation kidney transplantation. Sci. Rep. 10, 17726 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lentine, K. L. et al. OPTN/SRTR 2023 annual data report: kidney. Am. J. Transpl. 25, S22–S137 (2025).

    Article  Google Scholar 

  65. Sandal, S. et al. Renal resistance thresholds during hypothermic machine perfusion and transplantation outcomes — a retrospective cohort study. Transpl. Int. 31, 658–669 (2018).

    Article  PubMed  Google Scholar 

  66. Guzzi, F., Knight, S. R., Ploeg, R. J. & Hunter, J. P. A systematic review to identify whether perfusate biomarkers produced during hypothermic machine perfusion can predict graft outcomes in kidney transplantation. Transpl. Int. 33, 590–602 (2020).

    Article  PubMed  Google Scholar 

  67. Moers, C. et al. The value of machine perfusion perfusate biomarkers for predicting kidney transplant outcome. Transplantation 90, 966–973 (2010).

    Article  PubMed  Google Scholar 

  68. Nagelschmidt, M. et al. Lipid peroxidation products in machine perfusion of older donor kidneys. J. Surg. Res. 180, 337–342 (2013).

    Article  PubMed  CAS  Google Scholar 

  69. Hendriks, K. D. W. et al. Renal temperature reduction progressively favors mitochondrial ROS production over respiration in hypothermic kidney preservation. J. Transl. Med. 17, 265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. van Rijn, R. et al. Hypothermic machine perfusion in liver transplantation — a randomized trial. N. Engl. J. Med. 384, 1391–1401 (2021).

    Article  PubMed  Google Scholar 

  71. Jochmans, I. et al. Oxygenated versus standard cold perfusion preservation in kidney transplantation (COMPARE): a randomised, double-blind, paired, phase 3 trial. Lancet 396, 1653–1662 (2020).

    Article  PubMed  Google Scholar 

  72. Husen, P. et al. Oxygenated end-hypothermic machine perfusion in expanded criteria donor kidney transplant: a randomized clinical trial. JAMA Surg. 156, 517–525 (2021).

    Article  PubMed  Google Scholar 

  73. Houtzager, J. H. E. et al. The use of the oxygenated Airdrive™ machine perfusion system in kidney graft preservation: a clinical pilot study. Eur. Surg. Res. 61, 153–162 (2020).

    Article  PubMed  Google Scholar 

  74. Ravaioli, M. et al. Successful dual kidney transplantation after hypothermic oxygenated perfusion of discarded human kidneys. Am. J. Case Rep. 18, 1009–1013 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ravaioli, M. et al. Hypothermic oxygenated new machine perfusion system in liver and kidney transplantation of extended criteria donors: first Italian clinical trial. Sci. Rep. 10, 6063 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Pool, M. B. F. et al. Prolonged ex-vivo normothermic kidney perfusion: the impact of perfusate composition. PLoS ONE 16, e0251595 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hosgood, S. A., Elliott, T. R., Jordan, N. P. & Nicholson, M. L. The effects of free heme on functional and molecular changes during ex vivo normothermic machine perfusion of human kidneys. Front. Immunol. 13, 849742 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Greite, R. et al. Free heme and hemopexin in acute kidney injury after cardiopulmonary bypass and transient renal ischemia. Clin. Transl. Sci. 16, 2729–2743 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Minor, T. et al. First-in-man controlled rewarming and normothermic perfusion with cell-free solution of a kidney prior to transplantation. Am. J. Transpl. 20, 1192–1195 (2020).

    Article  CAS  Google Scholar 

  80. Zlatev, H., von Horn, C., Kaths, M., Paul, A. & Minor, T. Clinical use of controlled oxygenated rewarming of kidney grafts prior to transplantation by ex vivo machine perfusion. A pilot study. Eur. J. Clin. Invest. 52, e13691 (2022).

    Article  PubMed  CAS  Google Scholar 

  81. Nicholson, M. L. & Hosgood, S. A. Renal transplantation after ex vivo normothermic perfusion: the first clinical study. Am. J. Transpl. 13, 1246–1252 (2013).

    Article  CAS  Google Scholar 

  82. Rijkse, E. et al. Safety and feasibility of 2 h of normothermic machine perfusion of donor kidneys in the Eurotransplant Senior Program. BJS Open. 5, zraa024 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mazilescu, L. I. et al. Normothermic ex vivo kidney perfusion for human kidney transplantation: first North American results. Transplantation 106, 1852–1859 (2022).

    Article  PubMed  CAS  Google Scholar 

  84. Chandak, P. et al. Dissemination of a novel organ perfusion technique: ex vivo normothermic perfusion of deceased donor kidneys. Artif. Organs 43, E308–E319 (2019).

    Article  PubMed  Google Scholar 

  85. Hosgood, S. A., Thompson, E., Moore, T., Wilson, C. H. & Nicholson, M. L. Normothermic machine perfusion for the assessment and transplantation of declined human kidneys from donation after circulatory death donors. Br. J. Surg. 105, 388–394 (2018).

    Article  PubMed  CAS  Google Scholar 

  86. Leighton, P., Hosgood, S. A., Butler, A. J. & Nicholson, M. L. Use of a double-J stent during ex vivo normothermic machine perfusion of human kidneys. Am. J. Transpl. 20, 1754–1755 (2020).

    Article  Google Scholar 

  87. Georgiades, F., Hosgood, S. A., Butler, A. J. & Nicholson, M. L. Use of ex vivo normothermic machine perfusion after normothermic regional perfusion to salvage a poorly perfused DCD kidney. Am. J. Transpl. 19, 3415–3419 (2019).

    Article  Google Scholar 

  88. Pearson, R. et al. Viability assessment and utilization of declined donor kidneys with rhabdomyolysis using ex vivo normothermic perfusion without preimplantation biopsy. Am. J. Transpl. 21, 1317–1321 (2021).

    Article  CAS  Google Scholar 

  89. Pearson, R., Wubetu, J., Jackson, A. & Kingsmore, D. Living donor kidney transplant following nephrectomy for renal artery stenosis with arterial reconstruction and viability assessment using ex vivo normothermic perfusion. BMJ Case Rep. 14, e245273 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nicholson, M. & Hosgood, S. Preoperative assessment of renal transplant ureteric blood supply using ex vivo normothermic perfusion. Transplantation 99, e166 (2015).

    Article  PubMed  Google Scholar 

  91. Hosgood, S. A., Saeb-Parsy, K., Hamed, M. O. & Nicholson, M. L. Successful transplantation of human kidneys deemed untransplantable but resuscitated by ex vivo normothermic machine perfusion. Am. J. Transpl. 16, 3282–3285 (2016).

    Article  CAS  Google Scholar 

  92. Hosgood, S. A. & Nicholson, M. L. The first clinical case of intermediate ex vivo normothermic perfusion in renal transplantation. Am. J. Transpl. 14, 1690–1692 (2014).

    Article  CAS  Google Scholar 

  93. Hosgood, S. A. et al. Normothermic machine perfusion versus static cold storage in donation after circulatory death kidney transplantation: a randomized controlled trial. Nat. Med. 29, 1511–1519 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Dumbill R, K. S. et al. Prolonged normothermic perfusion of the kidney: a historically controlled, phase 1 cohort study. Nat. Commun. 16, 4584 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Oniscu, G. C. et al. Improved organ utilization and better transplant outcomes with in situ normothermic regional perfusion in controlled donation after circulatory death. Transplantation 107, 438–448 (2023).

    Article  PubMed  Google Scholar 

  96. Hessheimer, A. J. et al. Abdominal normothermic regional perfusion in controlled donation after circulatory determination of death liver transplantation: outcomes and risk factors for graft loss. Am. J. Transpl. 22, 1169–1181 (2022).

    Article  Google Scholar 

  97. Klein Nulend, R. et al. Normothermic machine perfusion and normothermic regional perfusion of DCD kidneys before transplantation: a systematic review. Transplantation 109, 362–375 (2025).

    Article  PubMed  CAS  Google Scholar 

  98. Boteon, Y. L. et al. The economic impact of machine perfusion technology in liver transplantation. Artif. Organs 46, 191–200 (2022).

    Article  PubMed  Google Scholar 

  99. De Deken, J., Kocabayoglu, P. & Moers, C. Hypothermic machine perfusion in kidney transplantation. Curr. Opin. Organ. Transpl. 21, 294–300 (2016).

    Article  Google Scholar 

  100. Verstraeten, L. & Jochmans, I. Sense and sensibilities of organ perfusion as a kidney and liver viability assessment platform. Transpl. Int. 35, 10312 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mulvey, J. F. et al. Perfusate proteomes provide biological insight into oxygenated versus standard hypothermic machine perfusion in kidney transplantation. Ann. Surg. 278, 676–682 (2023).

    Article  PubMed  Google Scholar 

  102. Hamelink, T. L. et al. Renal normothermic machine perfusion: the road toward clinical implementation of a promising pretransplant organ assessment tool. Transplantation 106, 268–279 (2022).

    Article  PubMed  Google Scholar 

  103. Woud, W. et al. Extracellular vesicles released during normothermic machine perfusion are associated with human donor kidney characteristics. Transplantation 106, S337 (2022).

    Article  Google Scholar 

  104. Woud, W. W. et al. Extracellular vesicles released during normothermic machine perfusion are associated with human donor kidney characteristics. Transplantation 106, 2360–2369 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Jager, N. M. et al. Complement is activated during normothermic machine perfusion of porcine and human discarded kidneys. Front. Immunol. 13, 831371 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Lin, H. et al. Human transplant kidneys on normothermic machine perfusion display endocrine activity. Transpl. Direct 9, e1503 (2023).

    Article  CAS  Google Scholar 

  107. Weissenbacher, A. et al. Urine recirculation prolongs normothermic kidney perfusion via more optimal metabolic homeostasis — a proteomics study. Am. J. Transpl. 21, 1740–1753 (2021).

    Article  CAS  Google Scholar 

  108. Bontha, S. V., Maluf, D. G., Mueller, T. F. & Mas, V. R. Systems biology in kidney transplantation: the application of multi-omics to a complex model. Am. J. Transpl. 17, 11–21 (2017).

    Article  CAS  Google Scholar 

  109. Hamelink, T. L. et al. Magnetic resonance imaging as a noninvasive adjunct to conventional assessment of functional differences between kidneys in vivo and during ex vivo normothermic machine perfusion. Am. J. Transpl. 24, 1761–1771 (2024).

    Article  CAS  Google Scholar 

  110. van Smaalen, T. C., Hoogland, E. R. & van Heurn, L. W. Machine perfusion viability testing. Curr. Opin. Organ. Transpl. 18, 168–173 (2013).

    Article  Google Scholar 

  111. Radajewska, A. et al. Mitoquinone alleviates donation after cardiac death kidney injury during hypothermic machine perfusion in rat model. Int. J. Mol. Sci. 24, 14772 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sedigh, A. et al. Perfusion of porcine kidneys with macromolecular heparin reduces early ischemia reperfusion injury. Transplantation 103, 420–427 (2019).

    Article  PubMed  CAS  Google Scholar 

  113. Hamaoui, K. et al. Organ pretreatment with cytotopic endothelial localizing peptides to ameliorate microvascular thrombosis and perfusion deficits in ex vivo renal hemoreperfusion models. Transplantation 100, e128–e139 (2016).

    Article  PubMed  CAS  Google Scholar 

  114. Polyak, M. M., Arrington, B. O., Stubenbord, W. T. & Kinkhabwala, M. Prostaglandin E1 improves pulsatile preservation characteristics and early graft function in expanded criteria donor kidneys. ASAIO J. 44, M610–M612 (1998).

    Article  PubMed  CAS  Google Scholar 

  115. Diuwe, P. et al. The effect of the use of a TNF-alpha inhibitor in hypothermic machine perfusion on kidney function after transplantation. Contemp. Clin. Trials 59, 44–50 (2017).

    Article  PubMed  Google Scholar 

  116. Woodside, K. J. et al. Enhancing kidney function with thrombolytic therapy following donation after cardiac death: a multicenter quasi-blinded prospective randomized trial. Clin. Transpl. 29, 1173–1180 (2015).

    Article  CAS  Google Scholar 

  117. DiRito, J. R. et al. Lysis of cold-storage-induced microvascular obstructions for ex vivo revitalization of marginal human kidneys. Am. J. Transpl. 21, 161–173 (2021).

    Article  CAS  Google Scholar 

  118. Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kirkland, J. L. & Tchkonia, T. Senolytic drugs: from discovery to translation. J. Intern. Med. 288, 518–536 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. He, A. et al. Renal inflamm-aging provokes intra-graft inflammation following experimental kidney transplantation. Am. J. Transpl. 22, 2529–2547 (2022).

    Article  CAS  Google Scholar 

  121. Ferdinand, J. R. et al. Cytokine absorption during human kidney perfusion reduces delayed graft function-associated inflammatory gene signature. Am. J. Transpl. 21, 2188–2199 (2021).

    Article  CAS  Google Scholar 

  122. van Willigenburg, H., de Keizer, P. L. J. & de Bruin, R. W. F. Cellular senescence as a therapeutic target to improve renal transplantation outcome. Pharmacol. Res. 130, 322–330 (2018).

    Article  PubMed  Google Scholar 

  123. Mylonas, K. J. et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci. Transl. Med. 13, eabb0203 (2021).

    Article  PubMed  CAS  Google Scholar 

  124. Delaura, I. F. et al. Complement-targeting therapeutics for ischemia-reperfusion injury in transplantation and the potential for ex vivo delivery. Front. Immunol. 13, 1000172 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Glotz, D. et al. Safety and efficacy of eculizumab for the prevention of antibody-mediated rejection after deceased-donor kidney transplantation in patients with preformed donor-specific antibodies. Am. J. Transpl. 19, 2865–2875 (2019).

    Article  CAS  Google Scholar 

  126. Berger, M., Lefaucheur, C. & Jordan, S. C. Update on C1 esterase inhibitor in human solid organ transplantation. Transplantation 103, 1763–1775 (2019).

    Article  PubMed  CAS  Google Scholar 

  127. Damman, J. et al. Targeting complement activation in brain-dead donors improves renal function after transplantation. Transpl. Immunol. 24, 233–237 (2011).

    Article  PubMed  CAS  Google Scholar 

  128. Schroppel, B. et al. Peritransplant eculizumab does not prevent delayed graft function in deceased donor kidney transplant recipients: results of two randomized controlled pilot trials. Am. J. Transpl. 20, 564–572 (2020).

    Article  Google Scholar 

  129. Golshayan, D., Schwotzer, N., Fakhouri, F. & Zuber, J. Targeting the complement pathway in kidney transplantation. J. Am. Soc. Nephrol. 34, 1776–1792 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Harisa, G. I. et al. Gene-editing technology, from macromolecule therapeutics to organ transplantation: applications, limitations, and prospective uses. Int. J. Biol. Macromol. 253, 127055 (2023).

    Article  PubMed  CAS  Google Scholar 

  131. Yang, B., Hosgood, S. A. & Nicholson, M. L. Naked small interfering RNA of caspase-3 in preservation solution and autologous blood perfusate protects isolated ischemic porcine kidneys. Transplantation 91, 501–507 (2011).

    Article  PubMed  CAS  Google Scholar 

  132. Yang, C. et al. Cyclic helix B peptide in preservation solution and autologous blood perfusate ameliorates ischemia-reperfusion injury in isolated porcine kidneys. Transpl. Direct 1, e6 (2015).

    Article  Google Scholar 

  133. Zheng, X. et al. Preventing renal ischemia-reperfusion injury using small interfering RNA by targeting complement 3 gene. Am. J. Transpl. 6, 2099–2108 (2006).

    Article  CAS  Google Scholar 

  134. Stimmeder, S., Leber, B., Sucher, R. & Stiegler, P. Genetic modulation: future trends toward graft optimization during machine perfusion. Transplantation 108, 614–624 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  135. de Ramon, L. et al. CD154-CD40 T-cell co-stimulation pathway is a key mechanism in kidney ischemia-reperfusion injury. Kidney Int. 88, 538–549 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Moser, M. A. et al. Protection of the transplant kidney from preservation injury by inhibition of matrix metalloproteinases. PLoS ONE 11, e0157508 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zheng, X. et al. Attenuating ischemia-reperfusion injury in kidney transplantation by perfusing donor organs with siRNA cocktail solution. Transplantation 100, 743–752 (2016).

    Article  PubMed  CAS  Google Scholar 

  138. Thompson, E. R. et al. MicroRNA antagonist therapy during normothermic machine perfusion of donor kidneys. Am. J. Transpl. 22, 1088–1100 (2022).

    Article  CAS  Google Scholar 

  139. Heikkila, P., Parpala, T., Lukkarinen, O., Weber, M. & Tryggvason, K. Adenovirus-mediated gene transfer into kidney glomeruli using an ex vivo and in vivo kidney perfusion system — first steps towards gene therapy of Alport syndrome. Gene Ther. 3, 21–27 (1996).

    PubMed  CAS  Google Scholar 

  140. Brasile, L. et al. Transfection and transgene expression in a human kidney during ex vivo warm perfusion. Transpl. Proc. 34, 2624 (2002).

    Article  CAS  Google Scholar 

  141. Yuzefovych, Y. et al. Genetic engineering of the kidney to permanently silence MHC transcripts during ex vivo organ perfusion. Front. Immunol. 11, 265 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Figueiredo, C., Horn, P. A., Blasczyk, R. & Seltsam, A. Regulating MHC expression for cellular therapeutics. Transfusion 47, 18–27 (2007).

    Article  PubMed  CAS  Google Scholar 

  143. Severi, A. A. & Akbari, B. CRISPR-Cas9 delivery strategies and applications: review and update. Genesis 62, e23598 (2024).

    Article  PubMed  CAS  Google Scholar 

  144. Lohmann, S. et al. Mesenchymal stromal cell treatment of donor kidneys during ex vivo normothermic machine perfusion: a porcine renal autotransplantation study. Am. J. Transpl. 21, 2348–2359 (2021).

    Article  CAS  Google Scholar 

  145. Thompson, E. R. et al. Novel delivery of cellular therapy to reduce ischemia reperfusion injury in kidney transplantation. Am. J. Transpl. 21, 1402–1414 (2021).

    Article  CAS  Google Scholar 

  146. Arcolino, F. O. et al. De novo SIX2 activation in human kidneys treated with neonatal kidney stem/progenitor cells. Am. J. Transpl. 22, 2791–2803 (2022).

    Article  CAS  Google Scholar 

  147. Blondeel, J., Gilbo, N., De Bondt, S. & Monbaliu, D. Stem cell derived extracellular vesicles to alleviate ischemia-reperfusion injury of transplantable organs. a systematic review. Stem Cell Rev. Rep. 19, 2225–2250 (2023).

    Article  PubMed  Google Scholar 

  148. Rampino, T. et al. Extracellular vesicles derived from mesenchymal stromal cells delivered during hypothermic oxygenated machine perfusion repair ischemic/reperfusion damage of kidneys from extended criteria donors. Biology 11, 350 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Vallant, N., Wolfhagen, N., Sandhu, B., Hamaoui, K. & Papalois, V. Delivery of mesenchymal stem cells during hypothermic machine perfusion in a translational kidney perfusion study. Int. J. Mol. Sci. 25, 5038 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Gregorini, M. et al. Perfusion of isolated rat kidney with mesenchymal stromal cells/extracellular vesicles prevents ischaemic injury. J. Cell Mol. Med. 21, 3381–3393 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. MacMillan, S., Hosgood, S. A. & Nicholson, M. L. Enzymatic blood group conversion of human kidneys during ex vivo normothermic machine perfusion. Br. J. Surg. 110, 133–137 (2023).

    Article  PubMed  Google Scholar 

  152. MacMillan, S. et al. Enzymatic conversion of human blood group A kidneys to universal blood group O. Nat. Commun. 15, 2795 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Sellers, M. T. et al. Normothermic regional perfusion experience of organ procurement organizations in the US. JAMA Netw. Open. 7, e2440130 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Thorlund, K., Haggstrom, J., Park, J. J. & Mills, E. J. Key design considerations for adaptive clinical trials: a primer for clinicians. BMJ 360, k698 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Loupy, A. et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study. BMJ 366, l4923 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wall, A. & Testa, G. The ethics surrounding normothermic regional perfusion in donors following circulatory death. Clin. Liver Dis. 23, e0193 (2024).

    Article  Google Scholar 

  157. Olawade, D. B., Marinze, S., Qureshi, N., Weerasinghe, K. & Teke, J. Transforming organ donation and transplantation: strategies for increasing donor participation and system efficiency. Eur. J. Intern. Med. 133, 14–24 (2025).

    Article  PubMed  Google Scholar 

  158. Wight, J., Chilcott, J., Holmes, M. & Brewer, N. The clinical and cost-effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors. Health Technol. Assess. 7, 1–94 (2003).

    Article  PubMed  CAS  Google Scholar 

  159. Bond, M. et al. The effectiveness and cost-effectiveness of methods of storing donated kidneys from deceased donors: a systematic review and economic model. Health Technol. Assess. 13, 1–156 (2009). iii–iv, xi–xiv.

    Article  PubMed  Google Scholar 

  160. Gomez, V. et al. Economic impact of the introduction of machine perfusion preservation in a kidney transplantation program in the expanded donor era: cost-effectiveness assessment. Transpl. Proc. 44, 2521–2524 (2012).

    Article  CAS  Google Scholar 

  161. Snyder, R. A., Moore, D. R. & Moore, D. E. More donors or more delayed graft function? A cost-effectiveness analysis of DCD kidney transplantation. Clin. Transpl. 27, 289–296 (2013).

    Article  Google Scholar 

  162. Tedesco Silva, H. Jr. et al. Use of machine perfusion to increase the number of expanded criteria deceased donor kidney transplants: a pharmacoeconomic analysis. Transpl. Direct 10, e1668 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

T.J.R. is supported by the Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW, supported by Novo Nordisk Foundation grant (NNF21CC0073729)) and T.J.R. and C.M. are funded by the European Union. Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. This work is supported by ERC grant (SPARK 101140863).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

J.H. and S.H. researched data for the article. All authors contributed substantially to discussion of the content. J.H., S.H., C.M. and H.L. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to James Hunter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Dianne McKay, who co-reviewed with Stephanie Almeida; Chris Callaghan; and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

34lives: http://34lives.com/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter, J., Hosgood, S., Moers, C. et al. Improving outcomes in kidney transplantation through advances in donor organ perfusion. Nat Rev Nephrol (2025). https://doi.org/10.1038/s41581-025-00993-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-025-00993-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing