Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles for CNS fibroblasts in health, injury and disease

Abstract

Recent transcriptomic, histological and functional studies have begun to shine light on the fibroblasts present in the meninges, choroid plexus and perivascular spaces of the brain and spinal cord. Although the origins and functions of CNS fibroblasts are still being described, it is clear that they represent a distinct cell population, or populations, that have likely been confused with other cell types on the basis of the expression of overlapping cellular markers. Recent work has revealed that fibroblasts play crucial roles in fibrotic scar formation in the CNS after injury and inflammation, which have also been attributed to other perivascular cell types such as pericytes and vascular smooth muscle cells. In this Review, we describe the current knowledge of the location and identity of CNS perivascular cell types, with a particular focus on CNS fibroblasts, including their origin, subtypes, roles in health and disease, and future areas for study.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Localization of fibroblasts in the adult mouse brain.
Fig. 2: Development of fibroblasts in different regions of the CNS.
Fig. 3: Organization of the glial and fibrotic scars.

Similar content being viewed by others

References

  1. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018). Identifies molecularly distinct fibroblast cell types associated with the mouse vasculature, providing some of the first evidence of CNS fibroblast heterogeneity.

    CAS  PubMed  Google Scholar 

  2. Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074.e21 (2021). Describes for the first time the molecular heterogeneity of choroid plexus fibroblasts across the three ventricles, providing important insight into potential fibroblast function in the choroid plexus.

    CAS  PubMed  Google Scholar 

  3. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e27 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dorrier, C. E. et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat. Neurosci. 24, 234–244 (2021). First use of inducible lineage tracing to show that scar-forming cells in an animal model of MS are CNS fibroblasts and not pericytes or vSMCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, J. et al. A human cell type similar to murine central nervous system perivascular fibroblasts. Exp. Cell Res. 402, 112576 (2021).

    CAS  PubMed  Google Scholar 

  6. Yang, A. C. et al. A human brain vascular atlas reveals diverse cell mediators of Alzheimer’s disease risk. Preprint at bioRxiv https://doi.org/10.1101/2021.04.26.441262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Garcia, F. J. et al. Single-cell dissection of the human cerebrovasculature in health and disease. Preprint at bioRxiv https://doi.org/10.1101/2021.04.26.440975 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Månberg, A. et al. Altered perivascular fibroblast activity precedes ALS disease onset. Nat. Med. 27, 640–646 (2021). Identifies early activation of perivascular fibroblasts in humans and in mouse models of ALS, which potentially contribute to disease progression by the secretion of molecules that disrupt the blood–brain barrier.

    PubMed  Google Scholar 

  9. Mastorakos, P. & McGavern, D. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. 4, eaav0492 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lam, M. A. et al. The ultrastructure of spinal cord perivascular spaces: implications for the circulation of cerebrospinal fluid. Sci. Rep. 7, 12924 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Rasmussen, M. K., Mestre, H. & Nedergaard, M. Fluid transport in the brain. Physiol. Rev. https://doi.org/10.1152/physrev.00031.2020 (2021).

    Article  PubMed  Google Scholar 

  12. Engelhardt, B. & Sorokin, L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin. Immunopathol. 31, 497–511 (2009).

    PubMed  Google Scholar 

  13. Zhang, E. T., Inman, C. B. & Weller, R. O. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J. Anat. 170, 111–123 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl Med. 4, 147ra111 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. Bergers, G. & Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro-oncology 7, 452–464 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bondjers, C. et al. Microarray analysis of blood microvessels from PDGF-B and PDGF-Rβ mutant mice identifies novel markers for brain pericytes. FASEB J. 20, 1703–1705 (2006).

    CAS  PubMed  Google Scholar 

  17. Smyth, L. C. D. et al. Markers for human brain pericytes and smooth muscle cells. J. Chem. Neuroanat. 92, 48–60 (2018).

    CAS  PubMed  Google Scholar 

  18. Sagare, A. P., Sweeney, M. D., Makshanoff, J. & Zlokovic, B. V. Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes. Neurosci. Lett. 607, 97–101 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    PubMed  Google Scholar 

  21. Faraco, G., Park, L., Anrather, J. & Iadecola, C. Brain perivascular macrophages: characterization and functional roles in health and disease. J. Mol. Med. 95, 1143–1152 (2017).

    CAS  PubMed  Google Scholar 

  22. Bonney, S. K., Sullivan, L. T., Cherry, T. J., Daneman, R. & Shih, A. Y. Distinct features of brain perivascular fibroblasts and mural cells revealed by in vivo two-photon imaging. Preprint at bioRxiv https://doi.org/10.1101/2021.05.14.444194 (2021).

    Article  Google Scholar 

  23. Farbehi, N. et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 8, e43882 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Tallquist, M. D. Cardiac fibroblast diversity. Annu. Rev. Physiol. 82, 63–78 (2020).

    CAS  PubMed  Google Scholar 

  25. Yata, Y. et al. DNase I-hypersensitive sites enhance alpha1(I) collagen gene expression in hepatic stellate cells. Hepatology 37, 267–276 (2003).

    CAS  PubMed  Google Scholar 

  26. Soderblom, C. et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J. Neurosci. 33, 13882–13887 (2013). First use of the Col1a1-GFP line to identify perivascular fibroblasts in the CNS vasculature and characterization of marker expression relative to vSMCs and pericytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. DeSisto, J. et al. Single-cell transcriptomic analyses of the developing meninges reveal meningeal fibroblast diversity and function. Dev. Cell 54, 43–59.e4 (2020). First evidence that meningeal fibroblasts of the pia, arachnoid and dura are molecularly distinct and provides insight into spatiotemporal development of the meningeal layers.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Vliet, E., Melis, M. & Van Ewijk, W. Monoclonal antibodies to stromal cell types of the mouse thymus. Eur. J. Immunol. 14, 524–529 (1984).

    PubMed  Google Scholar 

  29. Van Vliet, E., Melis, M., Foidart, J. M. & Van Ewijk, W. Reticular fibroblasts in peripheral lymphoid organs identified by a monoclonal antibody. J. Histochem. Cytochem. 34, 883–890 (1986).

    PubMed  Google Scholar 

  30. Haines, D. E., Harkey, H. L. & Al-Mefty, O. The “subdural” space: a new look at an outdated concept. Neurosurgery 32, 111–120 (1993).

    CAS  PubMed  Google Scholar 

  31. Kirmi, O., Sheerin, F. & Patel, N. Imaging of the meninges and the extra-axial spaces. Semin. Ultrasound CT MR 30, 565–593 (2009).

    PubMed  Google Scholar 

  32. Nabeshima, S., Reese, T. S., Landis, D. M. & Brightman, M. W. Junctions in the meninges and marginal glia. J. Comp. Neurol. 164, 127–169 (1975).

    CAS  PubMed  Google Scholar 

  33. Alcolado, R., Weller, R. O., Parrish, E. P. & Garrod, D. The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol. Appl. Neurobiol. 14, 1–17 (1988).

    CAS  PubMed  Google Scholar 

  34. Vandenabeele, F., Creemers, J. & Lambrichts, I. Ultrastructure of the human spinal arachnoid mater and dura mater. J. Anat. 189, 417–430 (1996).

    PubMed  PubMed Central  Google Scholar 

  35. Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O. & Møllgård, K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol. 135, 363–385 (2018).

    CAS  PubMed  Google Scholar 

  36. Balin, B. J., Broadwell, R. D., Salcman, M. & el-Kalliny, M. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J. Comp. Neurol. 251, 260–280 (1986).

    CAS  PubMed  Google Scholar 

  37. McLone, D. G. & Bondareff, W. Developmental morphology of the subarachnoid space and contiguous structures in the mouse. Am. J. Anat. 142, 273–293 (1975).

    CAS  PubMed  Google Scholar 

  38. Butt, A. M., Jones, H. C. & Abbott, N. J. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J. Physiol. 429, 47–62 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Revest, P. A., Jones, H. C. & Abbott, N. J. Transendothelial electrical potential across pial vessels in anaesthetised rats: a study of ion permeability and transport at the blood-brain barrier. Brain Res. 652, 76–82 (1994).

    CAS  PubMed  Google Scholar 

  40. Abbott, N. J., Pizzo, M. E., Preston, J. E., Janigro, D. & Thorne, R. G. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol. 135, 387–407 (2018).

    CAS  PubMed  Google Scholar 

  41. Hannocks, M.-J. et al. Molecular characterization of perivascular drainage pathways in the murine brain. J. Cereb. Blood Flow Metab. 38, 669–686 (2018).

    CAS  PubMed  Google Scholar 

  42. Riew, T.-R., Jin, X., Kim, H. L., Kim, S. & Lee, M.-Y. Ultrastructural and molecular characterization of platelet-derived growth factor beta-positive leptomeningeal cells in the adult rat brain. Mol. Neurobiol. 57, 1484–150 (2020).

    CAS  PubMed  Google Scholar 

  43. Ghersi-Egea, J.-F. et al. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 135, 337–361 (2018).

    CAS  PubMed  Google Scholar 

  44. Damkier, H. H., Brown, P. D. & Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 93, 1847–1892 (2013).

    CAS  PubMed  Google Scholar 

  45. Emerich, D. F., Skinner, S. J., Borlongan, C. V., Vasconcellos, A. V. & Thanos, C. G. The choroid plexus in the rise, fall and repair of the brain. Bioessays 27, 262–274 (2005).

    CAS  PubMed  Google Scholar 

  46. Lun, M. P., Monuki, E. S. & Lehtinen, M. K. Development and functions of the choroid plexus–cerebrospinal fluid system. Nat. Rev. Neurosci. 16, 445–457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shuangshoti, S. & Netsky, M. G. Histogenesis of choroid plexus in man. Am. J. Anat. 118, 283–316 (1966).

    CAS  PubMed  Google Scholar 

  48. Jiang, X., Iseki, S., Maxson, R. E., Sucov, H. M. & Morriss-Kay, G. M. Tissue origins and interactions in the mammalian skull vault. Dev. Biol. 241, 106–116 (2002).

    CAS  PubMed  Google Scholar 

  49. Couly, G. F. & Le Douarin, N. M. Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev. Biol. 120, 198–214 (1987).

    CAS  PubMed  Google Scholar 

  50. Couly, G. F., Coltey, P. M. & Le Douarin, N. M. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114, 1–15 (1992).

    CAS  PubMed  Google Scholar 

  51. Yoshida, T., Vivatbutsiri, P., Morriss-Kay, G., Saga, Y. & Iseki, S. Cell lineage in mammalian craniofacial mesenchyme. Mech. Dev. 125, 797–808 (2008).

    CAS  PubMed  Google Scholar 

  52. O’Rahilly, R. & Müller, F. The meninges in human development. J. Neuropathol. Exp. Neurol. 45, 588–608 (1986).

    PubMed  Google Scholar 

  53. Kelly, K. K. et al. Col1a1+ perivascular cells in the brain are a source of retinoic acid following stroke. BMC Neurosci. 17, 49–49 (2016). First description of developmental timing of perivascular fibroblast appearance in the postnatal brain.

    PubMed  PubMed Central  Google Scholar 

  54. Bill, B. R. & Korzh, V. Choroid plexus in developmental and evolutionary perspective. Front. Neurosci. 8, 363 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Liddelow, S. A. Development of the choroid plexus and blood-CSF barrier. Front. Neurosci. 9, 32 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Wilting, J. & Christ, B. An experimental and ultrastructural study on the development of the avian choroid plexus. Cell Tissue Res. 255, 487–494 (1989).

    CAS  PubMed  Google Scholar 

  57. Cancilla, P. A., Zimmerman, H. M. & Becker, N. H. A histochemical and fine structure study of the developing rat choroid plexus. Acta Neuropathol. 6, 188–200 (1966).

    CAS  PubMed  Google Scholar 

  58. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    CAS  PubMed  Google Scholar 

  60. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kendall, R. T. & Feghali-Bostwick, C. A. Fibroblasts in fibrosis: novel roles and mediators. Front. Pharmacol. 5, 123 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Alberts B. et al. Fibroblasts and Their Transformations: The Connective-Tissue Cell Family 4th edn (Garland Science, 2002).

  63. Newman, A. C., Nakatsu, M. N., Chou, W., Gershon, P. D. & Hughes, C. C. W. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol. Biol. Cell 22, 3791–3800 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Camelliti, P., Borg, T. K. & Kohl, P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65, 40–51 (2005).

    CAS  PubMed  Google Scholar 

  65. Herum, K. M., Lunde, I. G., McCulloch, A. D. & Christensen, G. The soft- and hard-heartedness of cardiac fibroblasts: mechanotransduction signaling pathways in fibrosis of the heart. J. Clin. Med. 6, 53 (2017).

    PubMed Central  Google Scholar 

  66. Munk, A. S. et al. PDGF-B is required for development of the glymphatic system. Cell Rep. 26, 2955–2969.e3 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chang, J. E. & Turley, S. J. Stromal infrastructure of the lymph node and coordination of immunity. Trends Immunol. 36, 30–39 (2015).

    CAS  PubMed  Google Scholar 

  68. Junt, T., Scandella, E. & Ludewig, B. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat. Rev. Immunol. 8, 764–775 (2008).

    CAS  PubMed  Google Scholar 

  69. Nataf, S. et al. Rat choroid plexuses contain myeloid progenitors capable of differentiation toward macrophage or dendritic cell phenotypes. Glia 54, 160–171 (2006).

    PubMed  Google Scholar 

  70. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 6, 205–217 (2006).

    CAS  PubMed  Google Scholar 

  71. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    PubMed  Google Scholar 

  72. Bajénoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    PubMed  PubMed Central  Google Scholar 

  73. Pikor, N. B. et al. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43, 1160–1173 (2015).

    CAS  PubMed  Google Scholar 

  74. Magliozzi, R. et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68, 477–493 (2010).

    CAS  PubMed  Google Scholar 

  75. Watanabe, R., Kakizaki, M., Ikehara, Y. & Togayachi, A. Formation of fibroblastic reticular network in the brain after infection with neurovirulent murine coronavirus. Neuropathology 36, 513–526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, J. V., Kang, S. S., Dustin, M. L. & McGavern, D. B. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457, 191–195 (2009).

    CAS  PubMed  Google Scholar 

  77. Cupovic, J. et al. Central nervous system stromal cells control local CD8+ T cell responses during virus-induced neuroinflammation. Immunity 44, 622–633 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fernández-Klett, F. & Priller, J. The fibrotic scar in neurological disorders. Brain Pathol. 24, 404–413 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. O’Shea, T. M., Burda, J. E. & Sofroniew, M. V. Cell biology of spinal cord injury and repair. J. Clin. Invest. 127, 3259–3270 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sofroniew, M. V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Faulkner, J. R. et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24, 2143–2155 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Burda, J. E. & Sofroniew, M. V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81, 229–248 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hara, M. et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin–N-cadherin pathway after spinal cord injury. Nat. Med. 23, 818–828 (2017).

    CAS  PubMed  Google Scholar 

  85. Li, Y. et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587, 613–618 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bellver-Landete, V. et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun. 10, 518 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Göritz, C. et al. A pericyte origin of spinal cord scar tissue. Science 333, 238–242 (2011). First description of local perivascular cells as the source of scar-forming cells in SCI, which in this paper are described as a subtype of pericytes.

    PubMed  Google Scholar 

  88. Brazda, N. & Müller, H. W. Pharmacological modification of the extracellular matrix to promote regeneration of the injured brain and spinal cord. Prog. Brain Res. 175, 269–281 (2009).

    CAS  PubMed  Google Scholar 

  89. Dias, D. O. et al. Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell 173, 153–165.e22 (2018). Determined that decreasing stromal cell-derived fibrotic scarring following injury to the CNS led to the improved regeneration of corticospinal axons that integrate into local circuitry.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hellal, F. et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331, 928–931 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Klapka, N. et al. Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Eur. J. Neurosci. 22, 3047–3058 (2005).

    PubMed  Google Scholar 

  92. Vangansewinkel, T. et al. Mouse mast cell protease 4 suppresses scar formation after traumatic spinal cord injury. Sci. Rep. 9, 3715–3715 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Kawano, H. et al. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res. 349, 169–180 (2012).

    PubMed  PubMed Central  Google Scholar 

  94. Yoshioka, N., Hisanaga, S.-I. & Kawano, H. Suppression of fibrotic scar formation promotes axonal regeneration without disturbing blood-brain barrier repair and withdrawal of leukocytes after traumatic brain injury. J. Comp. Neurol. 518, 3867–3881 (2010).

    PubMed  Google Scholar 

  95. Logan, A. et al. Effects of transforming growth factor β1, on Scar production in the injured central nervous system of the rat. Eur. J. Neurosci. 6, 355–363 (1994).

    CAS  PubMed  Google Scholar 

  96. Zehendner, C. M. et al. Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex. Sci. Rep. 5, 13497 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Kyyriäinen, J., Ekolle Ndode-Ekane, X. & Pitkänen, A. Dynamics of PDGFRβ expression in different cell types after brain injury. Glia 65, 322–341 (2017).

    PubMed  Google Scholar 

  98. Pei, D. et al. Inhibition of platelet-derived growth factor receptor β reduces reactive glia and scar formation after traumatic brain injury in mice. Brain Res. Bull. 134, 121–127 (2017).

    CAS  PubMed  Google Scholar 

  99. Komuta, Y. et al. Expression of transforming growth factor-β receptors in meningeal fibroblasts of the injured mouse brain. Cell. Mol. Neurobiol. 30, 101–111 (2010).

    CAS  PubMed  Google Scholar 

  100. Yoshioka, N. et al. Small molecule inhibitor of type I transforming growth factor-β receptor kinase ameliorates the inhibitory milieu in injured brain and promotes regeneration of nigrostriatal dopaminergic axons. J. Neurosci. Res. 89, 381–393 (2011).

    CAS  PubMed  Google Scholar 

  101. Fernández-Klett, F. et al. Early loss of pericytes and perivascular stromal cell-induced scar formation after stroke. J. Cereb. Blood Flow Metab. 33, 428–439 (2013).

    PubMed  Google Scholar 

  102. Makihara, N. et al. Involvement of platelet-derived growth factor receptor β in fibrosis through extracellular matrix protein production after ischemic stroke. Exp. Neurol. 264, 127–134 (2015).

    CAS  PubMed  Google Scholar 

  103. Mastorakos, P. et al. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat. Neurosci. 24, 245–258 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yahn, S. L. et al. Fibrotic scar after experimental autoimmune encephalomyelitis inhibits oligodendrocyte differentiation. Neurobiol. Dis. 134, 104674–104674 (2020).

    CAS  PubMed  Google Scholar 

  105. van Horssen, J., Bö, L., Dijkstra, C. D. & de Vries, H. E. Extensive extracellular matrix depositions in active multiple sclerosis lesions. Neurobiol. Dis. 24, 484–491 (2006).

    PubMed  Google Scholar 

  106. van Horssen, J., Dijkstra, C. D. & de Vries, H. E. The extracellular matrix in multiple sclerosis pathology. J. Neurochem. 103, 1293–1301 (2007).

    PubMed  Google Scholar 

  107. Mohan, H. et al. Extracellular matrix in multiple sclerosis lesions: fibrillar collagens, biglycan and decorin are upregulated and associated with infiltrating immune cells. Brain Pathol. 20, 966–975 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Aldrich, A. & Kielian, T. Central nervous system fibrosis is associated with fibrocyte-like infiltrates. Am. J. Pathol. 179, 2952–2962 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Friedlander, M. Fibrosis and diseases of the eye. J. Clin. Invest. 117, 576–586 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hiscott, P., Sheridan, C., Magee, R. M. & Grierson, I. Matrix and the retinal pigment epithelium in proliferative retinal disease. Prog. Retin. Eye Res. 18, 167–190 (1999).

    CAS  PubMed  Google Scholar 

  111. Machemer, R., van Horn, D. & Aaberg, T. M. Pigment epithelial proliferation in human retinal detachment with massive periretinal proliferation. Am. J. Ophthalmol. 85, 181–191 (1978).

    CAS  PubMed  Google Scholar 

  112. Bringmann, A. et al. Müller cells in the healthy and diseased retina. Prog. Retin. Eye Res. 25, 397–424 (2006).

    CAS  PubMed  Google Scholar 

  113. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. D’Ambrosi, N. & Apolloni, S. Fibrotic scar in neurodegenerative diseases. Front. Immunol. 11, 1394–1394 (2020).

    PubMed  PubMed Central  Google Scholar 

  115. Rand, C. W. & Courville, C. B. Histologic studies of the brain in cases of fatal injury to the head: II. Changes in the choroid plexus and ependyma. Arch. Surg. 23, 357–425 (1931).

    Google Scholar 

  116. Shuangshoti, S., Roberts, M. P. & Netsky, M. G. Neuroepithelial (colloid) cysts: pathogenesis and relation to choroid plexus and ependyma. Arch. Pathol. 80, 214–224 (1965).

    CAS  PubMed  Google Scholar 

  117. Dohrmann, G. J. & Herdson, P. B. Fine structural studies of capillaries in NZBNZW mice. Exp. Mol. Pathol. 11, 163–171 (1969).

    CAS  PubMed  Google Scholar 

  118. Van Linthout, S., Miteva, K. & Tschöpe, C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc. Res. 102, 258–269 (2014).

    PubMed  Google Scholar 

  119. Lapenna, A., De Palma, M. & Lewis, C. E. Perivascular macrophages in health and disease. Nat. Rev. Immunol. 18, 689–702 (2018).

    CAS  PubMed  Google Scholar 

  120. Zheng, B., Zhang, Z., Black, C. M., de Crombrugghe, B. & Denton, C. P. Ligand-dependent genetic recombination in fibroblasts: a potentially powerful technique for investigating gene function in fibrosis. Am. J. Pathol. 160, 1609–1617 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cuttler, A. S. et al. Characterization of Pdgfrb-Cre transgenic mice reveals reduction of ROSA26 reporter activity in remodeling arteries. Genesis 49, 673–680 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ulvmar, M. H., Martinez-Corral, I., Stanczuk, L. & Mäkinen, T. Pdgfrb-Cre targets lymphatic endothelial cells of both venous and non-venous origins. Genesis 54, 350–358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhu, X. et al. Age-dependent fate and lineage restriction of single NG2 cells. Development 138, 745–753 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hartmann, D. A. et al. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2, 041402 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. Grant, R. I. et al. Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J. Cereb. Blood Flow Metab. 39, 411–425 (2019).

    PubMed  Google Scholar 

  126. Wendling, O., Bornert, J. M., Chambon, P. & Metzger, D. Efficient temporally-controlled targeted mutagenesis in smooth muscle cells of the adult mouse. Genesis 47, 14–18 (2009).

    CAS  PubMed  Google Scholar 

  127. Guimarães-Camboa, N. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20, 345–359.e5 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.D. is funded by NIH/NINDS grants R01 NS091281and R01 NS103844, National Multiple Sclerosis Society Grant and the UCSF Program for Breakthrough Biomedical Science. C.E.D. is funded by the UCSD Graduate Training Program in Cellular and Molecular Pharmacology through an institutional training grant (T32 GM007752) from the National Institute of General Medical Sciences and NIH/NINDS grant F31 NS108651. J.S. is funded by NIH/NINDS grant R01 NS098273.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the article. C.E.D., H.E.J., J.A.S. and R.D. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Julie A. Siegenthaler or Richard Daneman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks A. Montagne, M. Sofroniew, who co-reviewed with T. O’Shea, and B. Engelhardt for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorrier, C.E., Jones, H.E., Pintarić, L. et al. Emerging roles for CNS fibroblasts in health, injury and disease. Nat Rev Neurosci 23, 23–34 (2022). https://doi.org/10.1038/s41583-021-00525-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-021-00525-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing