Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunology of sepsis: translating new insights into clinical practice

Abstract

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Treatments that influence this dysregulated host response are sparse. The immunopathophysiology of sepsis entails overzealous inflammation causing acute organ dysfunction, as well as a profound and/or persistent anti-inflammatory response that increases susceptibility to secondary infection. The immune response in sepsis is under the influence of various endogenous and exogenous factors, including genetic makeup, age, sex, comorbidities, metabolism, prior microbial exposure and medications. The consequent heterogeneity of the syndrome hampers immunomodulatory treatment strategies that rely on a ‘one-size-fits-all’ approach. A precision medicine approach is therefore warranted. Balanced application of prognostic- and predictive-enrichment strategies is instrumental to achieve precision medicine. Phenotyping of patients using clinical, physiological, microbiological and/or molecular (‘omics’) data enables the identification of more homogeneous patient subgroups. Several studies suggest that such approaches can be used to tailor adjunctive immunomodulatory therapies in patients with sepsis. As well as repurposing existing drugs to treat sepsis, new drugs aimed at restoring immune homeostasis are under investigation. New clinical trial methodologies, including flexible platform trials, Bayesian statistics and embedding trials in health care systems are increasingly being used to keep pace with rapid developments in the field of sepsis immunobiology and ultimately to improve clinical outcomes.

Key points

  • Sepsis is a highly heterogenous syndrome resulting from a dysregulated immune response that is characterized by varying degrees of inflammation and immune suppression.

  • Immunomodulatory treatment strategies that use a ‘one-size-fits-all approach’ have consistently failed to attenuate organ dysfunction or reduce mortality in sepsis, underscoring the need for a better understanding of the host response and theragnostic biomarkers to guide appropriate therapeutic interventions.

  • Harnessing concepts such as disease tolerance, resilience, resolution and trained immunity may shed new perspectives on the dysregulated host response in sepsis, moving away from the simplified hyperinflammatory versus immunosuppressive paradigm.

  • Unsupervised clustering methods and machine learning can assign patients with sepsis into distinct subgroups on the basis of various demographic, clinical, physiological and/or molecular data, with the ultimate goal of enabling precision medicine — appropriate treatment for individual patients, at the right dose and at the optimal time.

  • Several retrospective analyses indicate that precision medicine may be feasible and effective in sepsis, but prospective studies are required to demonstrate clinical benefit.

  • Overcoming the limitations of traditional trial designs and adopting innovative approaches such as flexible platform trials, Bayesian methods and embedded trials could help to advance the delivery of effective, timely treatments to improve the outcomes of patients with sepsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The dysregulated host response in sepsis.
Fig. 2: Precision phenotyping in sepsis.
Fig. 3: Potential future immunomodulatory treatments for sepsis.

Similar content being viewed by others

References

  1. Angus, D. C. & van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 369, 2063 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the global burden of disease study. Lancet 395, 200–211 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stevenson, E. K., Rubenstein, A. R., Radin, G. T., Wiener, R. S. & Walkey, A. J. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit. Care Med. 42, 625–631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fleischmann-Struzek, C. et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 46, 1552–1562 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yende, S. et al. Risk of cardiovascular events in survivors of severe sepsis. Am. J. Respir. Crit. Care Med. 189, 1065–1074 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Inghammar, M. et al. Long-term mortality and hospital readmissions among survivors of sepsis in Sweden: a population-based cohort study. Open. Forum Infect. Dis. 11, ofae331 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fleischmann-Struzek, C. et al. Epidemiology and costs of postsepsis morbidity, nursing care dependency, and mortality in Germany, 2013 to 2017. JAMA Netw. Open. 4, e2134290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rahmel, T. et al. Long-term mortality and outcome in hospital survivors of septic shock, sepsis, and severe infections: the importance of aftercare. PLoS ONE 15, e0228952 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gotts, J. E. & Matthay, M. A. Sepsis: pathophysiology and clinical management. BMJ 353, i1585 (2016).

    Article  PubMed  Google Scholar 

  10. Cajander, S. et al. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. Lancet Respir. Med. 12, 305–322 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Joffre, J., Hellman, J., Ince, C. & Ait-Oufella, H. Endothelial responses in sepsis. Am. J. Respir. Crit. Care Med. 202, 361–370 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Shankar-Hari, M. et al. Reframing sepsis immunobiology for translation: towards informative subtyping and targeted immunomodulatory therapies. Lancet Respir. Med. 12, 323–336 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cazalis, M. A. et al. Early and dynamic changes in gene expression in septic shock patients: a genome-wide approach. Intensive Care Med. Exp. 2, 20 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xiao, W. et al. A genomic storm in critically injured humans. J. Exp. Med. 208, 2581–2590 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Calvano, S. E. et al. A network-based analysis of systemic inflammation in humans. Nature 437, 1032–1037 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Tang, B. M., Huang, S. J. & McLean, A. S. Genome-wide transcription profiling of human sepsis: a systematic review. Crit. Care 14, R237 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ferlito, M. et al. Effect of cross-tolerance between endotoxin and TNF-alpha or IL-1beta on cellular signaling and mediator production. J. Leukoc. Biol. 70, 821–829 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Wiersinga, W. J. & van der Poll, T. Immunopathophysiology of human sepsis. EBioMedicine 86, 104363 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van der Poll, T., Shankar-Hari, M. & Wiersinga, W. J. The immunology of sepsis. Immunity 54, 2450–2464 (2021).

    Article  PubMed  Google Scholar 

  20. Bauer, M. & Wetzker, R. The cellular basis of organ failure in sepsis-signaling during damage and repair processes. Med. Klin. Intensivmed. Notfmed 115, 4–9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fattahi, F., Zetoune, F. S. & Ward, P. A. Complement as a major inducer of harmful events in infectious sepsis. Shock 54, 595–605 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chousterman, B. G., Swirski, F. K. & Weber, G. F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 39, 517–528 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Y. Y. & Ning, B. T. Signaling pathways and intervention therapies in sepsis. Signal. Transduct. Target. Ther. 6, 407 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kox, M., Waalders, N. J. B., Kooistra, E. J., Gerretsen, J. & Pickkers, P. Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA 324, 1565–1567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iba, T., Levi, M. & Levy, J. H. Intracellular communication and immunothrombosis in sepsis. J. Thromb. Haemost. 20, 2475–2484 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Larsen, R. et al. A central role for free heme in the pathogenesis of severe sepsis. Sci. Transl. Med. 2, 51ra71 (2010).

    Article  PubMed  Google Scholar 

  27. Karakike, E. & Giamarellos-Bourboulis, E. J. Macrophage activation-like syndrome: a distinct entity leading to early death in sepsis. Front. Immunol. 10, 55 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rubio, I. et al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect. Dis. 19, e422–e436 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Venet, F. & Monneret, G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat. Rev. Nephrol. 14, 121–137 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Finfer, S., Venkatesh, B., Hotchkiss, R. S. & Sasson, S. C. Lymphopenia in sepsis-an acquired immunodeficiency? Immunol. Cell Biol. 101, 535–544 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Boomer, J. S. et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306, 2594–2605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leijte, G. P. et al. Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. Crit. Care 24, 110 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Patera, A. C. et al. Frontline science: defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1. J. Leukoc. Biol. 100, 1239–1254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guignant, C. et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit. Care 15, R99 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cavaillon, J. M., Adrie, C., Fitting, C. & Adib-Conquy, M. Reprogramming of circulatory cells in sepsis and SIRS. J. Endotoxin Res. 11, 311–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Bouras, M., Asehnoune, K. & Roquilly, A. Contribution of dendritic cell responses to sepsis-induced immunosuppression and to susceptibility to secondary pneumonia. Front. Immunol. 9, 2590 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berton, R. R. et al. Sepsis leads to lasting changes in phenotype and function of naive CD8 T cells. PLoS Pathog. 19, e1011720 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, D., Shi, Y., Zhang, H. & Miao, C. Epigenetic mechanisms of Immune remodeling in sepsis: targeting histone modification. Cell Death Dis. 14, 112 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Uhel, F. et al. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. Am. J. Respir. Crit. Care Med. 196, 315–327 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Schrijver, I. T. et al. Myeloid-derived suppressor-like cells as a prognostic marker in critically ill patients: insights from experimental endotoxemia and intensive care patients. Cells 13, 314–2024.

  41. Coudereau, R. et al. Immature neutrophils and myeloid-derived suppressor cells in sepsis: differences in occurrence kinetics. Crit. Care 28, 7 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Darden, D. B. et al. Single-cell RNA-seq of human myeloid-derived suppressor cells in late sepsis reveals multiple subsets with unique transcriptional responses: a pilot study. Shock 55, 587–595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Venet, F. et al. Increased circulating regulatory T cells (CD4+CD25+CD127) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med. 35, 678–686 (2009).

    Article  PubMed  Google Scholar 

  44. Landelle, C. et al. Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Med. 36, 1859–1866 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Monneret, G. et al. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med. 32, 1175–1183 (2006).

    Article  PubMed  Google Scholar 

  46. Adigbli, D. et al. Early persistent lymphopenia and risk of death in critically ill patients with and without sepsis. Shock 61, 197–203 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. Drewry, A. M. et al. Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock 42, 383–391 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Retter, A., Singer, M. & Annane, D. The NET effect: neutrophil extracellular traps — a potential key component of the dysregulated host immune response in sepsis. Crit. Care 29, 59 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Coupland, L. A. et al. Plasma dynamics of neutrophil extracellular traps and cell-free DNA in septic and nonseptic vasoplegic shock: a prospective comparative observational cohort study. Shock 62, 193–200 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Shi, Y. et al. Treg and neutrophil extracellular trap interaction contributes to the development of immunosuppression in sepsis. JCI Insight 9, e180132.

  51. Cavaillon, J. M. & Annane, D. Compartmentalization of the inflammatory response in sepsis and SIRS. J. Endotoxin Res. 12, 151–170 (2006).

    CAS  PubMed  Google Scholar 

  52. Conway Morris, A., Rynne, J. & Shankar-Hari, M. Compartmentalisation of immune responses in critical illness: does it matter? Intensive Care Med. 48, 1617–1620 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cavaillon, J. M., Chousterman, B. G. & Skirecki, T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. J. Intensive Med. 4, 326–340 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  54. de Brabander, J. et al. Persistent alveolar inflammatory response in critically ill patients with COVID-19 is associated with mortality. Thorax 78, 912–921 (2023).

    Article  PubMed  Google Scholar 

  55. Jouan, Y., Baranek, T., Si-Tahar, M., Paget, C. & Guillon, A. Lung compartmentalization of inflammatory biomarkers in COVID-19-related ARDS. Crit. Care 25, 120 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Neyton, L. P. A. et al. Distinct pulmonary and systemic effects of dexamethasone in severe COVID-19. Nat. Commun. 15, 5483 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morrell, E. D. et al. PD-L1 and PD-1 are associated with clinical outcomes and alveolar immune cell activation in ARDS. Am. J. Respir. Cell Mol. Biol. 71, 534–545.

  58. Dugernier, T. L. et al. Compartmentalization of the inflammatory response during acute pancreatitis: correlation with local and systemic complications. Am. J. Respir. Crit. Care Med. 168, 148–157 (2003).

    Article  PubMed  Google Scholar 

  59. Li, Z. et al. The pathogenesis of ischemia-reperfusion induced acute kidney injury depends on renal neutrophil recruitment whereas sepsis-induced AKI does not. Front. Immunol. 13, 843782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wen, X. et al. Time-dependent effects of histone deacetylase inhibition in sepsis-associated acute kidney injury. Intensive Care Med. Exp. 8, 9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kuwabara, S., Goggins, E. & Okusa, M. D. The pathophysiology of sepsis-associated AKI. Clin. J. Am. Soc. Nephrol. 17, 1050–1069 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zarbock, A. et al. Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat. Rev. Nephrol. 19, 401–417 (2023).

    Article  PubMed  Google Scholar 

  63. Lee, K., Jang, H. R. & Rabb, H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat. Rev. Nephrol. 20, 789–805 (2024).

    Article  CAS  PubMed  Google Scholar 

  64. Zager, R. A., Johnson, A. C., Hanson, S. Y. & Lund, S. Ischemic proximal tubular injury primes mice to endotoxin-induced TNF-α generation and systemic release. Am. J. Physiol. Renal Physiol. 289, F289–F297 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Zager, R. A., Johnson, A. C., Hanson, S. Y. & Lund, S. Acute nephrotoxic and obstructive injury primes the kidney to endotoxin-driven cytokine/chemokine production. Kidney Int. 69, 1181–1188 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Mar, D. et al. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes. Kidney Int. 88, 734–744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bauer, M., Ermolaeva, M., Singer, M., Wetzker, R. & Soares, M. P. Hormesis as an adaptive response to infection. Trends Mol. Med. 30, 633–641 (2024).

    Article  PubMed  Google Scholar 

  68. Weis, S. et al. Metabolic adaptation establishes disease tolerance to sepsis. Cell 169, 1263–1275.e14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rahmel, T. et al. An open-label, randomized controlled trial to assess a ketogenic diet in critically ill patients with sepsis. Sci. Transl. Med. 16, eadn9285 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Soto-Heredero, G., Gomez de Las Heras, M. M., Gabande-Rodriguez, E., Oller, J. & Mittelbrunn, M. Glycolysis — a key player in the inflammatory response. FEBS J. 287, 3350–3369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cheng, S. C. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 17, 406–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Shi, W., Cassmann, T. J., Bhagwate, A. V., Hitosugi, T. & Ip, W. K. E. Lactic acid induces transcriptional repression of macrophage inflammatory response via histone acetylation. Cell Rep. 43, 113746 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nolt, B. et al. Lactate and immunosuppression in sepsis. Shock 49, 120–125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vandewalle, J. et al. Combined glucocorticoid resistance and hyperlactatemia contributes to lethal shock in sepsis. Cell Metab. 33, 1763–1776.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Levy, B., Gibot, S., Franck, P., Cravoisy, A. & Bollaert, P. E. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365, 871–875 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Iwashyna, T. J., Ely, E. W., Smith, D. M. & Langa, K. M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304, 1787–1794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iwashyna, T. J., Cooke, C. R., Wunsch, H. & Kahn, J. M. Population burden of long-term survivorship after severe sepsis in older Americans. J. Am. Geriatr. Soc. 60, 1070–1077 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang, H. E. et al. Long-term mortality after community-acquired sepsis: a longitudinal population-based cohort study. BMJ Open 4, e004283 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fleischmann-Struzek, C. et al. Functional dependence following intensive care unit-treated sepsis: three-year follow-up results from the prospective mid-German sepsis cohort (MSC). Lancet Reg. Health Eur. 46, 101066 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Torres, J. S. S. et al. Sepsis and post-sepsis syndrome: a multisystem challenge requiring comprehensive care and management-a review. Front. Med. 12, 1560737 (2025).

    Article  Google Scholar 

  84. Lu, X., Yang, Y. M. & Lu, Y. Q. Immunosenescence: a critical factor associated with organ injury after sepsis. Front. Immunol. 13, 917293 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Darden, D. B. et al. Biomarker evidence of the persistent inflammation, immunosuppression and catabolism syndrome (PICS) in chronic critical illness (CCI) after surgical sepsis. Ann. Surg. 274, 664–673 (2021).

    Article  PubMed  Google Scholar 

  86. Barrios, E. L. et al. Unique lymphocyte transcriptomic profiles in septic patients with chronic critical illness. Front. Immunol. 15, 1478471 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Elek, Z. et al. Persistent sepsis-induced transcriptomic signatures in signaling pathways of peripheral blood leukocytes: a pilot study. Hum. Immunol. 84, 600–608 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Mageau, A. et al. High incidence of immune-mediated inflammatory diseases in sepsis survivors: a nationwide exposed-nonexposed epidemiological study. J. Intern. Med. 295, 242–252 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. Lira Chavez, F. M. et al. Restoring the infected powerhouse: mitochondrial quality control in sepsis. Redox Biol. 68, 102968 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Soares, M. P., Gozzelino, R. & Weis, S. Tissue damage control in disease tolerance. Trends Immunol. 35, 483–494 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Leitner, B. P. et al. Tissue-specific reprogramming of glutamine metabolism maintains tolerance to sepsis. PLoS ONE 18, e0286525 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, A. et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166, 1512–1525.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. London, N. R. et al. Targeting Robo4-dependent slit signaling to survive the cytokine storm in sepsis and influenza. Sci. Transl. Med. 2, 23ra19 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ahuja, S. K. et al. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection. Nat. Commun. 14, 3286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Beane, A. & Shankar-Hari, M. Long-term ill health in sepsis survivors: an ignored health-care challenge? Lancet 404, 1178–1180 (2024).

    Article  PubMed  Google Scholar 

  97. Jundi, B. et al. Inflammation resolution circuits are uncoupled in acute sepsis and correlate with clinical severity. JCI Insight 6, e148866 (2021).

    PubMed  PubMed Central  Google Scholar 

  98. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2, 612–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Basil, M. C. & Levy, B. D. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 16, 51–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Sugimoto, M. A., Sousa, L. P., Pinho, V., Perretti, M. & Teixeira, M. M. Resolution of inflammation: what controls its onset? Front. Immunol. 7, 160 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jordan, P. M. & Werz, O. Specialized pro-resolving mediators: biosynthesis and biological role in bacterial infections. FEBS J. 289, 4212–4227 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rocheteau, P. et al. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nat. Commun. 6, 10145 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Eming, S. A., Wynn, T. A. & Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science 356, 1026–1030 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Powell, R. E., Soares, M. P. & Weis, S. What’s new in intensive care: disease tolerance. Intensive Care Med. 49, 1235–1237 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Thomas-Ruddel, D. et al. Epirubicin for the treatment of sepsis and septic shock (EPOS-1): study protocol for a randomised, placebo-controlled phase IIa dose-escalation trial. BMJ Open. 14, e075158 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Haak, B. W. & Wiersinga, W. J. The role of the gut microbiota in sepsis. Lancet Gastroenterol. Hepatol. 2, 135–143 (2017).

    Article  PubMed  Google Scholar 

  109. Keith, J. W. & Pamer, E. G. Enlisting commensal microbes to resist antibiotic-resistant pathogens. J. Exp. Med. 216, 10–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kullberg, R. F. J. et al. Association between butyrate-producing gut bacteria and the risk of infectious disease hospitalisation: results from two observational, population-based microbiome studies. Lancet Microbe 5, 100864 (2024).

    Article  PubMed  Google Scholar 

  111. Adelman, M. W. et al. The gut microbiome’s role in the development, maintenance, and outcomes of sepsis. Crit. Care 24, 278 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ngo, V. L. et al. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. Cell Host Microbe 32, 335–348.e8 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schuijt, T. J. et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65, 575–583 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50, 432–445.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Seufert, A. L. et al. Enriched dietary saturated fatty acids induce trained immunity via ceramide production that enhances severity of endotoxemia and clearance of infection. Elife 11, e76744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Miller, M. et al. Antibiotics, sedatives, and catecholamines further compromise sepsis-induced immune suppression in peripheral blood mononuclear cells. Crit. Care Med. 52, 596–606 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Cata, J. P., Wang, H., Gottumukkala, V., Reuben, J. & Sessler, D. I. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. Br. J. Anaesth. 110, 690–701 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kiers, D. et al. Short-term hypoxia dampens inflammation in vivo via enhanced adenosine release and adenosine 2B receptor stimulation. EBioMedicine 33, 144–156 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wheeler, D. S. et al. The immunomodulatory effects of albumin in vitro and in vivo. Adv. Pharmacol. Sci. 2011, 691928 (2011).

    PubMed  PubMed Central  Google Scholar 

  120. Stolk, R. et al. Norepinephrine dysregulates the immune response and compromises host defense during sepsis. Am. J. Respir. Crit. Care Med. 202, 830–842 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Stolk, R. F., Kox, M. & Pickkers, P. Noradrenaline drives immunosuppression in sepsis: clinical consequences. Intensive Care Med. 46, 1246–1248 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Babouee Flury, B., Andrey, D. & Kohler, P. Antibiotics’ collateral effects on the gut microbiota in the selection of ESKAPE pathogens. CMI Commun. 1, 100012 (2024).

    Article  Google Scholar 

  123. Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    Article  PubMed  Google Scholar 

  124. Drummond, R. A. et al. Long-term antibiotic exposure promotes mortality after systemic fungal infection by driving lymphocyte dysfunction and systemic escape of commensal bacteria. Cell Host Microbe 30, 1020–1033.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Boukerb, A. M. et al. Inter-kingdom signaling of stress hormones: sensing, transport and modulation of bacterial physiology. Front. Microbiol. 12, 690942 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Llitjos, J. F. et al. Enhancing sepsis biomarker development: key considerations from public and private perspectives. Crit. Care 28, 238 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Barichello, T., Generoso, J. S., Singer, M. & Dal-Pizzol, F. Biomarkers for sepsis: more than just fever and leukocytosis — a narrative review. Crit. Care 26, 14 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Povoa, P. et al. How to use biomarkers of infection or sepsis at the bedside: guide to clinicians. Intensive Care Med. 49, 142–153 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Pierrakos, C., Velissaris, D., Bisdorff, M., Marshall, J. C. & Vincent, J. L. Biomarkers of sepsis: time for a reappraisal. Crit. Care 24, 287 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Matsumoto, H. et al. The clinical importance of a cytokine network in the acute phase of sepsis. Sci. Rep. 8, 13995 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhang, Y., Li, X., Zhang, X., Wang, T. & Zhang, X. Progress in the study of pentraxin-3 (PTX-3) as a biomarker for sepsis. Front. Med. 11, 1398024 (2024).

    Article  Google Scholar 

  132. Carcillo, J. A. et al. A systemic inflammation mortality risk assessment contingency table for severe sepsis. Pediatr. Crit. Care Med. 18, 143–150 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. He, L., Guo, C., Su, Y. & Ding, N. The relationship between serum ferritin level and clinical outcomes in sepsis based on a large public database. Sci. Rep. 13, 8677 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Albrecht, E. A. & Ward, P. A. Complement-induced impairment of the innate immune system during sepsis. Curr. Infect. Dis. Rep. 7, 349–354 (2005).

    Article  PubMed  Google Scholar 

  135. Riedemann, N. C. et al. Increased C5a receptor expression in sepsis. J. Clin. Invest. 110, 101–108 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Khater, W. S., Salah-Eldeen, N. N., Khater, M. S. & Saleh, A. N. Role of suPAR and lactic acid in diagnosing sepsis and predicting mortality in elderly patients. Eur. J. Microbiol. Immunol. 6, 178–185 (2016).

    Article  CAS  Google Scholar 

  137. Adami, M. E. et al. qSOFA combined with suPAR for early risk detection and guidance of antibiotic treatment in the emergency department: a randomized controlled trial. Crit. Care 28, 42 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Theobald, V. et al. Triggering receptor expressed on myeloid cells-1 in sepsis, and current insights into clinical studies. Crit. Care 28, 17 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Torres, L. K., Pickkers, P. & van der Poll, T. Sepsis-induced immunosuppression. Annu. Rev. Physiol. 84, 157–181 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Fumeaux, T. & Pugin, J. Role of interleukin-10 in the intracellular sequestration of human leukocyte antigen-DR in monocytes during septic shock. Am. J. Respir. Crit. Care Med. 166, 1475–1482 (2002).

    Article  PubMed  Google Scholar 

  141. Marie, C., Cavaillon, J. M. & Losser, M. R. Elevated levels of circulating transforming growth factor-β 1 in patients with the sepsis syndrome. Ann. Intern. Med. 125, 520–521 (1996).

    Article  CAS  PubMed  Google Scholar 

  142. Liu, M. et al. Serum sPD-L1, upregulated in sepsis, may reflect disease severity and clinical outcomes in septic patients. Scand. J. Immunol. 85, 66–72 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Yuan, Y., Yan, D., Han, G., Gu, G. & Ren, J. Complement C3 depletion links to the expansion of regulatory T cells and compromises T-cell immunity in human abdominal sepsis: a prospective pilot study. J. Crit. Care 28, 1032–1038 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Docke, W. D. et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat. Med. 3, 678–681 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Bodinier, M. et al. Monocyte trajectories endotypes are associated with worsening in septic patients. Front. Immunol. 12, 795052 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Seok, Y. et al. Delta neutrophil index: a promising diagnostic and prognostic marker for sepsis. Shock 37, 242–246 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Demaret, J. et al. Marked alterations of neutrophil functions during sepsis-induced immunosuppression. J. Leukoc. Biol. 98, 1081–1090 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Drifte, G., Dunn-Siegrist, I., Tissieres, P. & Pugin, J. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit. Care Med. 41, 820–832 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Seymour, C. W. et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA 321, 2003–2017 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Molinari, L. et al. Distribution of acute and chronic kidney disease across clinical phenotypes for sepsis. Chest 166, 480–490 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bruse, N. et al. Clinical sepsis phenotypes in critically ill COVID-19 patients. Crit. Care 26, 244 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bruse, N. Clinical phenotyping uncovers heterogeneous associations between corticosteroid treatment and survival in critically ill (COVD-19) patients. Intensive Care Med. 50, 1884–1886 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gardlund, B. et al. Six subphenotypes in septic shock: latent class analysis of the PROWESS Shock study. J. Crit. Care 47, 70–79 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zhang, Z., Zhang, G., Goyal, H., Mo, L. & Hong, Y. Identification of subclasses of sepsis that showed different clinical outcomes and responses to amount of fluid resuscitation: a latent profile analysis. Crit. Care 22, 347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zador, Z., Landry, A., Cusimano, M. D. & Geifman, N. Multimorbidity states associated with higher mortality rates in organ dysfunction and sepsis: a data-driven analysis in critical care. Crit. Care 23, 247 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Yehya, N. et al. Temperature trajectory sub-phenotypes and the immuno-inflammatory response in pediatric sepsis. Shock 57, 645–651 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bhavani, S. V. et al. Identifying novel sepsis subphenotypes using temperature trajectories. Am. J. Respir. Crit. Care Med. 200, 327–335 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Xu, Z. et al. Sepsis subphenotyping based on organ dysfunction trajectory. Crit. Care 26, 197 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Leng, F. et al. Novel cortisol trajectory sub-phenotypes in sepsis. Crit. Care 28, 290 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Calfee, C. S. et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir. Med. 2, 611–620 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Sinha, P., Meyer, N. J. & Calfee, C. S. Biological phenotyping in sepsis and acute respiratory distress syndrome. Annu. Rev. Med. 74, 457–471 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Sinha, P. et al. Identifying molecular phenotypes in sepsis: an analysis of two prospective observational cohorts and secondary analysis of two randomised controlled trials. Lancet Respir. Med. 11, 965–974 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Calfee, C. S. et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir. Med. 6, 691–698 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Maddali, M. V. et al. Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: an observational, multicohort, retrospective analysis. Lancet Respir. Med. 10, 367–377 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Famous, K. R. et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am. J. Respir. Crit. Care Med. 195, 331–338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Heijnen, N. F. L. et al. Biological subphenotypes of acute respiratory distress syndrome show prognostic enrichment in mechanically ventilated patients without acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 203, 1503–1511 (2021).

    Article  PubMed  Google Scholar 

  167. Kudo, D. et al. Coagulation phenotypes in sepsis and effects of recombinant human thrombomodulin: an analysis of three multicentre observational studies. Crit. Care 25, 114 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wong, H. R. et al. Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Med. 7, 34 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Wong, H. R. et al. Validation of a gene expression-based subclassification strategy for pediatric septic shock. Crit. Care Med. 39, 2511–2517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Davenport, E. E. et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir. Med. 4, 259–271 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Burnham, K. L. et al. Shared and distinct aspects of the sepsis transcriptomic response to fecal peritonitis and pneumonia. Am. J. Respir. Crit. Care Med. 196, 328–339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cano-Gamez, E. et al. An immune dysfunction score for stratification of patients with acute infection based on whole-blood gene expression. Sci. Transl. Med. 14, eabq4433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Scicluna, B. P. et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir. Med. 5, 816–826 (2017).

    Article  PubMed  Google Scholar 

  174. Sweeney, T. E. et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit. Care Med. 46, 915–925 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Sweeney, T. E. et al. Validation of inflammopathic, adaptive, and coagulopathic sepsis endotypes in coronavirus disease 2019. Crit. Care Med. 49, e170–e178 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Rautanen, A. et al. Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study. Lancet Respir. Med. 3, 53–60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Scherag, A. et al. Genetic factors of the disease course after sepsis: a genome-wide study for 28day mortality. EBioMedicine 12, 239–246 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Hernandez-Beeftink, T. et al. A genome-wide association study of survival in patients with sepsis. Crit. Care 26, 341 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Rogers, A. J. et al. Plasma metabolites in early sepsis identify distinct clusters defined by plasma lipids. Crit. Care Explor. 3, e0478 (2021).

    PubMed  PubMed Central  Google Scholar 

  180. Mi, Y. et al. High-throughput mass spectrometry maps the sepsis plasma proteome and differences in patient response. Sci. Transl. Med. 16, eadh0185 (2024).

    Article  CAS  PubMed  Google Scholar 

  181. van Amstel, R. B. E. et al. Uncovering heterogeneity in sepsis: a comparative analysis of subphenotypes. Intensive Care Med. 49, 1360–1369 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Neyton, L. P. A. et al. Host and microbe blood metagenomics reveals key pathways characterizing critical illness phenotypes. Am. J. Respir. Crit. Care Med. 209, 805–815 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wong, H. R. Intensive care medicine in 2050: precision medicine. Intensive Care Med. 43, 1507–1509 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Prescott, H. C., Calfee, C. S., Thompson, B. T., Angus, D. C. & Liu, V. X. Toward smarter lumping and smarter splitting: rethinking strategies for sepsis and acute respiratory distress syndrome clinical trial design. Am. J. Respir. Crit. Care Med. 194, 147–155 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Stanski, N. L. & Wong, H. R. Prognostic and predictive enrichment in sepsis. Nat. Rev. Nephrol. 16, 20–31 (2020).

    Article  PubMed  Google Scholar 

  186. Shankar-Hari, M. & Rubenfeld, G. D. Population enrichment for critical care trials: phenotypes and differential outcomes. Curr. Opin. Crit. Care 25, 489–497 (2019).

    PubMed  Google Scholar 

  187. Pourmand, A., Whiteside, T., Yamane, D., Rashed, A. & Mazer-Amirshahi, M. The controversial role of corticosteroids in septic shock. Am. J. Emerg. Med. 37, 1353–1361 (2019).

    PubMed  Google Scholar 

  188. Antcliffe, D. B. et al. Transcriptomic signatures in sepsis and a differential response to steroids. from the VANISH randomized trial. Am. J. Respir. Crit. Care Med. 199, 980–986 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Scicluna, B. P. & Baillie, J. K. The search for efficacious new therapies in sepsis needs to embrace heterogeneity. Am. J. Respir. Crit. Care Med. 199, 936–938 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Yao, L. et al. Gene expression scoring of immune activity levels for precision use of hydrocortisone in vasodilatory shock. Shock 57, 384–391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Group, R. C. et al. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 384, 693–704 (2021).

    Article  Google Scholar 

  192. Sinha, P. et al. Latent class analysis reveals COVID-19-related acute respiratory distress syndrome subgroups with differential responses to corticosteroids. Am. J. Respir. Crit. Care Med. 204, 1274–1285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Galvan-Roman, J. M. et al. IL-6 serum levels predict severity and response to tocilizumab in COVID-19: an observational study. J. Allergy Clin. Immunol. 147, 72–80 e78 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Practical, P. T. I. & investigators, R.-C The rise of adaptive platform trials in critical care. Am. J. Respir. Crit. Care Med. 209, 491–496 (2024).

    Article  Google Scholar 

  195. Meisel, C. et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am. J. Respir. Crit. Care Med. 180, 640–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Shibata, M. et al. Myeloid-derived suppressor cells: cancer, autoimmune diseases, and more. Oncotarget 13, 1273–1285 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Opal, S. M. et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The interleukin-1 receptor antagonist sepsis investigator group. Crit. Care Med. 25, 1115–1124 (1997).

    Article  CAS  PubMed  Google Scholar 

  198. Shakoory, B. et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit. Care Med. 44, 275–281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Meyer, N. J. et al. Mortality benefit of recombinant human interleukin-1 receptor antagonist for sepsis varies by initial interleukin-1 receptor antagonist plasma concentration. Crit. Care Med. 46, 21–28 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kyriazopoulou, E. et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat. Med. 27, 1752–1760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ivashkiv, L. B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Casanova, J. L., MacMicking, J. D. & Nathan, C. F. Interferon-γ and infectious diseases: lessons and prospects. Science 384, eadl2016 (2024).

    Article  CAS  PubMed  Google Scholar 

  203. Leentjens, J. et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. Am. J. Respir. Crit. Care Med. 186, 838–845 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Payen, D. et al. Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series. BMC Infect. Dis. 19, 931 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kotsaki, A. et al. ImmunoSep (Personalised Immunotherapy in Sepsis) international double-blind, double-dummy, placebo-controlled randomised clinical trial: study protocol. BMJ Open. 12, e067251 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Leventogiannis, K. et al. Toward personalized immunotherapy in sepsis: the PROVIDE randomized clinical trial. Cell Rep. Med. 3, 100817 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Group, R. C. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet 400, 359–368 (2022).

    Article  Google Scholar 

  208. Brosius, F. C., Tuttle, K. R. & Kretzler, M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia 59, 1624–1627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hoisnard, L. et al. Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database. Sci. Rep. 12, 7140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Bittle, E. et al. Safety data for baricitinib use in children with Severe SARS-CoV-2 infection. Hosp. Pediatr. 15, e203–e208 (2025).

    Article  PubMed  Google Scholar 

  211. Jin, K. et al. Activation of AMP-activated protein kinase during sepsis/inflammation improves survival by preserving cellular metabolic fitness. FASEB J. 34, 7036–7057 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Gao, Y. et al. Metformin alleviates sepsis-associated myocardial injury by enhancing AMP-activated protein kinase/mammalian target of rapamycin signaling pathway-mediated autophagy. J. Cardiovasc. Pharmacol. 82, 308–317 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Fan, S. Y. et al. Metformin mitigates sepsis-induced acute lung injury and inflammation in young mice by suppressing the S100A8/A9-NLRP3-IL-1β signaling pathway. J. Inflamm. Res. 17, 3785–3799 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Gomez, H. et al. Association of metformin use during hospitalization and mortality in critically Ill adults with type 2 diabetes mellitus and sepsis. Crit. Care Med. 50, 935–944 (2022).

    Article  PubMed  Google Scholar 

  215. Li, Y. et al. Association of preadmission metformin use and prognosis in patients with sepsis and diabetes mellitus: a systematic review and meta-analysis. Front. Endocrinol. 12, 811776 (2021).

    Article  Google Scholar 

  216. Liang, H. et al. Association of preadmission metformin use and mortality in patients with sepsis and diabetes mellitus: a systematic review and meta-analysis of cohort studies. Crit. Care 23, 50 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Tan, K. et al. The association of premorbid metformin exposure with mortality and organ dysfunction in sepsis: a systematic review and meta-analysis. Crit. Care Explor. 1, e0009 (2019).

    PubMed  PubMed Central  Google Scholar 

  218. Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. O’Neill, L. A. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346–355 (2013).

    Article  PubMed  Google Scholar 

  224. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  225. Dowling, R. J., Zakikhani, M., Fantus, I. G., Pollak, M. & Sonenberg, N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 67, 10804–10812 (2007).

    Article  CAS  PubMed  Google Scholar 

  226. Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390–401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ben Sahra, I. et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 71, 4366–4372 (2011).

    Article  PubMed  Google Scholar 

  228. Hattori, Y., Suzuki, K., Hattori, S. & Kasai, K. Metformin inhibits cytokine-induced nuclear factor κB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 47, 1183–1188 (2006).

    Article  CAS  PubMed  Google Scholar 

  229. Xian, H. et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 54, 1463–1477.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Negrotto, L., Farez, M. F. & Correale, J. Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol. 73, 520–528 (2016).

    Article  PubMed  Google Scholar 

  231. Lachmandas, E. et al. Metformin alters human host responses to mycobacterium tuberculosis in healthy subjects. J. Infect. Dis. 220, 139–150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kang, K. Y. et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int. Immunopharmacol. 16, 85–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  233. Sag, D., Carling, D., Stout, R. D. & Suttles, J. Adenosine 5’-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633–8641 (2008).

    Article  CAS  PubMed  Google Scholar 

  234. Liu, T. F., Vachharajani, V. T., Yoza, B. K. & McCall, C. E. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol. Chem. 287, 25758–25769 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Arai, M. et al. Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. J. Pharmacol. Exp. Ther. 334, 206–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  236. Park, D. W. et al. Activation of AMPK enhances neutrophil chemotaxis and bacterial killing. Mol. Med. 19, 387–398 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Saraiva, I. E. et al. Metformin for sepsis-associated AKI: a protocol for the randomized clinical trial of the safety and feasibility of metformin as a treatment for sepsis-associated AKI (LiMiT AKI). BMJ Open. 14, e081120 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  238. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05979038 (2023).

  239. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06181422 (2024).

  240. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05572060 (2022).

  241. Lim, E. H. T. et al. Complement activation in COVID-19 and targeted therapeutic options: a scoping review. Blood Rev. 57, 100995 (2023).

    Article  CAS  PubMed  Google Scholar 

  242. Annane, D., Grimaldi-Bensouda, L. & Fremeaux-Bacchic, V. Complement inhibition in severe COVID-19 - blocking C5a seems to be key: author’s reply. EClinicalMedicine 35, 100866 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Vlaar, A. P. J. et al. Anti-C5a antibody (vilobelimab) therapy for critically ill, invasively mechanically ventilated patients with COVID-19 (PANAMO): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 10, 1137–1146 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bauer, M. et al. Efficacy and safety of vilobelimab (IFX-1), a novel monoclonal anti-C5a antibody, in patients with early severe sepsis or septic shock-a randomized, placebo-controlled, double-blind, multicenter, phase IIa trial (SCIENS Study). Crit. Care Explor. 3, e0577 (2021).

    PubMed  PubMed Central  Google Scholar 

  245. Hotchkiss, R. S. et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med. 27, 1230–1251 (1999).

    Article  CAS  PubMed  Google Scholar 

  246. de Jager, C. P. et al. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit. Care 14, R192 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Hofmeister, R. et al. Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor. Rev. 10, 41–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  248. Unsinger, J. et al. Interleukin-7 ameliorates immune dysfunction and improves survival in a 2-hit model of fungal sepsis. J. Infect. Dis. 206, 606–616 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Unsinger, J. et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J. Immunol. 184, 3768–3779 (2010).

    Article  CAS  PubMed  Google Scholar 

  250. Delwarde, B. et al. Low interleukin-7 receptor messenger RNA expression is independently associated with day 28 mortality in septic shock patients. Crit. Care Med. 46, 1739–1746 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Francois, B. et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight 3, e98960 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Laterre, P. F. et al. Association of interleukin 7 Immunotherapy with lymphocyte counts among patients with severe coronavirus disease 2019 (COVID-19). JAMA Netw. Open. 3, e2016485 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Crausaz, M. et al. A novel virotherapy encoding human interleukin-7 improves ex vivo T lymphocyte functions in immunosuppressed patients with septic shock and critically ill COVID-19. Front. Immunol. 13, 939899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Chang, K. et al. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit. Care 18, R3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Brahmamdam, P. et al. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. J. Leukoc. Biol. 88, 233–240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kraehenbuehl, L., Weng, C. H., Eghbali, S., Wolchok, J. D. & Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 19, 37–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  257. Shindo, Y. et al. Anti-PD-L1 peptide improves survival in sepsis. J. Surg. Res. 208, 33–39 (2017).

    Article  CAS  PubMed  Google Scholar 

  258. Rudick, C. P., Cornell, D. L. & Agrawal, D. K. Single versus combined immunoregulatory approach using PD-1 and CTLA-4 modulators in controlling sepsis. Expert. Rev. Clin. Immunol. 13, 907–919 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Hotchkiss, R. S. et al. Immune checkpoint inhibition in sepsis: a Phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care Med. 45, 1360–1371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Liu, L. L., Skribek, M., Harmenberg, U. & Gerling, M. Systemic inflammatory syndromes as life-threatening side effects of immune checkpoint inhibitors: case report and systematic review of the literature. J. Immunother. Cancer 11, e005841 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Leibundgut-Landmann, S., Osorio, F., Brown, G. D. & Reis e Sousa, C. Stimulation of dendritic cells via the dectin-1/Syk pathway allows priming of cytotoxic T-cell responses. Blood 112, 4971–4980 (2008).

    Article  CAS  PubMed  Google Scholar 

  262. Vannucci, L. et al. Immunostimulatory properties and antitumor activities of glucans. Int. J. Oncol. 43, 357–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Willment, J. A. et al. The human β-glucan receptor is widely expressed and functionally equivalent to murine dectin-1 on primary cells. Eur. J. Immunol. 35, 1539–1547 (2005).

    Article  CAS  PubMed  Google Scholar 

  264. van der Meer, J. W., Joosten, L. A., Riksen, N. & Netea, M. G. trained immunity: a smart way to enhance innate immune defence. Mol. Immunol. 68, 40–44 (2015).

    Article  PubMed  Google Scholar 

  265. Viana, J. P. M. et al. Glucans: a therapeutic alternative for sepsis treatment. J. Immunol. Res. 2024, 6876247 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Morris, T. et al. Effects of low-dose aspirin on acute inflammatory responses in humans. J. Immunol. 183, 2089–2096 (2009).

    Article  CAS  PubMed  Google Scholar 

  267. Kiers, D. et al. A randomised trial on the effect of anti-platelet therapy on the systemic inflammatory response in human endotoxaemia. Thromb. Haemost. 117, 1798–1807 (2017).

    Article  PubMed  Google Scholar 

  268. Leijte, G. P. et al. Treatment with acetylsalicylic acid reverses endotoxin tolerance in humans in vivo: a randomized placebo-controlled study. Crit. Care Med. 47, 508–516 (2018).

    Article  Google Scholar 

  269. Trauer, J. et al. Quantifying the effects of prior acetyl-salicylic acid on sepsis-related deaths: an individual patient data meta-analysis using propensity matching. Crit. Care Med. 45, 1871–1879 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Eisen, D. P. et al. Effect of aspirin on deaths associated with sepsis in healthy older people (ANTISEPSIS): a randomised, double-blind, placebo-controlled primary prevention trial. Lancet Respir. Med. 9, 186–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  271. Johnstone, J. et al. Effect of probiotics on incident ventilator-associated pneumonia in critically Ill patients: a randomized clinical trial. JAMA 326, 1024–1033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Litton, E. et al. Early and sustained lactobacillus plantarum probiotic therapy in critical illness: the randomised, placebo-controlled, restoration of gut microflora in critical illness trial (ROCIT). Intensive Care Med. 47, 307–315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Biemond, J. J., McDonald, B. & Haak, B. W. Leveraging the microbiome in the treatment of sepsis: potential pitfalls and new perspectives. Curr. Opin. Crit. Care 29, 123–129 (2023).

    PubMed  Google Scholar 

  274. Kim, S. G. et al. Microbiota-derived lantibiotic restores resistance against vancomycin-resistant enterococcus. Nature 572, 665–669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Azevedo, A. S., Follain, G., Patthabhiraman, S., Harlepp, S. & Goetz, J. G. Metastasis of circulating tumor cells: favorable soil or suitable biomechanics, or both? Cell Adh. Migr. 9, 345–356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Kim, S. M. et al. Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity. Nat. Commun. 11, 2354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Zhang, L. et al. Protein modification by short-chain fatty acid metabolites in sepsis: a comprehensive review. Front. Immunol. 14, 1171834 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Riedemann, N. C. et al. Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis. FASEB J. 18, 370–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  279. Lindenkamp, C. et al. The activation of JAK/STAT signaling and the complement system modulate inflammation in the primary human dermal fibroblasts of PXE patients. Biomedicines 11, 2673 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Angus, D. C. et al. The integration of clinical trials with the practice of medicine: repairing a hohuse divided. JAMA 332, 153–162 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Angus, D. C. et al. The REMAP-CAP (Randomized Embedded Multifactorial Adaptive Platform for Community-acquired Pneumonia) study. rationale and design. Ann. Am. Thorac. Soc. 17, 879–891 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Practical Platform https://practicalplatform.org/.

  283. Buell, K. G. et al. Individualized treatment effects of oxygen targets in mechanically ventilated critically Ill adults. JAMA 331, 1195–1204 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  284. UPMC REMAP-COVID Group, on behalf of the REMAP-CAP Investigators Implementation of the randomized embedded multifactorial adaptive platform for COVID-19 (REMAP-COVID) trial in a US health system-lessons learned and recommendations. Trials 22, 100 (2021).

    Article  Google Scholar 

  285. Pairo-Castineira, E. et al. Genetic mechanisms of critical illness in COVID-19. Nature 591, 92–98 (2021).

    Article  PubMed  Google Scholar 

  286. Keramati, F. et al. Systemic inflammation impairs myelopoiesis and interferon type I responses in humans. Nat. Immunol. 26, 737–747 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Cafferkey, J. & Shankar-Hari, M. Informative subtyping of patients with sepsis. Semin. Respir. Crit. Care Med. 45, 516–522 (2024).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and wrote the article. M.K. and P.P. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Peter Pickkers.

Ethics declarations

Competing interests

M.K. has received institutional funding (full institutional disclosure) from Reumafonds, Medisieve, Comentis, Abionic, CytoSorbents, Adrenomed, Inflammatix, SurvivX and 4TEEN4, as well as travel reimbursements and consulting fees from ARTCLINE, Atriva, AOP pharma, Inflammatix, SurvivX and 4TEEN4 outside the submitted work. M.B. has received travel reimbursements and consulting fees from ARTCLINE, BAYER, BRAHMS/ Thermo Fisher, Volition and research grants from DFG (German Research Council) and BMBF (Federal Ministry of Education and Research). L.D.J.B. has consulted for Aptarion, AstraZeneca, Bayer, CSL, Novartis, Volition and Bayer. He received an unrestricted grant from Volition. Consultancy fees and grants were paid to the institution. H.B. has received institutional funding from Becton Dickinson, Inflammatix, Octapharma, OSAsense, MeMed, Dutch Kidney Foundation, Dutch Research Council (NWO). T.C. reports grants from the Swiss Academy of Medical, Swiss Federal Institute of Technology Zurich and Horizon 2020 from the European Community; consulting, speaker’s bureau and data-safety-monitoring boards from Basilea, Cidara, Gilead Sciences, A. Menarini Pharma, MSD Merck Sharp & Dohme, Moderna, Novartis, Pfizer and Shionogi, all paid to his institution; and sponsorship to the International Sepsis Forum (ISF) by BD, Cytosorbents, Deepull, Gentian, Inflammatix, Inotrem, MeMed, Oxford Nanopore, RevImmune, Thermo Fisher Scientific and Volition. C.S.C. has consulted for Vasomune, Gen1e Life Sciences, Arrowhead, Cellenkos, Calcimedical, EnliTisa, Novartis, Aerogen, Fisher and Paykel, and Boehringer. She received grant funding from NIH, Roche Genentech and Quantum Leap Healthcare Collaborative (paid to the institution), all outside the submitted work other than NIH grant R35HL140026. B.G.C. received speaker fees from Baxter and was a member of an advisory board for Roche Diagnostics. L.P.G.D. reports institutional grants from HORIZON-Health (2021-2026) (ECRAID-Base, Grant agreement ID: 965313) and ZonMw (Immune Modulation Platform for Influenza Treatment (IMPRINT) project number 10140252210024 and NCOH Pandemic Preparedness Research Kickstarter project number 10710022210003). E.J.G.-B. reports honoraria and consultation fees from Abbott Products Operations, bioMérieux, Brahms GmbH, GSK and Sobi (granted to the National and Kapodistrian University of Athens); independent educational grants from AbbVie, InCyte, Novartis and UCB (granted to the National and Kapodistrian University of Athens) and from Abbott Products Operations, bioMérieux Inc, Johnson & Johnson, MSD and Swedish Orphan Biovitrum AB (granted to the Hellenic Institute for the Study of Sepsis); and funding from the Horizon 2020 European Grants ImmunoSep and RISCinCOVID and the Horizon Health grants EPIC-CROWN-2, POINT and Homi-Lung (granted to the Hellenic Institute for the Study of Sepsis). H.G. has received consulting fees from Trilinear Bioventures, Talphera, Novartis, speaker fees from bioMérieux and research grants from bioMérieux, Baxter, TES Pharma, the National Institutes of Health and the Department of Defense of the United States of America. M.G.N. is a Scientific Founder of Biotrip, Lemba, TTxD and Salvina Therapeutics. He is chairman of the Scientific Board of TTxD. He performed consultancy for Curevac and Primmune. M.O. has received research funding from Baxter and BioMérieux and consulted for AM-Pharma (paid to the institution). T.v.d.P. received funding from EU (FAIR) and the Dutch Ministry of Economic Affairs & Health Holland, and consultancy fees from Matisse, all paid to the institution. B.P.S. received funds from the European Society of Intensive Care Medicine (ESICM), Xjenza Malta Research Excellence Program (REP-2023-049; REP-2024-062) and a University of Malta Research Excellence Award 2023. All grants were paid to the institution. C.S. has consulted for Beckman Coulter, Edwards, Deepull, Inflammatix and Octapharma. He received grant funding from NIH and the Moore Foundation (paid to the institution). M.S.-H. declares that he is a Director of Research for the Intensive Care Society, Member of the MRC/NIHR EME Programme, Chair of the EME-NIHR Advanced Fellowship Committee, Council of International Sepsis Forum, receives funding for studies from the NIHR, Wellcome Trust, Medical Research Council, and has done advisory board activity either directly or indirectly through International Sepsis Forum for Biotest, Endpoint Health, Janssen, Pfizer, Aurobac, GSK and Santersus, with payments going into the unrestricted institutional research funds. M.S.-H. also acknowledges the programme grant named Time critical precision medicine for acute critical illness using treatable trait principles: TRAITS Programme (PMAS/21/08) from the Chief Scientist’s Office, Scotland. N.S. received grant funding from Bluejay Diagnostics, Inflammatix, CDC and NIH. He or his institution receives fees for lectures, presentations, speaker bureaus, manuscript writing or educational events from Lumos diagnostics. Stock options were offered to him from Prenosis. M.S. received grant funding from the Medical Research Council, UK National Institute for Health and Care Research (NIHR), Rosetrees Trust, UCL Therapeutic Acceleration Support Fund, Gentian, DSTL and the European Society of Intensive Care Medicine. He or his institution receives fees for consulting, advisory boards, data safety monitoring boards and speaking/chairing from AOP Pharma, Aptarion, BioMérieux, Biotest, Deltex Medical, deePull, Hemotune, Matisse, Roche Diagnostics, Safeguard Biosystems, Sanofi, Volition. He is past-president of the International Sepsis Forum (ISF) and current Sepsis Topic Advisor for NICE. F.V. has received travel reimbursement fees from Astra-Zeneca. A.P.J.V. received consultant fees from AM-Pharma, InflaRx and CSL Behring paid to the institution. L.A.v.V. was supported by the Netherlands Organisation for Health Research and Development ZonMW (Nederlandse Organisatie voor Wetenschappelijk Onderzoek NWO) VENI grant 09150161910033. S.W., is currently funded by the Deutsche Forschungsgemeinschaft, DFG, project number WE 4971/6-1, WE 4971/9-1 and the Federal Ministry of Education and Research (BMBF) project number 01EN2001. W.J.W. receives funding from EU (Eurostars) and Netherlands Organisation for Health Research and Development (ZonMw) in addition to consultancy fees from AstraZeneca and Shionogi outside the submitted work (all fees paid to the host institution). P.P. has received travel reimbursements and consulting fees from AM-Pharma, Adrenomed, EBI, Paion, Sphingotec and 4Teen4 outside the submitted work.

Peer review

Peer review information

Nature Reviews Nephrology thanks Monowar Aziz, Lyle Moldawer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bayesian trial designs

Trial designs that use Bayesian inference to integrate prior knowledge with accumulating trial data, enabling adaptive decision making and real-time updates to probabilities of treatment efficacy or other outcomes.

Jarisch–Herxheimer reaction

An acute, systemic inflammatory response that can occur after the initiation of antibiotic treatment.

Quorum sensing

A cell-to-cell communication process used by bacteria to coordinate collective behaviours based on population density.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kox, M., Bauer, M., Bos, L.D.J. et al. The immunology of sepsis: translating new insights into clinical practice. Nat Rev Nephrol (2025). https://doi.org/10.1038/s41581-025-01004-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-025-01004-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing