Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

The influence of MOGAD on diagnosis of multiple sclerosis using MRI

Abstract

Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an immune-mediated demyelinating disease that is challenging to differentiate from multiple sclerosis (MS), as the clinical phenotypes overlap, and people with MOGAD can fulfil the current MRI-based diagnostic criteria for MS. In addition, the MOG antibody assays that are an essential component of MOGAD diagnosis are not standardized. Accurate diagnosis of MOGAD is crucial because the treatments and long-term prognosis differ from those for MS. This Expert Recommendation summarizes the outcomes from a Magnetic Resonance Imaging in MS workshop held in Oxford, UK in May 2022, in which MS and MOGAD experts reflected on the pathology and clinical features of these disorders, the contributions of MRI to their diagnosis and the clinical use of the MOG antibody assay. We also critically reviewed the literature to assess the validity of distinctive imaging features in the current MS and MOGAD criteria. We conclude that dedicated orbital and spinal cord imaging (with axial slices) can inform MOGAD diagnosis and also illuminate differential diagnoses. We provide practical guidance to neurologists and neuroradiologists on how to navigate the current MOGAD and MS criteria. We suggest a strategy that includes useful imaging discriminators on standard clinical MRI and discuss imaging features detected by non-conventional MRI sequences that demonstrate promise in differentiating these two disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct pathophysiological mechanisms in multiple sclerosis and myelin oligodendrocyte glycoprotein antibody-associated disease.
Fig. 2: Brain pathology in myelin oligodendrocyte glycoprotein antibody-associated disease.
Fig. 3: Orbital MRI findings in myelin oligodendrocyte glycoprotein antibody-associated disease.
Fig. 4: Schematic representation of lesion topography and characteristics in multiple sclerosis and myelin oligodendrocyte glycoprotein antibody-associated disease.
Fig. 5: Brain involvement in myelin oligodendrocyte glycoprotein antibody-associated disease.
Fig. 6: Typical spinal cord imaging features in myelin oligodendrocyte glycoprotein antibody-associated disease.
Fig. 7: Brain lesion resolution in myelin oligodendrocyte glycoprotein antibody-associated disease.
Fig. 8: Flowchart showing the use of MRI in the diagnosis of multiple sclerosis, considering myelin oligodendrocyte glycoprotein antibody-associated disease.

Similar content being viewed by others

References

  1. Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).

    Article  PubMed  Google Scholar 

  2. Geraldes, R. et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat. Rev. Neurol. 14, 199–213 (2018).

    Article  PubMed  Google Scholar 

  3. Marignier, R. et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol. 20, 762–772 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the atlas of MS, third edition. Mult. Scler. J. 26, 1816–1821 (2020).

    Article  Google Scholar 

  5. Filippi, M. et al. Multiple sclerosis. Nat. Rev. Dis. Prim. 4, 43 (2018).

    Article  PubMed  Google Scholar 

  6. Thompson, A. J., Baranzini, S. E., Geurts, J., Hemmer, B. & Ciccarelli, O. Multiple sclerosis. Lancet 391, 1622–1636 (2018).

    Article  PubMed  Google Scholar 

  7. Hohlfeld, R., Dornmair, K., Meinl, E. & Wekerle, H. The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. 15, 198–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Reindl, M. & Waters, P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat. Rev. Neurol. 15, 89–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. O’Connell, K. et al. Prevalence and incidence of neuromyelitis optica spectrum disorder, aquaporin-4 antibody-positive NMOSD and MOG antibody-positive disease in Oxfordshire, UK. J. Neurol. Neurosurg. Psychiatry 91, 1126–1128 (2020).

    Article  PubMed  Google Scholar 

  10. Papp, V. et al. Worldwide incidence and prevalence of neuromyelitis optica: a systematic review. Neurology 96, 59–77 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hor, J. Y. et al. Epidemiology of neuromyelitis optica spectrum disorder and its prevalence and incidence worldwide. Front. Neurol. 11, 543047 (2020).

    Article  Google Scholar 

  12. Cobo-Calvo, A. et al. Clinical spectrum and prognostic value of CNS MOG autoimmunity in adults: the MOGADOR study. Neurology 90, e1858–e1869 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Jurynczyk, M. et al. Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain 140, 3128–3138 (2017).

    Article  PubMed  Google Scholar 

  14. Molazadeh, N. et al. Progression independent of relapses in aquaporin4-IgG-seropositive neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, and multiple sclerosis. Mult. Scler. Relat. Disord. 80, 105093 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, B. et al. Do early relapses predict the risk of long-term relapsing disease in an adult and paediatric cohort with MOGAD? Ann. Neurol. 94, 508–517 (2023).

    Article  PubMed  Google Scholar 

  16. Cobo-Calvo, A. et al. Clinical features and risk of relapse in children and adults with myelin oligodendrocyte glycoprotein antibody-associated disease. Ann. Neurol. 89, 30–41 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Satukijchai, C. et al. Factors associated with relapse and treatment of myelin oligodendrocyte glycoprotein antibody-associated disease in the United Kingdom. JAMA Netw. Open 5, e2142780 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shahriari, M., Sotirchos, E. S., Newsome, S. D. & Yousem, D. M. MOGAD: how it differs from and resembles other neuroinflammatory disorders. Am. J. Roentgenol. 216, 1031–1039 (2021).

    Article  Google Scholar 

  19. Fadda, G., Armangue, T., Hacohen, Y., Chitnis, T. & Banwell, B. Paediatric multiple sclerosis and antibody-associated demyelination: clinical, imaging, and biological considerations for diagnosis and care. Lancet Neurol. 20, 136–149 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Ciccone, A. et al. Corticosteroids for the long-term treatment in multiple sclerosis. Cochrane Database Syst. Rev. 23, CD006264 (2008).

    Google Scholar 

  21. Hauser, S. L. & Cree, B. A. C. Treatment of multiple sclerosis: a review. Am. J. Med. 133, 1380–1390.e2 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hacohen, Y. et al. Disease course and treatment responses in children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease. JAMA Neurol. 75, 478–487 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang, X. et al. Effectiveness and tolerability of different therapies in preventive treatment of MOG-IgG-associated disorder: a network meta-analysis. Front. Immunol. 13, 953993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J. Neuroinflamm. 13, 280 (2016).

    Article  Google Scholar 

  25. Corbali, O. & Chitnis, T. Pathophysiology of myelin oligodendrocyte glycoprotein antibody disease. Front. Neurol. 14, 1137998 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dendrou, C. A., Fugger, L. & Friese, M. A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Yandamuri, S. S. et al. MOGAD patient autoantibodies induce complement, phagocytosis, and cellular cytotoxicity. JCI Insight 8, e165373 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Prüss, H. Autoantibodies in neurological disease. Nat. Rev. Immunol. 21, 798–813 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun, B., Ramberger, M., O’Connor, K. C., Bashford-Rogers, R. J. M. & Irani, S. R. The B cell immunobiology that underlies CNS autoantibody-mediated diseases. Nat. Rev. Neurol. 16, 481–492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kwon, Y. N. et al. Peripherally derived macrophages as major phagocytes in MOG encephalomyelitis. Neurol. Neuroimmunol. NeuroInflamm. 6, e60 (2019).

    Article  Google Scholar 

  31. Saadoun, S. et al. Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain. Acta Neuropathol. Commun. 2, 35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Höftberger, R. et al. The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol. 139, 875–892 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lassmann, H. Multiple sclerosis: lessons from molecular neuropathology. Exp. Neurol. 262, 2–7 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Calahorra, L., Camacho-Toledano, C., Serrano-Regal, M. P., Ortega, M. C. & Clemente, D. Regulatory cells in multiple sclerosis: from blood to brain. Biomedicines 10, 335 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Banwell, B. et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol. 22, 268–282 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Villacieros‐Álvarez, J. et al. MOG antibodies in adults with a first demyelinating event suggestive of multiple sclerosis. Ann. Neurol. https://doi.org/10.1002/ana.26793 (2023).

  37. Waters, P. J. et al. A multicenter comparison of MOG-IgG cell-based assays. Neurology 92, e1250–e1255 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hyun, J.-W. et al. Longitudinal analysis of myelin oligodendrocyte glycoprotein antibodies in CNS inflammatory diseases. J. Neurol. Neurosurg. Psychiatry 88, 811–817 (2017).

    Article  PubMed  Google Scholar 

  39. Gastaldi, M. et al. Prognostic relevance of quantitative and longitudinal MOG antibody testing in patients with MOGAD: a multicentre retrospective study. J. Neurol. Neurosurg. Psychiatry 94, 201–210 (2023).

    Article  PubMed  Google Scholar 

  40. Waters, P. et al. Serial anti-myelin oligodendrocyte glycoprotein antibody analyses and outcomes in children with demyelinating syndromes. JAMA Neurol. 77, 82–93 (2020).

    Article  PubMed  Google Scholar 

  41. Carta, S. et al. Significance of myelin oligodendrocyte glycoprotein antibodies in CSF: a retrospective multicenter study. Neurology 100, e1095–e1108 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, H. J. & Palace, J. Should we test for IgG antibodies against MOG in both serum and CSF in patients with suspected MOGAD? Neurology 100, 497–498 (2023).

    Article  PubMed  Google Scholar 

  43. Kwon, Y. N. et al. Myelin oligodendrocyte glycoprotein-immunoglobulin G in the CSF: clinical implication of testing and association with disability. Neurol. Neuroimmunol. Neuroinflamm. 9, e1095 (2022).

    Article  PubMed  Google Scholar 

  44. Armangue, T. et al. Associations of paediatric demyelinating and encephalitic syndromes with myelin oligodendrocyte glycoprotein antibodies: a multicentre observational study. Lancet Neurol. 19, 234–246 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. de Mol, C. L. et al. The clinical spectrum and incidence of anti-MOG-associated acquired demyelinating syndromes in children and adults. Mult. Scler. 26, 806–814 (2020).

    Article  PubMed  Google Scholar 

  46. Wendel, E.-M. et al. High association of MOG-IgG antibodies in children with bilateral optic neuritis. Eur. J. Paediatr. Neurol. 27, 86–93 (2020).

    Article  PubMed  Google Scholar 

  47. Yang, M. et al. Clinical predictive factors for diagnosis of MOG-IgG and AQP4-IgG related paediatric optic neuritis: a Chinese cohort study. Br. J. Ophthalmol. 106, 262–266 (2022).

    Article  PubMed  Google Scholar 

  48. Chen, J. J. et al. MOG-IgG among participants in the pediatric optic neuritis prospective outcomes study. JAMA Ophthalmol. 139, 583–585 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jurynczyk, M. et al. Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis. Brain 140, 617–627 (2017).

    Article  PubMed  Google Scholar 

  50. Cortese, R. et al. Clinical and MRI measures to identify non-acute MOG-antibody disease in adults. Brain 146, 2489–2501 (2022).

    Article  Google Scholar 

  51. Carandini, T. et al. Distinct patterns of MRI lesions in MOG antibody disease and AQP4 NMOSD: a systematic review and meta-analysis. Mult. Scler. Relat. Disord. 54, 103118 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Carnero Contentti, E. et al. MRI to differentiate multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. J. Neuroimaging 33, 688–702 (2023).

    Article  PubMed  Google Scholar 

  53. Varley, J. A. et al. Validation of the 2023 International Diagnostic criteria for MOGAD in a selected cohort of adults and children. Neurology 103, e209321 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim, K. H., Kim, S.-H., Park, N. Y., Hyun, J.-W. & Kim, H. J. Validation of the International MOGAD Panel proposed criteria. Mult. Scler. J. 29, 1680–1683 (2023).

    Article  Google Scholar 

  55. Forcadela, M. et al. Timing of MOG-IgG testing is key to 2023 MOGAD diagnostic criteria. Neurol. Neuroimmunol. Neuroinflamm. 11, e200183 (2024).

    Article  PubMed  Google Scholar 

  56. Lipps, P. et al. Ongoing challenges in the diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease. JAMA Neurol. 80, 1377–1379 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ciccarelli, O., Toosy, A. T., Thompson, A. & Hacohen, Y. Navigating through the recent diagnostic criteria for MOGAD: challenges and practicalities. Neurology 100, 689–690 (2023).

    Article  PubMed  Google Scholar 

  58. Lassmann, H. & Bradl, M. Multiple sclerosis: experimental models and reality. Acta Neuropathol. 133, 223–244 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Takai, Y. et al. Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study. Brain 143, 1431–1446 (2020).

    Article  PubMed  Google Scholar 

  60. Gilli, F. & Ceccarelli, A. Magnetic resonance imaging approaches for studying mouse models of multiple sclerosis: a mini review. J. Neurosci. Res. 101, 1259–1274 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Sechi, E. et al. Comparison of MRI lesion evolution in different central nervous system demyelinating disorders. Neurology 97, e1097–e1109 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beltrán, E. et al. Archeological neuroimmunology: resurrection of a pathogenic immune response from a historical case sheds light on human autoimmune encephalomyelitis and multiple sclerosis. Acta Neuropathol. 141, 67–83 (2021).

    Article  PubMed  Google Scholar 

  63. Carta, S. et al. Antibodies to MOG in CSF only: pathological findings support the diagnostic value. Acta Neuropathol. 141, 801–804 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Nicaise, A. M. et al. Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc. Natl Acad. Sci. USA 116, 9030–9039 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Junker, A. et al. Extensive subpial cortical demyelination is specific to multiple sclerosis. Brain Pathol. 30, 641–652 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ciotti, J. R. et al. Central vein sign and other radiographic features distinguishing myelin oligodendrocyte glycoprotein antibody disease from multiple sclerosis and aquaporin-4 antibody-positive neuromyelitis optica. Mult. Scler. 28, 49–60 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Lassmann, H. Neuroinflammation: 2021 update. Free Neuropathol. 2, 1 (2021).

    Google Scholar 

  68. Wattjes, M. P. et al. 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 20, 653–670 (2021).

    Article  PubMed  Google Scholar 

  69. Soelberg, K. et al. A population-based prospective study of optic neuritis. Mult. Scler. J. 23, 1893–1901 (2017).

    Article  CAS  Google Scholar 

  70. Asseyer, S. et al. Prodromal headache in MOG-antibody positive optic neuritis. Mult. Scler. Relat. Disord. 40, 101965 (2020).

    Article  PubMed  Google Scholar 

  71. Hassan, M. B. et al. Population-based incidence of optic neuritis in the era of aquaporin-4 and myelin oligodendrocyte glycoprotein antibodies. Am. J. Ophthalmol. 220, 110–114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Winter, A. & Chwalisz, B. MRI characteristics of NMO, MOG and MS related optic neuritis. Semin. Ophthalmol. 35, 333–342 (2020).

    Article  PubMed  Google Scholar 

  73. Vicini, R., Brügger, D., Abegg, M., Salmen, A. & Grabe, H. M. Differences in morphology and visual function of myelin oligodendrocyte glycoprotein antibody and multiple sclerosis associated optic neuritis. J. Neurol. 268, 276–284 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Falcão-Gonçalves, A. B., Bichuetti, D. B. & de Oliveira, E. M. L. Recurrent optic neuritis as the initial symptom in demyelinating diseases. J. Clin. Neurol. 14, 351–358 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kraker, J. A. & Chen, J. J. An update on optic neuritis. J. Neurol. 270, 5113–5126 (2023).

    Article  PubMed  Google Scholar 

  76. Chen, J. J. et al. Myelin oligodendrocyte glycoprotein antibody-positive optic neuritis: clinical characteristics, radiologic clues, and outcome. Am. J. Ophthalmol. 195, 8–15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Oertel, F. C. et al. Longitudinal retinal changes in MOGAD. Ann. Neurol. 92, 476–485 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Roca-Fernández, A. et al. The use of OCT in good visual acuity MOGAD and AQP4-NMOSD patients; with and without optic neuritis. Mult. Scler. J. Exp. Transl. Clin. 7, 20552173211066446 (2021).

    PubMed  PubMed Central  Google Scholar 

  79. Petzold, A. et al. Diagnosis and classification of optic neuritis. Lancet Neurol. 21, 1120–1134 (2022).

    Article  PubMed  Google Scholar 

  80. Schroeder, A. et al. Detection of optic neuritis on routine brain MRI without and with the assistance of an image postprocessing algorithm. Am. J. Neuroradiol. 42, 1130–1135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Petzold, A. et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat. Rev. Neurol. 10, 447–458 (2014).

    Article  PubMed  Google Scholar 

  82. Riederer, I., Mühlau, M., Hoshi, M.-M., Zimmer, C. & Kleine, J. F. Detecting optic nerve lesions in clinically isolated syndrome and multiple sclerosis: double-inversion recovery magnetic resonance imaging in comparison with visually evoked potentials. J. Neurol. 266, 148–156 (2019).

    Article  PubMed  Google Scholar 

  83. Hodel, J. et al. Comparison of 3D double inversion recovery and 2D STIR FLAIR MR sequences for the imaging of optic neuritis: pilot study. Eur. Radiol. 24, 3069–3075 (2014).

    Article  PubMed  Google Scholar 

  84. Fadda, G. et al. Myelitis features and outcomes in CNS demyelinating disorders: comparison between multiple sclerosis, MOGAD, and AQP4-IgG-positive NMOSD. Front. Neurol. 13, 1011579 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mariano, R. et al. Comparison of clinical outcomes of transverse myelitis among adults with myelin oligodendrocyte glycoprotein antibody vs aquaporin-4 antibody disease. JAMA Netw. Open 2, e1912732 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sechi, E. et al. Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD): a review of clinical and MRI features, diagnosis, and management. Front. Neurol. 13, 885218 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Budhram, A. et al. Unilateral cortical FLAIR-hyperintense lesions in anti-MOG-associated encephalitis with seizures (FLAMES): characterization of a distinct clinico-radiographic syndrome. J. Neurol. 266, 2481–2487 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Budhram, A., Sechi, E., Nguyen, A., Lopez-Chiriboga, A. S. & Flanagan, E. P. FLAIR-hyperintense lesions in anti-MOG-associated encephalitis with seizures (FLAMES): is immunotherapy always needed to put out the fire? Mult. Scler. Relat. Disord. 44, 102283 (2020).

    Article  PubMed  Google Scholar 

  89. Wang, Y.-F. et al. The clinical features of FLAIR-hyperintense lesions in anti-MOG antibody associated cerebral cortical encephalitis with seizures: case reports and literature review. Front. Immunol. 12, 582768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Banks, S. A. et al. Brainstem and cerebellar involvement in MOG-IgG-associated disorder versus aquaporin-4-IgG and MS. J. Neurol. Neurosurg. Psychiatry 92, 384–390 (2020).

    Article  Google Scholar 

  91. Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: brainstem involvement — frequency, presentation and outcome. J. Neuroinflamm. 13, 281 (2016).

    Article  Google Scholar 

  92. Kunchok, A. et al. Does area postrema syndrome occur in myelin oligodendrocyte glycoprotein-IgG-associated disorders (MOGAD)? Neurology 94, 85–88 (2020).

    Article  PubMed  Google Scholar 

  93. Zhao-Fleming, H. H. et al. CNS demyelinating attacks requiring ventilatory support with myelin oligodendrocyte glycoprotein or aquaporin-4 antibodies. Neurology 97, e1351–e1358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sinha, S. et al. Hemicraniectomy and externalized ventricular drain placement in a pediatric patient with myelin oligodendrocyte glycoprotein-associated tumefactive demyelinating disease. Childs Nerv. Syst. 38, 185–189 (2022).

    Article  PubMed  Google Scholar 

  95. McLendon, L. A. et al. Dramatic response to anti-IL-6 receptor therapy in children with life-threatening myelin oligodendrocyte glycoprotein-associated disease. Neurol. Neuroimmunol. Neuroinflamm. 10, e200150 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hümmert, M. W. et al. Cognition in patients with neuromyelitis optica spectrum disorders: a prospective multicentre study of 217 patients (CogniNMO-Study). Mult. Scler. 29, 819–831 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Juryńczyk, M., Jacob, A., Fujihara, K. & Palace, J. Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease: practical considerations. Pract. Neurol. 19, 187–195 (2019).

    Article  PubMed  Google Scholar 

  98. Yılmaz, Ü., Edizer, S., Songür, Ç. Y., Güzin, Y. & Durak, F. S. Atypical presentation of MOG-related disease: slowly progressive behavioral and personality changes following a seizure. Mult. Scler. Relat. Disord. 36, 101394 (2019).

    Article  PubMed  Google Scholar 

  99. Jarius, S. et al. Cerebrospinal fluid findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibodies. Part 1: results from 163 lumbar punctures in 100 adult patients. J. Neuroinflamm. 17, 261 (2020).

    Article  CAS  Google Scholar 

  100. Sechi, E. et al. Variability of cerebrospinal fluid findings by attack phenotype in myelin oligodendrocyte glycoprotein-IgG-associated disorder. Mult. Scler. Relat. Disord. 47, 102638 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Tintoré, M. et al. Isolated demyelinating syndromes: comparison of CSF oligoclonal bands and different MR imaging criteria to predict conversion to CDMS. Mult. Scler. J. 7, 359–363 (2001).

    Article  Google Scholar 

  102. Dobson, R., Ramagopalan, S., Davis, A. & Giovannoni, G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J. Neurol. Neurosurg. Psychiatry 84, 909–914 (2013).

    Article  PubMed  Google Scholar 

  103. Ramanathan, S. et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult. Scler. 22, 470–482 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Dubey, D. et al. Clinical, radiologic, and prognostic features of myelitis associated with myelin oligodendrocyte glycoprotein autoantibody. JAMA Neurol. 76, 301–309 (2019).

    Article  PubMed  Google Scholar 

  105. Tzanetakos, D. et al. Cortical involvement and leptomeningeal inflammation in myelin oligodendrocyte glycoprotein antibody disease: a three-dimensional fluid-attenuated inversion recovery MRI study. Mult. Scler. 28, 718–729 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Ogawa, R. et al. MOG antibody-positive, benign, unilateral, cerebral cortical encephalitis with epilepsy. Neurol. Neuroimmunol. Neuroinflamm. 4, e322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Budhram, A., Kunchok, A. C. & Flanagan, E. P. Unilateral leptomeningeal enhancement in myelin oligodendrocyte glycoprotein immunoglobulin G-associated disease. JAMA Neurol. 77, 648 (2020).

    Article  PubMed  Google Scholar 

  108. Salama, S., Khan, M., Pardo, S., Izbudak, I. & Levy, M. MOG antibody-associated encephalomyelitis/encephalitis. Mult. Scler. J. 25, 1427–1433 (2019).

    Article  CAS  Google Scholar 

  109. Elsbernd, P. et al. Cerebral enhancement in MOG antibody-associated disease. J. Neurol. Neurosurg. Psychiatry 95, 14–18 (2023).

    Article  PubMed  Google Scholar 

  110. Salama, S., Khan, M., Levy, M. & Izbudak, I. Radiological characteristics of myelin oligodendrocyte glycoprotein antibody disease. Mult. Scler. Relat. Disord. 29, 15–22 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chia, N. H., Redenbaugh, V., Chen, J. J., Pittock, S. J. & Flanagan, E. P. Corpus callosum involvement in MOG antibody-associated disease in comparison to AQP4-IgG-seropositive neuromyelitis optica spectrum disorder and multiple sclerosis. Mult. Scler. 29, 748–752 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cai, M.-T., Zhang, Y.-X., Zheng, Y., Fang, W. & Ding, M.-P. Callosal lesions on magnetic resonance imaging with multiple sclerosis, neuromyelitis optica spectrum disorder and acute disseminated encephalomyelitis. Mult. Scler. Relat. Disord. 32, 41–45 (2019).

    Article  PubMed  Google Scholar 

  113. Mastrangelo, V. et al. Bilateral extensive corticospinal tract lesions in MOG antibody-associated disease. Neurology 95, 648–649 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Hacohen, Y. et al. ‘Leukodystrophy-like’ phenotype in children with myelin oligodendrocyte glycoprotein antibody-associated disease. Dev. Med. Child Neurol. 60, 417–423 (2018).

    Article  PubMed  Google Scholar 

  115. Baumann, M. et al. MRI of the first event in pediatric acquired demyelinating syndromes with antibodies to myelin oligodendrocyte glycoprotein. J. Neurol. 265, 845–855 (2018).

    Article  PubMed  Google Scholar 

  116. Maranzano, J. et al. MRI evidence of acute inflammation in leukocortical lesions of patients with early multiple sclerosis. Neurology 89, 714–721 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cortese, R. et al. Differentiating multiple sclerosis from AQP4-neuromyelitis optica spectrum disorder and MOG-antibody disease with imaging. Neurology 100, e308–e323 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Messina, S. et al. Contrasting the brain imaging features of MOG-antibody disease, with AQP4-antibody NMOSD and multiple sclerosis. Mult. Scler. 28, 217–227 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Biotti, D. et al. Optic neuritis in patients with anti-MOG antibodies spectrum disorder: MRI and clinical features from a large multicentric cohort in France. J. Neurol. 264, 2173–2175 (2017).

    Article  PubMed  Google Scholar 

  120. Carnero Contentti, E. et al. Chiasmatic lesions on conventional magnetic resonance imaging during the first event of optic neuritis in patients with neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein‐associated disease in a Latin American cohort. Eur. J. Neurol. 29, 802–809 (2022).

    Article  PubMed  Google Scholar 

  121. Fadda, G. et al. MRI and laboratory features and the performance of international criteria in the diagnosis of multiple sclerosis in children and adolescents: a prospective cohort study. Lancet Child. Adolesc. Health 2, 191–204 (2018).

    Article  PubMed  Google Scholar 

  122. Cobo-Calvo, A. et al. Cranial nerve involvement in patients with MOG antibody-associated disease. Neurol. Neuroimmunol. Neuroinflamm. 6, e543 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Haider, L. et al. Cranial nerve enhancement in multiple sclerosis is associated with younger age at onset and more severe disease. Front. Neurol. 10, 1085 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Denève, M. et al. MRI features of demyelinating disease associated with anti-MOG antibodies in adults. J. Neuroradiol. 46, 312–318 (2019).

    Article  PubMed  Google Scholar 

  125. Pekcevik, Y. et al. Differentiating neuromyelitis optica from other causes of longitudinally extensive transverse myelitis on spinal magnetic resonance imaging. Mult. Scler. 22, 302–311 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Mariano, R. et al. Quantitative spinal cord MRI in MOG-antibody disease, neuromyelitis optica and multiple sclerosis. Brain 144, 198–212 (2021).

    Article  PubMed  Google Scholar 

  127. Webb, L. M. et al. Marked central canal T2-hyperintensity in MOGAD myelitis and comparison to NMOSD and MS. J. Neurol. Sci. 450, 120687 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mohseni, S. H. et al. Leptomeningeal and intraparenchymal blood barrier disruption in a MOG-IgG-positive patient. Case Rep. Neurol. Med. 2018, 1365175 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. El Naggar, I. et al. MR imaging in children with transverse myelitis and acquired demyelinating syndromes. Mult. Scler. Relat. Disord. 67, 104068 (2022).

    Article  PubMed  Google Scholar 

  130. Fadda, G. et al. Comparison of spinal cord magnetic resonance imaging features among children with acquired demyelinating syndromes. JAMA Netw. Open 4, e2128871 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cacciaguerra, L. et al. Timing and predictors of T2-lesion resolution in patients with myelin-oligodendrocyte-glycoprotein-antibody-associated disease. Neurology 101, e1376–e1381 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Abdel-Mannan, O. et al. Evolution of brain MRI lesions in paediatric myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD) and its relevance to disease course. J. Neurol. Neurosurg. Psychiatry 95, 426–433 (2023).

    Google Scholar 

  133. Kitley, J. et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies. JAMA Neurol. 71, 276 (2014).

    Article  PubMed  Google Scholar 

  134. Fadda, G. et al. Silent new brain MRI lesions in children with MOG-antibody associated disease. Ann. Neurol. 89, 408–413 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Verhey, L. H. et al. Clinical and MRI activity as determinants of sample size for pediatric multiple sclerosis trials. Neurology 81, 1215–1221 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Camera, V. et al. Frequency of new silent MRI lesions in myelin oligodendrocyte glycoprotein antibody disease and aquaporin-4 antibody neuromyelitis optica spectrum disorder. JAMA Netw. Open 4, e2137833 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Syc-Mazurek, S. B. et al. Frequency of new or enlarging lesions on MRI outside of clinical attacks in patients with MOG-antibody-associated disease. Neurology 99, 795–799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schmidt, F. A. et al. Differences in advanced magnetic resonance imaging in MOG-IgG and AQP4-IgG seropositive neuromyelitis optica spectrum disorders: a comparative study. Front. Neurol. 11, 499910 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Chien, C. et al. Spinal cord lesions and atrophy in NMOSD with AQP4-IgG and MOG-IgG associated autoimmunity. Mult. Scler. J. 25, 1926–1936 (2019).

    Article  CAS  Google Scholar 

  140. Duan, Y. et al. Brain structural alterations in MOG antibody diseases: a comparative study with AQP4 seropositive NMOSD and MS. J. Neurol. Neurosurg. Psychiatry 92, 709–716 (2021).

    Article  PubMed  Google Scholar 

  141. Lotan, I. et al. Volumetric brain changes in MOGAD: a cross-sectional and longitudinal comparative analysis. Mult. Scler. Relat. Disord. 69, 104436 (2023).

    Article  PubMed  Google Scholar 

  142. Rechtman, A. et al. Volumetric brain loss correlates with a relapsing MOGAD disease course. Front. Neurol. 13, 867190 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zhuo, Z. et al. Brain structural and functional alterations in MOG antibody disease. Mult. Scler. J. 27, 1350–1363 (2021).

    Article  CAS  Google Scholar 

  144. Fadda, G. et al. Deviation from normative whole brain and deep gray matter growth in children with MOGAD, MS, and monophasic seronegative demyelination. Neurology 101, e425–e437 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gao, C. et al. Structural and functional alterations in visual pathway after optic neuritis in MOG antibody disease: a comparative study with AQP4 seropositive NMOSD. Front. Neurol. 12, 673472 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Brier, M. R. et al. Quantitative MRI identifies lesional and non-lesional abnormalities in MOGAD. Mult. Scler. Relat. Disord. 73, 104659 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Castellaro, M. et al. The use of the central vein sign in the diagnosis of multiple sclerosis: a systematic review and meta-analysis. Diagnostics 10, 1025 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cagol, A. et al. Diagnostic performance of cortical lesions and the central vein sign in multiple sclerosis. JAMA Neurol. 81, 143–153 (2024).

    Article  PubMed  Google Scholar 

  149. Clarke, M. A. et al. Paramagnetic rim lesions and the central vein sign: characterizing multiple sclerosis imaging markers. J. Neuroimaging 34, 86–94 (2024).

    Article  PubMed  Google Scholar 

  150. Sinnecker, T. et al. MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7 T. Neurol. Neuroimmunol. Neuroinflamm. 3, e259 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Juryńczyk, M., Jakuszyk, P., Kurkowska-Jastrzębska, I. & Palace, J. Increasing role of imaging in differentiating MS from non-MS and defining indeterminate borderline cases. Neurol. Neurochir. Pol. 56, 210–219 (2021).

    Article  PubMed  Google Scholar 

  152. Sacco, S. et al. Susceptibility-based imaging aids accurate distinction of pediatric-onset MS from myelin oligodendrocyte glycoprotein antibody-associated disease. Mult. Scler. 29, 1736–1747 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Harrison, K. L. et al. Central vein sign in pediatric multiple sclerosis and myelin oligodendrocyte glycoprotein antibody-associated disease. Pediatr. Neurol. 146, 21–25 (2023).

    Article  PubMed  Google Scholar 

  154. Clarke, L. et al. Magnetic resonance imaging in neuromyelitis optica spectrum disorder. Clin. Exp. Immunol. 206, 251–265 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Matthews, L. et al. Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology 80, 1330–1337 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Juryńczyk, M. et al. Brain lesion distribution criteria distinguish MS from AQP4-antibody NMOSD and MOG-antibody disease. J. Neurol. Neurosurg. Psychiatry 88, 132–136 (2017).

    Article  PubMed  Google Scholar 

  157. Huh, S.-Y. et al. The usefulness of brain MRI at onset in the differentiation of multiple sclerosis and seropositive neuromyelitis optica spectrum disorders. Mult. Scler. 20, 695–704 (2014).

    Article  PubMed  Google Scholar 

  158. Carnero Contentti, E. et al. Towards imaging criteria that best differentiate MS from NMOSD and MOGAD: large multi-ethnic population and different clinical scenarios. Mult. Scler. Relat. Disord. 61, 103778 (2022).

    Article  PubMed  Google Scholar 

  159. Bensi, C. et al. Brain and spinal cord lesion criteria distinguishes AQP4-positive neuromyelitis optica and MOG-positive disease from multiple sclerosis. Mult. Scler. Relat. Disord. 25, 246–250 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Cacciaguerra, L. et al. Brain and cord imaging features in neuromyelitis optica spectrum disorders. Ann. Neurol. 85, 371–384 (2019).

    Article  PubMed  Google Scholar 

  161. Solomon, A. J. et al. Differential diagnosis of suspected multiple sclerosis: an updated consensus approach. Lancet Neurol. 22, 750–768 (2023).

    Article  PubMed  Google Scholar 

  162. Abdel‐Mannan, O. et al. Incidence of paediatric multiple sclerosis and other acquired demyelinating syndromes: 10‐year follow‐up surveillance study. Dev. Med. Child Neurol. 64, 502–508 (2022).

    Article  PubMed  Google Scholar 

  163. Hacohen, Y. et al. Diagnostic algorithm for relapsing acquired demyelinating syndromes in children. Neurology 89, 269–278 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. L. Rato for the design of Figs. 1 and 4, R. França for helping with the design of Fig. 8 and V. Camera and M. Pisa for their help in testing some of the versions of the Fig. 8 flowchart.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

R.G., G.A., B.B., A.R., R.C., H.L., S.M., M.A.R. and P.W. researched data for the article. R.G., B.B., A.R., H.L., P.W. and J.P. contributed substantially to discussion of the content. R.G., G.A. and J.P. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Ruth Geraldes or Jacqueline Palace.

Ethics declarations

Competing interests

R.G. has received support for scientific meetings and courses from Bayer, Biogen, Merck, Novartis and Janssen and honoraria for advisory work or talks from Biogen, Novartis, UCB and MIAC. G.A. has received compensation for consulting services, speaking honoraria or participation in advisory boards from Roche and Horizon Therapeutics; and travel support for scientific meetings from Novartis, Roche, Horizon Therapeutics, ECTRIMS and EAN. She serves as an editor for Europe for Multiple Sclerosis Journal — Experimental, Translational and Clinical and as a member of the editorial and scientific committee of Acta Neurológica Colombiana. She is a member of the International Women in Multiple Sclerosis (iWiMS) network executive committee, the European Biomarkers in Multiple Sclerosis (BioMS-eu) steering committee and the MOGAD Eugene Devic European Network (MEDEN) steering group. B.B. has received or will potentially receive financial compensation for consultancy for Novartis, Roche, UCB, Horizon Therapeutics, Biogen and Immunic Therapeutics for advice on clinical trial design. B.B. is funded by the National Multiple Sclerosis Society and NIH and was previously funded by the Canadian Multiple Sclerosis Society. A.R. serves or has served on scientific advisory boards for Novartis, Sanofi-Genzyme, Synthetic MR, TensorMedical, Roche and Biogen and has received speaker honoraria from Bayer, Sanofi-Genzyme, Merck-Serono, Teva Pharmaceutical Industries, Novartis, Roche, Bristol-Myers and Biogen, is Chief Marketing Officer and co-founder of TensorMedical and receives research support from Fondo de Investigación en Salud (PI19/00950 and PI22/01589) from Instituto de Salud Carlos III, Spain. R.C. has received speaker honoraria and/or travel support from Roche, Merck, Sanofi-Genzyme, Novartis, Janssen and UCB. H.L. has received honoraria from Novartis, Sanofi, Genzyme, BMS and UCB Biopharma for lectures, unrelated to the topic of this manuscript. S.M. has received travel grants from Roche, Merck and Sanofi and has received speaking honoraria from UCB. M.A.R. has received consulting fees from Biogen, Bristol Myers Squibb, Eli Lilly, Janssen and Roche and speaker honoraria from AstraZeneca, Biogen, Bristol Myers Squibb, Bromatech, Celgene, Genzyme, Horizon Therapeutics Italy, Merck Serono, Novartis, Roche, Sanofi and Teva. She receives research support from the MS Society of Canada, the Italian Ministry of Health, the Italian Ministry of University and Research and Fondazione Italiana Sclerosi Multipla. She is Associate Editor for Multiple Sclerosis and Related Disorders. P.W. has received research grants from Euroimmun, CSL Behring and patent royalties for antibody testing (W02010046716A1). He is the Co-Director of the Oxford Autoimmune Neurology Diagnostic Laboratory (Oxford University, Oxford, UK) where MOG-IgG1 autoantibodies are tested, and both he and the University of Oxford receive royalties for antibody tests for LGI1 and CASPR2 (W02010046716A1). He has received honoraria or consulting fees from Biogen Idec, F Hoffmann La-Roche, Mereo BioPharma, Retrogenix, UBC, Euroimmun, University of British Columbia and Alexion; and travel grants from the Guthy-Jackson Charitable Foundation. Work in the Oxford Autoimmune Neurology Diagnostic Laboratory is supported by the UK National Health Service Commissioning service for NMOSD. D.C. is a consultant for Hoffmann-La Roche. In the past 3 years, he has been a consultant for Biogen and has received research funding from Hoffmann-La Roche, the International Progressive MS Alliance, the MS Society, the Medical Research Council and the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and a speaker’s honorarium from Novartis. He co-supervises a clinical fellowship at the National Hospital for Neurology and Neurosurgery, London, which is supported by Merck. C.G. reports personal fees from Biogen, Merck Serono, Teva Pharmaceuticals, Sanofi Genzyme, Almirall, Novartis, Roche and Bayer, outside the submitted work. R.M. undertook graduate studies funded by the Rhodes Trust and the Oppenheimer Memorial Trust. F.P. has received honoraria and research support from Alexion, Bayer, Biogen, Chugai, Merck Serono, Novartis, Genyzme, MedImmune, Shire and Teva Pharmaceuticals and serves on scientific advisory boards for Alexion, MedImmune, Novartis and UCB. He has received funding from Deutsche Forschungsgemeinschaft (DFG Exc 257), Bundesministerium für Bildung und Forschung (Competence Network Multiple Sclerosis), Guthy-Jackson Charitable Foundation, EU Framework Program 7 and National Multiple Sclerosis Society of the USA. He serves on the steering committee of the N-Momentum study of inebilizumab (Horizon Therapeutics) and the OCTiMS Study (Novartis). He is an associate editor for Neurology, Neuroimmunology, and Neuroinflammation and academic editor with PLoS ONE. G.C.D. has received support from the NIHR Biomedical Research Centre (BRC), Oxford; and research funding from the Oxford BRC, MRC(UK), UK MS Society, National Health and Medical Research (Australia), Department of Defense (USA), European Charcot Foundation, American Academy of Neurology (AAN), Merck-Serono and Oxford-Quinnipiac Partnership. G.C.D. has also received travel expenses from Genzyme, Merck Serono, Novartis, Roche, the MS Academy and AAN and honoraria as an invited speaker or faculty for Novartis, Roche, the MS Academy and AAN. C.E. reports personal fees from Biogen, Bayer HealthCare Pharmaceuticals, Merck Serono, Novartis, Shire, Genzyme, Teva Pharmaceuticals, Sanofi, Celgene and Roche, outside the submitted work. L.K. received no personal compensation. His institutions (University Hospital Basel/Stiftung Neuroimmunology and Neuroscience Basel) have received and used exclusively for research support payments for steering committee and advisory board participation, consultancy services and participation in educational activities from Bayer, BMS, Celgene, Dörries-Frank Molnia & Pohlmann, Eli Lilly, EMD Serono, Genentech, Glaxo Smith Kline, Janssen Pharmaceuticals, Japan Tobacco, Merck, MH Consulting, Minoryx, Novartis, F. Hoffmann-La Roche, Senda Biosciences, Sanofi, Santhera, Shionogi, TG Therapeutics and Wellmera; licence fees for Neurostatus-UHB products; and grants from Novartis, Innosuisse and Roche. M.I.L. is funded by the NHS (Myasthenia and Related Disorders Service and National Specialized Commissioning Group for Neuromyelitis Optica, UK) and by the University of Oxford, UK. She has been awarded research grants from the UK Association for Patients with Myasthenia (Myaware), Muscular Dystrophy Campaign (MDUK) and the University of Oxford. She has received speaker honoraria and travel grants from UCB Pharma and Horizon Therapeutics and consultancy fees from UCB Pharma. She serves on scientific or educational advisory boards for UCB Pharma, Argenx and Horizon Therapeutics and on the Steering Committee for Horizon Therapeutics. J.S.-G. reports grants and personal fees from Sanofi Genzyme and personal fees from Almirall, Biogen, Celgene, Merck Serono, Novartis, Roche and Teva Pharmaceuticals, outside the submitted work, and is a member of the Editorial Committee of Multiple Sclerosis Journal and Director of the Scientific Committee of Revista de Neurologia. T.Y. reports personal fees from Biogen, Novartis, Bayer HealthCare Pharmaceuticals and Hikma, outside the submitted work, and has received research support from Biogen, GlaxoSmithKline, Novartis and Schering. O.C. is an NIHR Research Professor (RP-2017-08-ST2-004); over the past 2 years, she has been a member of an independent data and safety monitoring board for Novartis; she gave a teaching talk in a Merck local symposium and contributed to an Advisory Board for Biogen; she is Deputy Editor of Neurology, for which she receives an honorarium; she has received research grant support from the MS Society of Great Britain and Northern Ireland, the NIHR UCLH Biomedical Research Centre, the Rosetree Trust, the National MS Society and the NIHR-HTA. M.F. is Editor-in-Chief of the Journal of Neurology, Associate Editor of Human Brain Mapping, Neurological Sciences and Radiology; received compensation for consulting services from Alexion, Almirall, Biogen, Merck, Novartis, Roche and Sanofi; speaking activities from Bayer, Biogen, Celgene, Chiesi Italia SpA, Eli Lilly, Genzyme, Janssen, Merck Serono, Neopharmed Gentili, Novartis, Novo Nordisk, Roche, Sanofi, Takeda and TEVA; participation in advisory boards for Alexion, Biogen, Bristol-Myers Squibb, Merck, Novartis, Roche, Sanofi, Sanofi-Aventis, Sanofi-Genzyme and Takeda; and scientific direction of educational events for Biogen, Merck, Roche, Celgene, Bristol-Myers Squibb, Lilly, Novartis and Sanofi-Genzyme. He receives research support from Biogen Idec, Merck Serono, Novartis, Roche, the Italian Ministry of Health, the Italian Ministry of University and Research and Fondazione Italiana Sclerosi Multipla. F.B. is supported by the NIHR biomedical research centre at University College London Hospitals. F.B. is part of the steering committee or a data safety monitoring board member for Biogen, Merck, ATRI/ACTC and Prothena, is a consultant for Roche, Celltrion, Rewind Therapeutics, Merck, IXICO, Jansen and Combinostics, has research agreements with Merck, Biogen, GE Healthcare and Roche and is a co-founder and shareholder of Queen Square Analytics. J.P. has received support for scientific meetings and honoraria for advisory work from Merck Serono, Novartis, Chugai, Alexion, Roche, Medimmune, Argenx, Vitaccess, UCB, Mitsubishi, Amplo and Janssen, and grants from Alexion, Argenx, Clene, Roche, Medimmune and Amplo Biotechnology. She holds patent ref. P37347WO, a licence agreement with Numares multimarker MS diagnostics and shares in AstraZeneca. Her group has been awarded an ECTRIMS fellowship and a Sumaira Foundation grant to start later this year. A Charcot fellow worked in Oxford 2019–2021. She acknowledges partial funding to the Oxford University Hospitals Trust by Highly Specialized Services NHS England. She is on the medical advisory boards of the Sumaira Foundation and MOG project charities, is a member of the Guthy Jackon Foundation Charity and is on the Board of the European Charcot Foundation, the steering committee of MAGNIMS and the UK NHSE IVIG Committee. She is Chair of the NHSE neuroimmunology patient pathway and has been an ECTRIMS Council member on the educational committee since June 2023. She is also on the Association of British Neurologists advisory groups for MS and neuroinflammation and neuromuscular diseases. Y.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks I. Nakashima, E. Flanagan, R. Dale and E. Sechi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

MAGNIMS: https://www.magnims.eu/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geraldes, R., Arrambide, G., Banwell, B. et al. The influence of MOGAD on diagnosis of multiple sclerosis using MRI. Nat Rev Neurol 20, 620–635 (2024). https://doi.org/10.1038/s41582-024-01005-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-024-01005-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research