Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long COVID and the kidney

Abstract

Long coronavirus disease (COVID) — commonly defined as symptoms and/or long-term effects that persist for at least 3 months after acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and cannot be explained by an alternative diagnosis — is a complex, multifaceted and heterogeneous disease that affects many organ systems, including the kidney. COVID-19 can cause acute kidney injury, and several studies have reported an increased risk of chronic kidney disease (CKD) following COVID-19, suggesting that CKD can be a manifestation of long COVID. Furthermore, patients with CKD are at an increased risk of severe COVID-19 and of long COVID. COVID-19 has also been associated with the development of COVID-19-associated nephropathy, which is a collapsing form of focal segmental glomerulosclerosis, and an increased incidence of new-onset vasculitis. Some early reports described associations of COVID-19 and/or SARS-CoV-2 vaccines with relapse or new-onset of other glomerular diseases, but this link was not confirmed in large population-based studies. SARS-CoV-2 vaccination reduces the risk of COVID-19 and long COVID and is particularly important for protecting vulnerable populations such as patients with CKD. Structured long-term follow-up of patients with COVID-19 and post-infectious sequelae is needed to provide further insight into the trajectory of long COVID and enable identification of those at risk of CKD.

Key points

  • Long coronavirus disease (COVID) is commonly defined as symptoms or long-term effects that persist for at least 3 months after acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and cannot be explained by an alternative diagnosis; this disorder can affect many organ systems, including the kidney.

  • Pathophysiological mechanisms that underlie the high risk of acute kidney injury in patients with COVID-19 might also contribute to the development of chronic kidney disease (CKD) as one of the manifestations of long COVID.

  • Patients with CKD are at an increased risk of SARS-CoV-2 infection and severe COVID-19 outcomes and might also be at increased risk of long COVID.

  • COVID-19 is associated with COVID-associated nephropathy, which is a rare but severe kidney disease; other relapsing or new-onset glomerular diseases have not been consistently associated with COVID-19, and there is also no proven causative association with SARS-CoV-2 vaccines.

  • SARS-CoV vaccines are safe and efficacious in patients with CKD and are associated with a reduced risk of long COVID.

  • Structured long-term follow-up of patients with COVID-19 is required to provide further insight into long COVID and enable the identification of patients who are at risk of the development or progression of CKD to facilitate timely intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signs and symptoms of long coronavirus disease.
Fig. 2: Potential mechanisms and risk factors that may contribute to the development of chronic kidney disease following COVID-19.
Fig. 3: Potential mechanisms that might contribute to new-onset or relapse of glomerular disease following COVID-19.
Fig. 4: Potential mechanisms that might contribute to new onset or relapse of glomerular disease following SARS-CoV-2 vaccination.

Similar content being viewed by others

References

  1. A Long COVID Definition: A Chronic, Systemic Disease State with Profound Consequences. (National Academies Press, 2024). https://doi.org/10.17226/27768.

  2. Greenhalgh, T., Sivan, M., Perlowski, A. & Nikolich, J. Ž Long COVID: a clinical update. Lancet 404, 707–724 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Ely, E. W., Brown, L. M., Fineberg, H. V. & National Academies of Sciences, Engineering, and Medicine Committee on Examining the Working Definition for Long Covid Long Covid defined. N. Engl. J. Med. 391, 1746–1753 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Coste, J. et al. Difference in long COVID prevalence due to different definitions and long COVID related risk factors. Eur. J. Public. Health 34, ckae144.811 (2024).

    Article  PubMed Central  Google Scholar 

  5. Chou, R. et al. Long COVID definitions and models of care: a scoping review. Ann. Intern. Med. 177, 929–940 (2024).

    Article  PubMed  Google Scholar 

  6. Al-Aly, Z. et al. Long COVID science, research and policy. Nat. Med. 30, 2148–2164 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Jeffrey, K. et al. Prevalence and risk factors for long COVID among adults in Scotland using electronic health records: a national, retrospective, observational cohort study. EClinicalMedicine 71, 102590 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hastie, C. E. et al. True prevalence of long-COVID in a nationwide, population cohort study. Nat. Commun. 14, 7892 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ballering, A. V., van Zon, S. K. R., Olde Hartman, T. C., Rosmalen, J. G. M. & Lifelines Corona Research Initiative Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. Lancet 400, 452–461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK — Office for National Statistics. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/2february2023.

  11. Ll, O. et al. The prevalence and long-term health effects of long Covid among hospitalised and non-hospitalised populations: a systematic review and meta-analysis. EClinicalMedicine 55, 101762 (2022).

    Google Scholar 

  12. Xie, Y., Choi, T. & Al-Aly, Z. Long-term outcomes following hospital admission for COVID-19 versus seasonal influenza: a cohort study. Lancet Infect. Dis. 24, 239–255 (2024).

    Article  PubMed  Google Scholar 

  13. Diexer, S. et al. Association between virus variants, vaccination, previous infections, and post-COVID-19 risk. Int. J. Infect. Dis. 136, 14–21 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Agergaard, J., Gunst, J. D., Schiøttz-Christensen, B., Østergaard, L. & Wejse, C. Long-term prognosis at 1.5 years after infection with wild-type strain of SARS-CoV-2 and Alpha, Delta, as well as Omicron variants. Int. J. Infect. Dis. 137, 126–133 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Al-Aly, Z., Bowe, B. & Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 28, 1461–1467 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. ERA-EDTA Council & ERACODA Working Group Chronic kidney disease is a key risk factor for severe COVID-19: a call to action by the ERA-EDTA. Nephrol. Dial. Transplant. 36, 87–94 (2021).

    Article  Google Scholar 

  17. Huang, C. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 401, e21–e33 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arias-Cabrales, C. et al. Short- and long-term outcomes after non-severe acute kidney injury. Clin. Exp. Nephrol. 22, 61–67 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Salgueira, M. et al. Characterization of hospitalized patients with acute kidney injury associated with COVID-19 in Spain: renal replacement therapy and mortality. FRA-COVID SEN registry data. Nefrologia 44, 527–539 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Al-Aly, Z., Xie, Y. & Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594, 259–264 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Chan, L. et al. AKI in hospitalized patients with COVID-19. J. Am. Soc. Nephrol. 32, 151–160 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Matsumoto, K. & Prowle, J. R. COVID-19-associated AKI. Curr. Opin. Crit. Care 28, 630–637 (2022).

    PubMed  PubMed Central  Google Scholar 

  23. Pan, X. et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med. 46, 1114–1116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Joseph, A., Zafrani, L., Mabrouki, A., Azoulay, E. & Darmon, M. Acute kidney injury in patients with SARS-CoV-2 infection. Ann. Intensive Care 10, 117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, F. et al. Highly pathogenic coronaviruses and the kidney. Biomed. Pharmacother. 156, 113807 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eckerle, I., Müller, M. A., Kallies, S., Gotthardt, D. N. & Drosten, C. In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East respiratory syndrome (MERS) coronavirus infection. Virol. J. 10, 359 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Batlle, D. et al. Acute kidney injury in COVID-19: emerging evidence of a distinct pathophysiology. J. Am. Soc. Nephrol. 31, 1380–1383 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soler, M. J. & Batlle, D. COVID-19 and its impact on the kidney and the nephrology community. Clin. Kidney J. 14, i1–i5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jansen, J. et al. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell 29, 217–231.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Puelles, V. G. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383, 590–592 (2020).

    Article  PubMed  Google Scholar 

  31. Cassol, C. A., Gokden, N., Larsen, C. P. & Bourne, T. D. Appearances can be deceiving — viral-like inclusions in COVID-19 negative renal biopsies by electron microscopy. Kidney360 1, 824–828 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bärreiter, V. A. & Meister, T. L. Renal implications of coronavirus disease 2019: insights into viral tropism and clinical outcomes. Curr. Opin. Microbiol. 79, 102475 (2024).

    Article  PubMed  Google Scholar 

  33. Bowe, B., Xie, Y., Xu, E. & Al-Aly, Z. Kidney outcomes in long COVID. J. Am. Soc. Nephrol. 32, 2851–2862 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Atiquzzaman, M. et al. Long-term effect of COVID-19 infection on kidney function among COVID-19 patients followed in post-COVID-19 recovery clinics in British Columbia, Canada. Nephrol. Dial. Transplant. 38, 2816–2825 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt-Lauber, C. et al. Kidney outcome after mild to moderate COVID-19. Nephrol. Dial. Transplant. 38, 2031–2040 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mehrotra-Varma, S. et al. Patients with type 1 diabetes are at elevated risk of developing new hypertension, chronic kidney disease and diabetic ketoacidosis after COVID-19: up to 40 months’ follow-up. Diabetes Obes. Metab. 26, 5368–5375 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Xie, Y. & Al-Aly, Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol. 10, 311–321 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, V., Fisher, M., Hou, W., Zhang, L. & Duong, T. Q. Incidence of new-onset hypertension post-COVID-19: comparison with influenza. Hypertension 80, 2135–2148 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsampasian, V. et al. Cardiovascular disease as part of Long COVID: a systematic review. Eur. J. Prev. Cardiol. 32, 485–498 (2025).

    Article  PubMed  Google Scholar 

  41. Salah, H. M. et al. Post-recovery COVID-19 and incident heart failure in the National COVID cohort collaborative (N3C) study. Nat. Commun. 13, 4117 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aklilu, A. M. et al. COVID-19-associated acute kidney injury and longitudinal kidney outcomes. JAMA Intern. Med. 184, 414–423 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mahalingasivam, V. et al. Kidney function decline after COVID-19 infection. JAMA Netw. Open 7, e2450014 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li, L. et al. Kidney function following COVID-19 in children and adolescents. JAMA Netw. Open 8, e254129 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen, I.-W. et al. Association between COVID-19 and the development of chronic kidney disease in patients without initial acute kidney injury. Sci. Rep. 15, 10924 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Braun, F. et al. SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet 396, 597–598 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rafiee, M. J. & Friedrich, M. G. MRI of cardiac involvement in COVID-19. Br. J. Radiol. 97, 1367–1377 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  48. McGroder, C. F. et al. Pulmonary fibrosis 4 months after COVID-19 is associated with severity of illness and blood leucocyte telomere length. Thorax 76, 1242–1245 (2021).

    Article  PubMed  Google Scholar 

  49. George, P. M., Wells, A. U. & Jenkins, R. G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir. Med. 8, 807–815 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bailey, J. I. et al. Profibrotic monocyte-derived alveolar macrophages are expanded in patients with persistent respiratory symptoms and radiographic abnormalities after COVID-19. Nat. Immunol. 25, 2097–2109 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu, S.-W., Ilyas, I. & Weng, J.-P. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol. Sin. 44, 695–709 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Yilmaz, M. I. et al. The determinants of endothelial dysfunction in CKD: oxidative stress and asymmetric dimethylarginine. Am. J. Kidney Dis. 47, 42–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Chiang, K. C., Imig, J. D., Kalantar-Zadeh, K. & Gupta, A. Kidney in the net of acute and long-haul coronavirus disease 2019: a potential role for lipid mediators in causing renal injury and fibrosis. Curr. Opin. Nephrol. Hypertens. 31, 36–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Alexander, M. P. et al. Acute kidney injury in severe COVID-19 has similarities to sepsis-associated kidney injury: a multi-omics study. Mayo Clin. Proc. 96, 2561–2575 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Poyatos, P. et al. Endothelial dysfunction and cardiovascular risk in post-COVID-19 patients after 6- and 12-months SARS-CoV-2 infection. Infection 52, 1269–1285 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuchler, T. et al. Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic inflammation. Angiogenesis 26, 547–563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Forte, E. Abnormal complement activation is a sign of long COVID. Nat. Cardiovasc. Res. 3, 95 (2024).

    Article  PubMed  Google Scholar 

  58. Cervia-Hasler, C. et al. Persistent complement dysregulation with signs of thromboinflammation in active long Covid. Science 383, eadg7942 (2024).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, J. D. & Woodruff, T. M. Complement(ing) long-COVID thromboinflammation and pathogenesis. Trends Immunol. 45, 397–399 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Hawley, H. B. Long COVID: clinical findings, pathology, and endothelial molecular mechanisms. Am. J. Med. 138, 91–97 (2025).

    Article  CAS  PubMed  Google Scholar 

  61. Baillie, K. et al. Complement dysregulation is a prevalent and therapeutically amenable feature of long COVID. Med. N. Y. N. 5, 239–253.e5 (2024).

    CAS  Google Scholar 

  62. Bumiller-Bini, V. et al. MASPs at the crossroad between the complement and the coagulation cascades — the case for COVID-19. Genet. Mol. Biol. 44, e20200199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khorashadi, M., Beunders, R., Pickkers, P. & Legrand, M. Proenkephalin: a new biomarker for glomerular filtration rate and acute kidney injury. Nephron 144, 655–661 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, J. et al. Pulmonary and renal long COVID at two-year revisit. iScience 27, 110344 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yin, K. et al. Long COVID manifests with T cell dysregulation, inflammation and an uncoordinated adaptive immune response to SARS-CoV-2. Nat. Immunol. 25, 218–225 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klein, J. et al. Distinguishing features of long COVID identified through immune profiling. Nature 623, 139–148 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Glynne, P., Tahmasebi, N., Gant, V. & Gupta, R. Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines. J. Investig. Med. 70, 61–67 (2022).

    Article  PubMed  Google Scholar 

  68. Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bellinvia, S. et al. The unleashing of the immune system in COVID-19 and sepsis: the calm before the storm? Inflamm. Res. 69, 757–763 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cao, M., Wang, G. & Xie, J. Immune dysregulation in sepsis: experiences, lessons and perspectives. Cell Death Discov. 9, 465 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Karakike, E. et al. Coronavirus disease 2019 as cause of viral sepsis: a systematic review and meta-analysis. Crit. Care Med. 49, 2042–2057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. de Araújo, G. C., Pardini, A. & Lima, C. The impact of comorbidities and COVID-19 on the evolution of community onset sepsis. Sci. Rep. 13, 10589 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Laterre, P. F. et al. Association of interleukin 7 immunotherapy with lymphocyte counts among patients with severe coronavirus disease 2019 (COVID-19). JAMA Netw. Open 3, e2016485 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Monneret, G. et al. Immune monitoring of interleukin-7 compassionate use in a critically ill COVID-19 patient. Cell. Mol. Immunol. 17, 1001–1003 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Bidar, F. et al. Recombinant human interleukin-7 reverses T cell exhaustion ex vivo in critically ill COVID-19 patients. Ann. Intensive Care 12, 21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Syed-Ahmed, M. & Narayanan, M. Immune dysfunction and risk of infection in chronic kidney disease. Adv. Chronic Kidney Dis. 26, 8–15 (2019).

    Article  PubMed  Google Scholar 

  77. Tecklenborg, J., Clayton, D., Siebert, S. & Coley, S. M. The role of the immune system in kidney disease. Clin. Exp. Immunol. 192, 142–150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kreutmair, S. et al. Preexisting comorbidities shape the immune response associated with severe COVID-19. J. Allergy Clin. Immunol. 150, 312–324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. DiIorio, M. et al. Prolonged COVID-19 symptom duration in people with systemic autoimmune rheumatic diseases: results from the COVID-19 global rheumatology alliance vaccine survey. RMD Open. 8, e002587 (2022).

    Article  PubMed  Google Scholar 

  80. Teles, M. S. et al. Prevalence and risk factors of postacute sequelae of COVID-19 in adults with systemic autoimmune rheumatic diseases. J. Rheumatol. 51, 928–933 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tesch, F. et al. Incident autoimmune diseases in association with SARS-CoV-2 infection: a matched cohort study. Clin. Rheumatol. 42, 2905–2914 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chang, R. et al. Risk of autoimmune diseases in patients with COVID-19: a retrospective cohort study. EClinicalMedicine 56, 101783 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Heo, Y.-W., Jeon, J. J., Ha, M. C., Kim, Y. H. & Lee, S. Long-term risk of autoimmune and autoinflammatory connective tissue disorders following COVID-19. JAMA Dermatol. 160, 1278–1287 (2024).

    Article  PubMed  Google Scholar 

  84. Filev, R. et al. Post-acute sequelae of SARS-CoV-2 infection (PASC) for patients-3-year follow-up of patients with chronic kidney disease. Biomedicines 12, 1259 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao, X. et al. Prevalence and risk factors of long COVID among maintenance hemodialysis patients post SARS-CoV-2 infection: a one-year follow-up study in China. J. Med. Virol. 96, e29932 (2024).

    Article  CAS  PubMed  Google Scholar 

  86. Amorim, C. E. N. et al. Long COVID among kidney transplant recipients appears to be attenuated during the omicron predominance. Transplantation 108, 963–969 (2024).

    Article  CAS  PubMed  Google Scholar 

  87. Bouwmans, P. et al. Post COVID-19 condition imposes significant burden in patients with advanced chronic kidney disease: a nested case-control study. Int. J. Infect. Dis. 142, 106990 (2024).

    Article  CAS  PubMed  Google Scholar 

  88. Bruchfeld, A. The COVID-19 pandemic: consequences for nephrology. Nat. Rev. Nephrol. 17, 81–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Tsampasian, V. et al. Risk factors associated with post-COVID-19 condition: a systematic review and meta-analysis. JAMA Intern. Med. 183, 566–580 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang, H.-I. et al. Prevalence, risk factors and characterisation of individuals with long COVID using electronic health records in over 1.5 million COVID cases in England. J. Infect. 89, 106235 (2024).

    Article  PubMed  Google Scholar 

  91. Català, M. et al. The effectiveness of COVID-19 vaccines to prevent long COVID symptoms: staggered cohort study of data from the UK, Spain, and Estonia. Lancet Respir. Med. 12, 225–236 (2024).

    Article  PubMed  Google Scholar 

  92. Tubiana, S. et al. Long-term health outcomes following hospitalisation for COVID-19: a 30- month cohort analysis. Infect. Dis. 57, 433–443 (2025).

    Article  Google Scholar 

  93. Lu, J. Y. et al. Long term outcomes of patients with chronic kidney disease after COVID-19 in an urban population in the Bronx. Sci. Rep. 15, 6119 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Atiquzzaman, M. et al. COVID-19 infection and the progression of kidney disease in British Columbia, Canada. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfaf040 (2025).

  95. Lambourg, E. J. et al. Cardiovascular outcomes in patients with chronic kidney disease and COVID-19: a multi-regional data-linkage study. Eur. Respir. J. 60, 2103168 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Choi, Y. J. et al. Effectiveness of antiviral therapy on long COVID: a systematic review and meta-analysis. J. Clin. Med. 12, 7375 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cheng, M. et al. Remdesivir in patients with severe kidney dysfunction: a secondary analysis of the CATCO randomized trial. JAMA Netw. Open. 5, e2229236 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cheng, F. W. T. et al. Effectiveness of molnupiravir and nirmatrelvir-ritonavir in CKD patients with COVID-19. Kidney Int. Rep. 9, 1244–1253 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chen, X. et al. Efficacy and safety of nirmatrelvir/ritonavir in severe hospitalized patients with COVID-19 and in patients at high risk for progression to critical illness: a real-world study. J. Intensive Care Med. 39, 742–750 (2024).

    Article  PubMed  Google Scholar 

  100. Chan, G. C. K. et al. Safety profile and clinical and virological outcomes of nirmatrelvir-ritonavir treatment in patients with advanced chronic kidney disease and coronavirus disease 2019. Clin. Infect. Dis. 77, 1406–1412 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Hiremath, S. et al. Early experience with modified dose nirmatrelvir/ritonavir in dialysis patients with coronavirus disease 2019. Clin. J. Am. Soc. Nephrol. 18, 485–490 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chu, W. M. et al. Comparison of safety and efficacy between nirmatrelvir-ritonavir and molnupiravir in the treatment of COVID-19 infection in patients with advanced kidney disease: a retrospective observational study. EClinicalMedicine 72, 102620 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Akilesh, S. et al. Multicenter clinicopathologic correlation of kidney biopsies performed in COVID-19 patients presenting with acute kidney injury or proteinuria. Am. J. Kidney Dis. 77, 82–93.e1 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Vinayagam, S. & Sattu, K. SARS-CoV-2 and coagulation disorders in different organs. Life Sci. 260, 118431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sharma, P. et al. COVID-19-associated kidney injury: a case series of kidney biopsy findings. J. Am. Soc. Nephrol. 31, 1948–1958 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Golmai, P. et al. Histopathologic and ultrastructural findings in postmortem kidney biopsy material in 12 patients with AKI and COVID-19. J. Am. Soc. Nephrol. 31, 1944–1947 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Connors, J. M. & Levy, J. H. COVID-19 and its implications for thrombosis and anticoagulation. Blood 135, 2033–2040 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pfister, F. et al. Complement activation in kidneys of patients with COVID-19. Front. Immunol. 11, 594849 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Perico, L. et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat. Rev. Nephrol. 17, 46–64 (2021).

    Article  PubMed  Google Scholar 

  110. Av, W., J, C. L. & Ca, R. Human IgG and IgA responses to COVID-19 mRNA vaccines. PLoS ONE 16, e0249499 (2021).

    Article  Google Scholar 

  111. Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586, 594–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Ooi, J. D., Kitching, A. R. & Holdsworth, S. R. Review: T helper 17 cells: their role in glomerulonephritis. Nephrol. Carlton Vic. 15, 513–521 (2010).

    Article  CAS  Google Scholar 

  113. Vojdani, A., Vojdani, E. & Kharrazian, D. Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: implications for autoimmune diseases. Front. Immunol. 11, 617089 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Li, N. L., Coates, P. T. & Rovin, B. H. COVID-19 vaccination followed by activation of glomerular diseases: does association equal causation? Kidney Int. 100, 959–965 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Geetha, D. et al. Impact of the COVID-19 pandemic on the kidney community: lessons learned and future directions. Nat. Rev. Nephrol. 18, 724–737 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gauckler, P. et al. COVID-19 outcomes in patients with a history of immune-mediated glomerular diseases. Front. Immunol. 14, 1228457 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Waldman, M. et al. Results from the IRoc-GN international registry of patients with COVID-19 and glomerular disease suggest close monitoring. Kidney Int. 99, 227–237 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Waldman, M. et al. COVID-19 in patients with glomerular disease: follow-up results from the IRoc-GN international registry. Kidney360 3, 293–306 (2022).

    Article  PubMed  Google Scholar 

  119. Strangfeld, A. et al. Factors associated with COVID-19-related death in people with rheumatic diseases: results from the COVID-19 global rheumatology alliance physician-reported registry. Ann. Rheum. Dis. 80, 930–942 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Antovic, A. et al. Risks and treatment related aspects of COVID-19 infection in patients with ANCA-associated vasculitis. Scand. J. Rheumatol. 52, 418–423 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Cheng, Y. et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 97, 829–838 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kim, H. W. et al. Glomerulonephritis following COVID-19 infection or vaccination: a multicenter study in South Korea. Kidney Res. Clin. Pract. 43, 165–176 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sethi, S., D’Costa, M. R., Hermann, S. M., Nasr, S. H. & Fervenza, F. C. Immune-complex glomerulonephritis after COVID-19 infection. Kidney Int. Rep. 6, 1170–1173 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kudose, S. et al. Kidney biopsy findings in patients with COVID-19. J. Am. Soc. Nephrol. 31, 1959–1968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nasr, S. H. et al. Kidney biopsy findings in patients with COVID-19, kidney injury, and proteinuria. Am. J. Kidney Dis. 77, 465–468 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Volbeda, M. et al. Acute and chronic histopathological findings in renal biopsies in COVID-19. Clin. Exp. Med. 23, 1003–1014 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Shetty, A. A. et al. COVID-19-associated glomerular disease. J. Am. Soc. Nephrol. 32, 33–40 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. de Las Mercedes Noriega, M. et al. Kidney biopsy findings in patients with SARS-CoV-2 infection or after COVID-19 vaccination. Clin. J. Am. Soc. Nephrol. 18, 613–625 (2023).

    Article  Google Scholar 

  129. May, R. M. et al. A multi-center retrospective cohort study defines the spectrum of kidney pathology in Coronavirus 2019 Disease (COVID-19). Kidney Int. 100, 1303–1315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Klomjit, N., Zand, L., Cornell, L. D. & Alexander, M. P. COVID-19 and glomerular diseases. Kidney Int. Rep. 8, 1137–1150 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Velez, J. C. Q., Caza, T. & Larsen, C. P. COVAN is the new HIVAN: the re-emergence of collapsing glomerulopathy with COVID-19. Nat. Rev. Nephrol. 16, 565–567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Giannini, G. et al. Renal prognosis of COVID-19 associated nephropathy. Kidney Int. Rep. 7, 2722–2725 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Diebold, M. et al. Incidence of common glomerular diseases other than collapsing glomerulopathy is not increased after SARS-CoV-2 infection. Kidney Int. Rep. 9, 1122–1126 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kronbichler, A. & Anders, H.-J. mRNA COVID-19 vaccines and their risk to induce a relapse of glomerular diseases. J. Am. Soc. Nephrol. 33, 2128–2131 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Stevens, K. I. et al. Perspective on COVID-19 vaccination in patients with immune-mediated kidney diseases: consensus statements from the ERA-IWG and EUVAS. Nephrol. Dial. Transplant. 37, 1400–1410 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Fenoglio, R. et al. New onset biopsy-proven nephropathies after COVID vaccination. Am. J. Nephrol. 53, 325–330 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Klomjit, N. et al. COVID-19 vaccination and glomerulonephritis. Kidney Int. Rep. 6, 2969–2978 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Radhakrishnan, Y. & Zand, L. New onset glomerular disease post-COVID-19 vaccination: is there a link? Kidney360 4, 294–296 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Caza, T. N. et al. Glomerular disease in temporal association with SARS-CoV-2 vaccination: a series of 29 cases. Kidney360 2, 1770–1780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Bomback, A. S., Kudose, S. & D’Agati, V. D. De novo and relapsing glomerular diseases after COVID-19 vaccination: what do we know so far? Am. J. Kidney Dis. 78, 477–480 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hummel, A. et al. Idiopathic nephrotic syndrome relapse following COVID-19 vaccination: a series of 25 cases. Clin. Kidney J. 15, 1574–1582 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Canney, M. et al. A population-based analysis of the risk of glomerular disease relapse after COVID-19 vaccination. J. Am. Soc. Nephrol. 33, 2247–2257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Matsuzaki, K. et al. Gross hematuria after SARS-CoV-2 vaccination: questionnaire survey in Japan. Clin. Exp. Nephrol. 26, 316–322 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Lionaki, S. et al. Adverse events associated with SARS-CoV-2 vaccination in patients with glomerular diseases and the potential risk of disease reactivation. Kidney Int. Rep. 9, 3324–3327 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ishimoto, T. et al. Minimal change disease: a CD80 podocytopathy? Semin. Nephrol. 31, 320–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Pan, Y. et al. Assessing acute kidney injury risk after COVID vaccination and infection in a large cohort study. NPJ Vaccines 9, 213 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, C.-S. et al. Association of COVID-19 versus COVID-19 vaccination with kidney function and disease activity in primary glomerular disease: a report of the cure glomerulonephropathy study. Am. J. Kidney Dis. 83, 37–46 (2024).

    Article  CAS  PubMed  Google Scholar 

  148. Teisseyre, M. et al. Humoral and cellular responses after a third dose of SARS-CoV-2 mRNA vaccine in patients with glomerular disease. Nephrol. Dial. Transplant. 38, 249–251 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Frodlund, M. et al. The serological immunogenicity of the third and fourth doses of COVID-19 vaccine in patients with inflammatory rheumatic diseases on different biologic or targeted DMARDs: a Swedish nationwide study (COVID-19-REUMA). Microbiol. Spectr. 12, e0298123 (2024).

    Article  PubMed  Google Scholar 

  150. Embi, P. J. et al. Effectiveness of 2-dose vaccination with mRNA COVID-19 vaccines against COVID-19-associated hospitalizations among immunocompromised adults — Nine states, January–September 2021. MMWR Morb. Mortal. Wkly. Rep. 70, 1553–1559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. OpenSAFELY Collaborative et al. Comparative effectiveness of two- and three-dose COVID-19 vaccination schedules involving AZD1222 and BNT162b2 in people with kidney disease: a linked OpenSAFELY and UK renal registry cohort study. Lancet Reg. Health Eur. 30, 100636 (2023).

    Article  Google Scholar 

  152. Chen, C.-H., Wu, M.-J. & Tsai, S.-F. Safety and effectiveness of COVID-19 vaccines in patients with IgA nephropathy: a retrospective cohort study from the TriNetX global collaborative networks. EClinicalMedicine 65, 102306 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wijkström, J. et al. Results of the first nationwide cohort study of outcomes in dialysis and kidney transplant patients before and after vaccination for COVID-19. Nephrol. Dial. Transplant. 38, 2607–2616 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Quiroga, B. et al. Humoral response after the fourth dose of the SARS-CoV-2 vaccine in the CKD spectrum: a prespecified analysis of the SENCOVAC study. Nephrol. Dial. Transplant. 38, 969–981 (2023).

    Article  CAS  PubMed  Google Scholar 

  155. Hwang, H. S. et al. Global burden of vaccine-associated kidney injury using an international pharmacovigilance database. Sci. Rep. 15, 5177 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Arsenault, C. et al. Health system quality and COVID-19 vaccination: a cross-sectional analysis in 14 countries. Lancet Glob. Health 12, e156–e165 (2024).

    Article  PubMed  Google Scholar 

  157. Pramod, S. et al. Effectiveness of Covishield vaccine in preventing Covid-19 — a test-negative case-control study. Vaccine 40, 3294–3297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Maier, H. E. et al. Reduction in long COVID symptoms and symptom severity in vaccinated compared to unvaccinated adults. Open. Forum Infect. Dis. 11, ofae039 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lundberg-Morris, L. et al. Covid-19 vaccine effectiveness against post-covid-19 condition among 589 722 individuals in Sweden: population based cohort study. BMJ 383, e076990 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Xu, Y. et al. Cardiovascular events following coronavirus disease 2019 vaccination in adults: a nationwide Swedish study. Eur. Heart J. 46, 147–157 (2025).

    Article  PubMed  Google Scholar 

  161. Ghafari, M. et al. Prevalence of persistent SARS-CoV-2 in a large community surveillance study. Nature 626, 1094–1101 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yang, C., Zhao, H., Espín, E. & Tebbutt, S. J. Association of SARS-CoV-2 infection and persistence with long COVID. Lancet Respir. Med. 11, 504–506 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, H. et al. Vaccination reduces viral load and accelerates viral clearance in SARS-CoV-2 Delta variant-infected patients. Ann. Med. 55, 419–427 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Boufidou, F. et al. SARS-CoV-2 reinfections and long COVID in the post-omicron phase of the pandemic. Int. J. Mol. Sci. 24, 12962 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Hadley, E. et al. Insights from an N3C RECOVER EHR-based cohort study characterizing SARS-CoV-2 reinfections and Long COVID. Commun. Med. 4, 129 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Jang, J. et al. Vaccine effectiveness in symptom and viral load mitigation in COVID-19 breakthrough infections in South Korea. PLoS ONE 18, e0290154 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tandon, P. et al. Unraveling links between chronic inflammation and long COVID: workshop report. J. Immunol. 212, 505–512 (2024).

    Article  CAS  PubMed  Google Scholar 

  168. Trinh, N. T. et al. Effectiveness of COVID-19 vaccines to prevent long COVID: data from Norway. Lancet Respir. Med. 12, e33–e34 (2024).

    Article  PubMed  Google Scholar 

  169. COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19. (National Institute for Health and Care Excellence, 2024).

  170. Munblit, D. et al. Long COVID: aiming for a consensus. Lancet Respir. Med. 10, 632–634 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. National academies of sciences, engineering, and medicine; health and medicine division; board on health care services; committee on the long-term health effects stemming from COVID-19 and implications for the social security administration. Long-Term Health Effects of COVID-19: Disability and Function Following SARS-CoV-2 Infection. (National Academies Press, 2024).

  172. Thaweethai, T. et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA 329, 1934–1946 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Soriano, J. B. et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 22, e102–e107 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Yonts, A. Pediatric long-COVID: a review of the definition, epidemiology, presentation, and pathophysiology. Pediatr. Ann. 51, e416–e420 (2022).

    PubMed  Google Scholar 

  175. Nystrom, S. E. et al. APOL1 high-risk genotype is not associated with new or worsening of proteinuria or kidney function decline following COVID-19 vaccination. Kidney Int. Rep. 9, 2657–2666 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Waldman, M. et al. COVID-19 vaccination and new onset glomerular disease: results from the IRocGN2 international registry. Kidney360 4, 349–362 (2023).

    Article  PubMed  Google Scholar 

  177. Kechagias, K. S. et al. Minimal change disease following COVID-19 vaccination: a systematic review. PLoS ONE 19, e0297568 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Timmermans, S. A. M. E. G. et al. Primary podocytopathies after COVID-19 vaccination. Kidney Int. Rep. 7, 892–894 (2022).

    Article  PubMed  Google Scholar 

  179. Lim, C. A. et al. Focal segmental glomerulosclerosis following the Pfizer-BioNTech COVID-19 vaccine. Kidney Res. Clin. Pract. 41, 263–266 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Sato, T. et al. Increase in the number of new cases of ANCA-associated vasculitis in the COVID-19 vaccine era. Clin. Immunol. 252, 109656 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sekar, A., Campbell, R., Tabbara, J. & Rastogi, P. ANCA glomerulonephritis after the Moderna COVID-19 vaccination. Kidney Int. 100, 473–474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Villa, M. et al. A case of ANCA-associated vasculitis after AZD1222 (Oxford-AstraZeneca) SARS-CoV-2 vaccination: casualty or causality? Kidney Int. 100, 937–938 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Prabhahar, A. et al. ANCA-associated vasculitis following ChAdOx1 nCoV19 vaccination: case-based review. Rheumatol. Int. 42, 749–758 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. David, R., Hanna, P., Lee, K. & Ritchie, A. Relapsed ANCA associated vasculitis following Oxford AstraZeneca ChAdOx1-S COVID-19 vaccination: a case series of two patients. Nephrology 27, 109–110 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Moradiya, P., Khandelwal, P., Raina, R. & Mahajan, R. G. Systematic review of individual patient data COVID-19 infection and vaccination-associated thrombotic microangiopathy. Kidney Int. Rep. 9, 3134–3144 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Gueguen, L., Loheac, C., Saidani, N. & Khatchatourian, L. Membranous nephropathy following anti-COVID-19 mRNA vaccination. Kidney Int. 100, 1140–1141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Aoki, R. et al. Gross hematuria after the COVID-19 mRNA vaccination: nationwide multicenter prospective cohort study in Japan. Kidney360 5, 1322–1332 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Okabe, M. et al. Does COVID-19 vaccination trigger gross hematuria in patients with IgA nephropathy? Clin. Kidney J. 17, sfae160 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kimura, H. et al. Two-year follow-up of IgA nephropathy patients who developed gross hematuria following COVID-19 vaccination: a case series and literature review. Intern. Med. https://doi.org/10.2169/internalmedicine.5548-25 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Kim, H. J., Jung, M., Lim, B. J. & Han, S. H. New-onset class III lupus nephritis with multi-organ involvement after COVID-19 vaccination. Kidney Int. 101, 826–828 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zavala-Miranda, M. F., González-Ibarra, S. G., Pérez-Arias, A. A., Uribe-Uribe, N.O. & Mejia-Vilet, J. M. New-onset systemic lupus erythematosus beginning as class V lupus nephritis after COVID-19 vaccination. Kidney Int. 100, 1340–1341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tuschen, K., Bräsen, J. H., Schmitz, J., Vischedyk, M. & Weidemann, A. Relapse of class V lupus nephritis after vaccination with COVID-19 mRNA vaccine. Kidney Int. 100, 941–944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Vanjarapu, J. M. R. et al. Proliferative glomerulonephritis with monotypic immunoglobulin deposits: an unusual presentation in the setting of multiple inciting events including COVID-19 vaccination. Cureus 14, e25949 (2022).

    PubMed  PubMed Central  Google Scholar 

  194. Li, Y. et al. Clinical phenotype of AAV, anti-GBM disease and double-positive patients after SARS-CoV-2 vaccination. Autoimmun. Rev. 23, 103521 (2024).

    Article  CAS  PubMed  Google Scholar 

  195. Ritter, A. et al. Clinical spectrum of gross haematuria following SARS-CoV-2 vaccination with mRNA vaccines. Clin. Kidney J. 15, 961–973 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Vanja Ivković or Annette Bruchfeld.

Ethics declarations

Competing interests

U.A. reports no competing interests; V.I. has received a Long-term Fellowship grant from the European Renal Association (ERA) and is an Editorial Board member of NDT; S.B. reports consultancy fees from AstraZeneca, Bayer and GSK; A.K. reports consulting fees from Amgen, AstraZeneca, Boehringer Ingelheim, CSL Vifor, Delta4, GlaxoSmithKline, Novartis, Otsuka, Roche and Walden Biosciences, all outside of the submitted work. A.K. serves as an Associate Editor of Glomerular Diseases and an Editor of NDT. M.J.S. reports personal fees from NovoNordisk, Jansen, Mundipharma, AstraZeneca, Esteve, Fresenius, Ingelheim Lilly, Vifor and ICU, and grants and personal fees from Boehringer Ingelheim; A.B. received consultancy fees from Amgen, AstraZeneca, Boehringer Ingelheim, CSL Vifor, Otsuka and Sobi and payment or honoraria for lectures, presentations, speaker’s bureaus, manuscript writing or educational events from AstraZeneca, Bayer, Boehringer Ingelheim, ChemoCentryx, CSL Vifor, Fresenius, GlaxoSmithKline and Otsuka; A.B. is an Editorial Board member of CKJ.

Peer review

Peer review information

Nature Reviews Nephrology thanks Luuk Hilbrands, Giuseppe Remuzzi and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivković, V., Anandh, U., Bell, S. et al. Long COVID and the kidney. Nat Rev Nephrol (2025). https://doi.org/10.1038/s41581-025-00997-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-025-00997-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing