Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

A roadmap towards standardized neuroimaging approaches for human thalamic nuclei

Abstract

The thalamus has a key role in mediating cortical–subcortical interactions but is often neglected in neuroimaging studies, which mostly focus on changes in cortical structure and activity. One of the main reasons for the thalamus being overlooked is that the delineation of individual thalamic nuclei via neuroimaging remains controversial. Indeed, neuroimaging atlases vary substantially regarding which thalamic nuclei are included and how their delineations were established. Here, we review current and emerging methods for thalamic nuclei segmentation in neuroimaging data and consider the limitations of existing techniques in terms of their research and clinical applicability. We address these challenges by proposing a roadmap to improve thalamic nuclei segmentation in human neuroimaging and, in turn, harmonize research approaches and advance clinical applications. We believe that a collective effort is required to achieve this. We hope that this will ultimately lead to the thalamic nuclei being regarded as key brain regions in their own right and not (as often currently assumed) as simply a gateway between cortical and subcortical regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visualization of thalamic nuclei with differing field strengths and MRI pulse sequences, highlighting current segmentation challenges.
Fig. 2: Variability in shapes and volumes of thalamic parcellations across individuals and imaging methods.
Fig. 3: Alterations to thalamic nuclei across healthy ageing and disease.

Similar content being viewed by others

References

  1. Usrey, W. M. & Sherman, S. M. In: The Cerebral Cortex and Thalamus (eds Usrey, W. M. & Sherman, S. M.) 3–10 (Oxford Univ. Press, 2023). An updated and comprehensive volume on thalamic nuclei and their contributions to cortical mechanisms.

  2. Jones, E. G. The Thalamus (Cambridge Univ. Press, 2007).

  3. Halassa, M. M. & Sherman, S. M. Thalamocortical circuit motifs: a general framework. Neuron 103, 762–770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krauth, A. et al. A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage 49, 2053–2062 (2010).

    Article  PubMed  Google Scholar 

  5. Tourdias, T., Saranathan, M., Levesque, I. R., Su, J. & Rutt, B. K. Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T. Neuroimage 84, 534–545 (2014).

    Article  PubMed  Google Scholar 

  6. Segobin, S. & Pitel, A. L. The specificity of thalamic alterations in Korsakoff’s syndrome: implications for the study of amnesia. Neurosci. Biobehav. Rev. 130, 292–300 (2021).

    Article  PubMed  Google Scholar 

  7. Kumar, V. J., Scheffler, K., Hagberg, G. E. & Grodd, W. Quantitative susceptibility mapping of the basal ganglia and thalamus at 9.4 Tesla. Front. Neuroanat. 15, 725731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morel, A., Magnin, M. & Jeanmonod, D. Multiarchitectonic and stereotactic atlas of the human thalamus. J. Comp. Neurol. 387, 588–630 (1997). Most probabilistic atlases that incorporate histological data are derived from this histological atlas.

    Article  CAS  PubMed  Google Scholar 

  9. Niemann, K., Mennicken, V. R., Jeanmonod, D. & Morel, A. The Morel stereotactic atlas of the human thalamus: atlas-to-MR registration of internally consistent canonical model. Neuroimage 12, 601–616 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Schaltenbrand, G. & Wahren, W. Atlas for Stereotaxy of the Human Brain (Thieme, 1977).

  11. Chakravarty, M. M., Bertrand, G., Hodge, C. P., Sadikot, A. F. & Collins, D. L. The creation of a brain atlas for image guided neurosurgery using serial histological data. Neuroimage 30, 359–376 (2006).

    Article  PubMed  Google Scholar 

  12. Sadikot, A. et al. Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus. Front. Syst. Neurosci. 5, 71 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Iglehart, C., Monti, M., Cain, J., Tourdias, T. & Saranathan, M. A systematic comparison of structural-, structural connectivity-, and functional connectivity-based thalamus parcellation techniques. Brain Struct. Funct. 225, 1631–1642 (2020).

    Article  PubMed  Google Scholar 

  14. Hwang, K., Shine, J. M., Cole, M. W. & Sorenson, E. Thalamocortical contributions to cognitive task activity. eLife 11, e81282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antonucci, L. A. et al. Flexible and specific contributions of thalamic subdivisions to human cognition. Neurosci. Biobehav. Rev. 124, 35–53 (2021).

    Article  PubMed  Google Scholar 

  16. Kumar, V. J., Beckmann, C. F., Scheffler, K. & Grodd, W. Relay and higher-order thalamic nuclei show an intertwined functional association with cortical-networks. Commun. Biol. 5, 1187 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wen, H. et al. Pulvinar response profiles and connectivity patterns to object domains. J. Neurosci. 43, 812–826 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dadar, M., Fonov, V. S. & Collins, D. L. A comparison of publicly available linear MRI stereotaxic registration techniques. Neuroimage 174, 191–200 (2018).

    Article  PubMed  Google Scholar 

  19. Klein, A. et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46, 786–802 (2009).

    Article  PubMed  Google Scholar 

  20. Mai, J. K. & Majtanik, M. Toward a common terminology for the thalamus. Front. Neuroanat. 12, 114 (2019). A paper that underlines the importance of a common nomenclature and discusses how it can be achieved.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deoni, S. C. L., Josseau, M. J. C., Rutt, B. K. & Peters, T. M. Visualization of thalamic nuclei on high resolution, multi-averaged T1 and T2 maps acquired at 1.5T. Hum. Brain Mapp. 25, 353–359 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Deoni, S. C. L., Rutt, B. K., Parrent, A. G. & Peters, T. M. Segmentation of thalamic nuclei using a modified k-means clustering algorithm and high-resolution quantitative magnetic resonance imaging at 1.5T. Neuroimage 34, 117–126 (2007).

    Article  PubMed  Google Scholar 

  23. Traynor, C. R., Barker, G. J., Crum, W. R., Williams, S. C. R. & Richardson, M. P. Segmentation of the thalamus in MRI based on T1 and T2. Neuroimage 56, 939–950 (2011).

    Article  PubMed  Google Scholar 

  24. Mulder, M. J., Keuken, M. C., Bazin, P.-L., Alkemade, A. & Forstmann, B. U. Size and shape matter: the impact of voxel geometry on the identification of small nuclei. PLoS One 14, e0215382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iglesias, J. E. & Sabuncu, M. R. Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24, 205–219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Iglesias, J. E. et al. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 183, 314–326 (2018).

    Article  PubMed  Google Scholar 

  27. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).

    Article  PubMed  Google Scholar 

  28. Wang, H. et al. Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern Anal. Mach. Intell. 35, 611–623 (2013).

    Article  PubMed  Google Scholar 

  29. Su, J. H. et al. Thalamus Optimized Multi Atlas Segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI. Neuroimage 194, 272–282 (2019).

    Article  PubMed  Google Scholar 

  30. Saranathan, M., Iglehart, C., Monti, M., Tourdias, T. & Rutt, B. In vivo high-resolution structural MRI-based atlas of human thalamic nuclei. Sci. Data 8, 275 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Saranathan, M., Tourdias, T., Bayram, E., Ghanouni, P. & Rutt, B. K. Optimization of white-matter-nulled magnetization prepared rapid gradient echo (MP-RAGE) imaging. Magn. Reson. Med. 73, 1786–1794 (2015).

    Article  PubMed  Google Scholar 

  32. Sudhyadhom, A., Haq, I. U., Foote, K. D., Okun, M. S. & Bova, F. J. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage 47, T44–T52 (2009).

    Article  PubMed  Google Scholar 

  33. Brun, G. et al. Automatic segmentation of deep grey nuclei using a high-resolution 7 T magnetic resonance imaging atlas-Quantification of T1 values in healthy volunteers. Eur. J. Neurosci. 55, 438–460 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Datta, R. et al. Fast automatic segmentation of thalamic nuclei from MP2RAGE acquisition at 7 Tesla. Magn. Reson. Med. 85, 2781–2790 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Weiskopf, N. et al. Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3 T: a multi-center validation. Front. Neurosci. 7, 95 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Caan, M. W. A. et al. MP2RAGEME: T1, T2*, and QSM mapping in one sequence at 7 tesla. Hum. Brain Mapp. 40, 1786–1798 (2019).

    Article  PubMed  Google Scholar 

  37. Alkemade, A. et al. 7 Tesla MRI followed by histological 3D reconstructions in whole-brain specimens. Front. Neuroanat. 14, 536838 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alkemade, A. et al. A unified 3D map of microscopic architecture and MRI of the human brain. Sci. Adv. 8, eabj7892 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duan, Y., Li, X. & Xi, Y. Thalamus segmentation from diffusion tensor magnetic resonance imaging. Int. J. Biomed. Imaging 2007, 90216 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jonasson, L. et al. A level set method for segmentation of the thalamus and its nuclei in DT-MRI. Signal. Process. 87, 309–321 (2007).

    Article  Google Scholar 

  41. Rittner, L., Lotufo, R. A., Campbell, J. & Pike, G. B. In 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1173–1176 (2010).

  42. Wiegell, M. R., Tuch, D. S., Larsson, H. B. W. & Wedeen, V. J. Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. Neuroimage 19, 391–401 (2003).

    Article  PubMed  Google Scholar 

  43. Kumar, V., Mang, S. & Grodd, W. Direct diffusion-based parcellation of the human thalamus. Brain Struct. Funct. 220, 1619–1635 (2015).

    Article  PubMed  Google Scholar 

  44. Mang, S. C., Busza, A., Reiterer, S., Grodd, W. & Klose, A. U. Thalamus segmentation based on the local diffusion direction: a group study. Magn. Reson. Med. 67, 118–126 (2012).

    Article  PubMed  Google Scholar 

  45. Ziyan, U., Tuch, D. & Westin, C.-F. Segmentation of thalamic nuclei from DTI using spectral clustering. Med. Image Comput. Comput. Interv. 9, 807–814 (2006).

    Google Scholar 

  46. Ziyan, U. & Westin, C.-F. Joint segmentation of thalamic nuclei from a population of diffusion tensor MR images. Med. Image Comput. Comput. Interv. 11, 279–286 (2008).

    Google Scholar 

  47. Najdenovska, E. et al. In-vivo probabilistic atlas of human thalamic nuclei based on diffusion-weighted magnetic resonance imaging. Sci. Data 5, 180270 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Battistella, G. et al. Robust thalamic nuclei segmentation method based on local diffusion magnetic resonance properties. Brain Struct. Funct. 222, 2203–2216 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Behrens, T. E. J. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750–757 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. O’Muircheartaigh, J. et al. Clustering probabilistic tractograms using independent component analysis applied to the thalamus. Neuroimage 54, 2020–2032 (2011).

    Article  PubMed  Google Scholar 

  51. Calamante, F. et al. Super-resolution track-density imaging of thalamic substructures: comparison with high-resolution anatomical magnetic resonance imaging at 7.0T. Hum. Brain Mapp. 34, 2538–2548 (2013).

    Article  PubMed  Google Scholar 

  52. Basile, G. A. et al. In vivo super-resolution track-density imaging for thalamic nuclei identification. Cereb. Cortex 31, 5613–5636 (2021).

    Article  PubMed  Google Scholar 

  53. Stough, J. V. et al. Automatic method for thalamus parcellation using multi-modal feature classification. Med. Image Comput. Comput. Interv. 17, 169–176 (2014).

    Google Scholar 

  54. Semedo, C. et al. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 (eds Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G.) 383–391 (Springer International Publishing, 2018).

  55. Huang, S. Y. et al. Connectome 2.0: developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. Neuroimage 243, 118530 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Johansen-Berg, H. et al. Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb. Cortex 15, 31–39 (2005).

    Article  PubMed  Google Scholar 

  58. Basile, G. A. et al. In vivo probabilistic atlas of white matter tracts of the human subthalamic area combining track density imaging and optimized diffusion tractography. Brain Struct. Funct. 227, 2647–2665 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Maier-Hein, K. H. et al. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8, 1349 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shine, J. M., Lewis, L. D., Garrett, D. D. & Hwang, K. The impact of the human thalamus on brain-wide information processing. Nat. Rev. Neurosci. 24, 416–430 (2023). Highlights the role of the thalamus in a large number of human brain functional signatures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mezer, A., Yovel, Y., Pasternak, O., Gorfine, T. & Assaf, Y. Cluster analysis of resting-state fMRI time series. Neuroimage 45, 1117–1125 (2009).

    Article  PubMed  Google Scholar 

  62. O’Muircheartaigh, J., Keller, S. S., Barker, G. J. & Richardson, M. P. White matter connectivity of the thalamus delineates the functional architecture of competing thalamocortical systems. Cereb. Cortex 25, 4477–4489 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Toulmin, H. et al. Specialization and integration of functional thalamocortical connectivity in the human infant. Proc. Natl Acad. Sci. USA 112, 6485–6490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yuan, R. et al. Functional topography of the thalamocortical system in human. Brain Struct. Funct. 221, 1971–1984 (2016).

    Article  PubMed  Google Scholar 

  65. Zhang, D. et al. Intrinsic functional relations between human cerebral cortex and thalamus. J. Neurophysiol. 100, 1740–1748 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang, D., Snyder, A. Z., Shimony, J. S., Fox, M. D. & Raichle, M. E. Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cereb. Cortex 20, 1187–1194 (2010).

    Article  PubMed  Google Scholar 

  67. Ji, B. et al. Dynamic thalamus parcellation from resting‐state fMRI data. Hum. Brain Mapp. 37, 954–967 (2016).

    Article  PubMed  Google Scholar 

  68. Kumar, V. J., van Oort, E., Scheffler, K., Beckmann, C. F. & Grodd, W. Functional anatomy of the human thalamus at rest. Neuroimage 147, 678–691 (2017). Compares and contrasts parcellations of the thalamus obtained from structural versus functional connectivity data and shows that there is no one-to-one mapping between them.

    Article  PubMed  Google Scholar 

  69. Kim, D., Park, B. & Park, H. Functional connectivity‐based identification of subdivisions of the basal ganglia and thalamus using multilevel independent component analysis of resting state fMRI. Hum. Brain Mapp. 34, 1371–1385 (2013).

    Article  PubMed  Google Scholar 

  70. Hale, J. R. et al. Comparison of functional thalamic segmentation from seed-based analysis and ICA. Neuroimage 114, 448–465 (2015).

    Article  PubMed  Google Scholar 

  71. Zhang, S. & Li, C.-S. R. Functional connectivity parcellation of the human thalamus by independent component analysis. Brain Connect. 7, 602–616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Setzer, B. et al. A temporal sequence of thalamic activity unfolds at transitions in behavioral arousal state. Nat. Commun. 13, 5442 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tregidgo, H. F. J. et al. Accurate Bayesian segmentation of thalamic nuclei using diffusion MRI and an improved histological atlas. Neuroimage 274, 120129 (2023). An optimized segmentation procedure using T1w MRI and DWI data that is available within the new FreeSurfer pipeline.

    Article  PubMed  Google Scholar 

  74. Yan, C. et al. Segmenting thalamic nuclei from manifold projections of multi-contrast MRI. Proceedings of SPIE https://doi.org/10.48550/arXiv.2301.06114 (2023).

  75. Majdi, M. S. et al. Automated thalamic nuclei segmentation using multi-planar cascaded convolutional neural networks. Magn. Reson. Imaging 73, 45–54 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Umapathy, L., Keerthivasan, M. B., Zahr, N. M., Bilgin, A. & Saranathan, M. Convolutional neural network based frameworks for fast automatic segmentation of thalamic nuclei from native and synthesized contrast structural MRI. Neuroinformatics 20, 651–664 (2022). Describes the use of deep-learning procedures to enhance thalamic nuclei segmentation procedures, arguably the method of the future.

    Article  PubMed  Google Scholar 

  77. Shao, M. et al. Evaluating the impact of MR image harmonization on thalamus deep network segmentation. Proc. SPIE Int. Soc. Opt. Eng. 12032, 120320H (2022).

    PubMed  PubMed Central  Google Scholar 

  78. Setsompop, K., Feinberg, D. A. & Polimeni, J. R. Rapid brain MRI acquisition techniques at ultra-high fields. NMR Biomed. 29, 1198–1221 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Williams, B., Nguyen, D., Vidal, J. P. & Saranathan, M. Thalamic nuclei segmentation from T1-weighted MRI: unifying and benchmarking state-of-the-art methods. Imaging Neurosci. 2, 1–16 (2024).

    Article  Google Scholar 

  80. Jaimes, C. et al. Probabilistic tractography-based thalamic parcellation in healthy newborns and newborns with congenital heart disease. J. Magn. Reson. Imaging 47, 1626–1637 (2018).

    Article  PubMed  Google Scholar 

  81. Jakab, A. et al. Mental development is associated with cortical connectivity of the ventral and nonspecific thalamus of preterm newborns. Brain Behav. 10, e01786 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lidauer, K. et al. Subcortical and hippocampal brain segmentation in 5-year-old children: validation of FSL-FIRST and FreeSurfer against manual segmentation. Eur. J. Neurosci. 56, 4619–4641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hashempour, N. et al. A novel approach for manual segmentation of the amygdala and hippocampus in neonate MRI. Front. Neurosci. 13, 1025 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tutunji, R. et al. Thalamic volume and dimensions on MRI in the pediatric population: normative values and correlations: (a cross sectional study). Eur. J. Radiol. 109, 27–32 (2018).

    Article  PubMed  Google Scholar 

  85. Turesky, T. K., Vanderauwera, J. & Gaab, N. Imaging the rapidly developing brain: current challenges for MRI studies in the first five years of life. Dev. Cogn. Neurosci. 47, 100893 (2021).

    Article  PubMed  Google Scholar 

  86. Gousias, I. S. et al. Magnetic resonance imaging of the newborn brain: manual segmentation of labelled atlases in term-born and preterm infants. Neuroimage 62, 1499–1509 (2012).

    Article  PubMed  Google Scholar 

  87. Morey, R. A. et al. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage 45, 855–866 (2009).

    Article  PubMed  Google Scholar 

  88. Pomponio, R. et al. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. Neuroimage 208, 116450 (2020).

    Article  PubMed  Google Scholar 

  89. Choi, E. Y. et al. Thalamic nuclei atrophy at high and heterogenous rates during cognitively unimpaired human aging. Neuroimage 262, 119584 (2022).

    Article  PubMed  Google Scholar 

  90. Pfefferbaum, A., Sullivan, E. V., Zahr, N. M., Pohl, K. M. & Saranathan, M. Multi-atlas thalamic nuclei segmentation on standard T1-weighed MRI with application to normal aging. Hum. Brain Mapp. 44, 612–628 (2023).

    Article  PubMed  Google Scholar 

  91. Schmahmann, J. D. Vascular syndromes of the thalamus. Stroke 34, 2264–2278 (2003).

    Article  PubMed  Google Scholar 

  92. Carlesimo, G. A., Lombardi, M. G. & Caltagirone, C. Vascular thalamic amnesia: a reappraisal. Neuropsychologia 49, 777–789 (2011).

    Article  PubMed  Google Scholar 

  93. Golden, E. C., Graff-Radford, J., Jones, D. T. & Benarroch, E. E. Mediodorsal nucleus and its multiple cognitive functions. Neurology 87, 2161–2168 (2016).

    Article  PubMed  Google Scholar 

  94. Pergola, G. et al. Quantitative assessment of chronic thalamic stroke. AJNR Am. J. Neuroradiol. 34, E51–E55 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Percheron, G. The anatomy of the arterial supply of the human thalamus and its use for the interpretation of the thalamic vascular pathology. Z. Neurol. 205, 1–13 (1973).

    CAS  PubMed  Google Scholar 

  96. Danet, L. et al. Thalamic amnesia after infarct: the role of the mammillothalamic tract and mediodorsal nucleus. Neurology 85, 2107–2115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hwang, K., Shine, J. M., Bruss, J., Tranel, D. & Boes, A. Neuropsychological evidence of multi-domain network hubs in the human thalamus. eLife 10, e69480 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Harding, A., Halliday, G., Caine, D. & Kril, J. Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 123, 141–154 (2000).

    Article  PubMed  Google Scholar 

  99. Segobin, S. et al. Dissociating thalamic alterations in alcohol use disorder defines specificity of Korsakoff’s syndrome. Brain 142, 1458–1470 (2019).

    Article  PubMed  Google Scholar 

  100. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  101. Bernstein, A. S., Rapcsak, S. Z., Hornberger, M. & Saranathan, M.; Alzheimer’s Disease Neuroimaging Initiative.Structural changes in thalamic nuclei across prodromal and clinical Alzheimer’s disease. J. Alzheimers Dis. 82, 361–371 (2021).

    Article  PubMed  Google Scholar 

  102. Forno, G. et al. Thalamic nuclei changes in early and late onset Alzheimer’s disease. Curr. Res. Neurobiol. 4, 100084 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Azevedo, C. J. et al. Thalamic atrophy in multiple sclerosis: a magnetic resonance imaging marker of neurodegeneration throughout disease. Ann. Neurol. 83, 223–234 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Planche, V. et al. White-matter-nulled MPRAGE at 7T reveals thalamic lesions and atrophy of specific thalamic nuclei in multiple sclerosis. Mult. Scler. 26, 987–992 (2020).

    Article  PubMed  Google Scholar 

  105. Alemán-Gómez, Y. et al. Multimodal magnetic resonance imaging depicts widespread and subregion specific anomalies in the thalamus of early-psychosis and chronic schizophrenia patients. Schizophr. Bull. 49, 196–207 (2023).

    Article  PubMed  Google Scholar 

  106. Henry, R. G. et al. Connecting white matter injury and thalamic atrophy in clinically isolated syndromes. J. Neurol. Sci. 282, 61–66 (2009).

    Article  PubMed  Google Scholar 

  107. Ontaneda, D. et al. Deep grey matter injury in multiple sclerosis: a NAIMS consensus statement. Brain 144, 1974–1984 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kuchcinski, G. et al. Thalamic alterations remote to infarct appear as focal iron accumulation and impact clinical outcome. Brain 140, 1932–1946 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Linck, P. A. et al. Neurodegeneration of the substantia nigra after ipsilateral infarct: MRI R2* mapping and relationship to clinical outcome. Radiology 291, 438–448 (2019).

    Article  PubMed  Google Scholar 

  110. Tamura, A. et al. Thalamic atrophy following cerebral infarction in the territory of the middle cerebral artery. Stroke 22, 615–618 (1991).

    Article  CAS  PubMed  Google Scholar 

  111. Moon, Y., Han, S.-H. & Moon, W.-J. Patterns of brain iron accumulation in vascular dementia and Alzheimer’s dementia using quantitative susceptibility mapping imaging. J. Alzheimers Dis. 51, 737–745 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Blyau, S. et al. Differential vulnerability of thalamic nuclei in multiple sclerosis. Mult. Scler. J. 29, 295–300 (2023).

    Article  CAS  Google Scholar 

  113. Magliozzi, R. et al. “Ependymal‐in” gradient of thalamic damage in progressive multiple sclerosis. Ann. Neurol. 92, 670–685 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, J.-S., Heo, D.-Y., Choi, K.-H. & Kim, H.-J. Impact of the ventricle size on alzheimer’s disease progression: a retrospective longitudinal study. Dement. Neurocogn. Disord. 23, 95–106 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Oliveira, L. M., Nitrini, R. & Román, G. C. Normal-pressure hydrocephalus: a critical review. Dement. Neuropsychol. 13, 133–143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Johnstone, E., Frith, C. D., Crow, T. J., Husband, J. & Kreel, L. Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 308, 924–926 (1976).

    Article  Google Scholar 

  117. Van Erp, T. G. M. et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 21, 547–553 (2016).

    Article  PubMed  Google Scholar 

  118. Pergola, G., Selvaggi, P., Trizio, S., Bertolino, A. & Blasi, G. The role of the thalamus in schizophrenia from a neuroimaging perspective. Neurosci. Biobehav. Rev. 54, 57–75 (2015).

    Article  PubMed  Google Scholar 

  119. Pergola, G. et al. Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia. Schizophr. Res. 180, 13–20 (2017).

    Article  PubMed  Google Scholar 

  120. Honea, R. A. et al. Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biol. Psychiatry 63, 465–474 (2008).

    Article  PubMed  Google Scholar 

  121. Cooper, D., Barker, V., Radua, J., Fusar-Poli, P. & Lawrie, S. M. Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia. Psychiatry Res. Neuroimaging 221, 69–77 (2014).

    Article  Google Scholar 

  122. Akudjedu, T. N. et al. Progression of neuroanatomical abnormalities after first-episode of psychosis: a 3-year longitudinal sMRI study. J. Psychiatr. Res. 130, 137–151 (2020).

    Article  PubMed  Google Scholar 

  123. Cobia, D. J., Smith, M. J., Wang, L. & Csernansky, J. G. Longitudinal progression of frontal and temporal lobe changes in schizophrenia. Schizophr. Res. 139, 1–6 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gaser, C., Nenadic, I., Buchsbaum, B. R., Hazlett, E. A. & Buchsbaum, M. S. Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex. Am. J. Psychiatry 161, 154–156 (2004).

    Article  PubMed  Google Scholar 

  125. Guo, J. Y. et al. Longitudinal regional brain volume loss in schizophrenia: relationship to antipsychotic medication and change in social function. Schizophr. Res. 168, 297–304 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Borghei, A., Piracha, A. & Sani, S. Prevalence and anatomical characteristics of the human massa intermedia. Brain Struct. Funct. 226, 471–480 (2021).

    Article  PubMed  Google Scholar 

  127. Trzesniak, C. et al. Adhesio interthalamica alterations in schizophrenia spectrum disorders: a systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 877–886 (2011).

    Article  PubMed  Google Scholar 

  128. Cassel, J.-C. et al. The reuniens and rhomboid nuclei of the thalamus: a crossroads for cognition-relevant information processing? Neurosci. Biobehav. Rev. 126, 338–360 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Schiff, N. D. et al. Thalamic deep brain stimulation in traumatic brain injury: a phase 1, randomized feasibility study. Nat. Med. 29, 3162–3174 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wong, J. K. et al. Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes. Expert. Rev. Neurother. 20, 319–331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Middlebrooks, E. H., He, X., Grewal, S. S. & Keller, S. S. Neuroimaging and thalamic connectomics in epilepsy neuromodulation. Epilepsy Res. 182, 106916 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Aggleton, J. P., Pralus, A., Nelson, A. J. D. & Hornberger, M. Thalamic pathology and memory loss in early Alzheimer’s disease: moving the focus from the medial temporal lobe to Papez circuit. Brain 139, 1877–1890 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Steullet, P. et al. The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress. Mol. Psychiatry 23, 2057–2065 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. El Khoueiry, C. et al. Developmental oxidative stress leads to T-type Ca2+ channel hypofunction in thalamic reticular nucleus of mouse models pertinent to schizophrenia. Mol. Psychiatry 27, 2042–2051 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Viviano, J. D. & Schneider, K. A. Interhemispheric interactions of the human thalamic reticular nucleus. J. Neurosci. 35, 2026–2032 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schira, M. M. et al. HumanBrainAtlas: an in vivo MRI dataset for detailed segmentations. Brain Struct. Funct. 228, 1849–1863 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Boccardi, M. et al. Delphi definition of the EADC-ADNI harmonized protocol for hippocampal segmentation on magnetic resonance. Alzheimers Dement. 11, 126–138 (2015).

    Article  PubMed  Google Scholar 

  139. Baumeister, H. et al. Comparison of histological delineation of the entorhinal, perirhinal, ectorhinal, and parahippocampal cortices by different neuroanatomy laboratories. Alzheimers Dement 19, e076135 (2023).

    Article  Google Scholar 

  140. Carter, P. et al. A demonstration of using formal consensus methods within guideline development; a case study. BMC Med. Res. Methodol. 21, 73 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nasa, P., Jain, R. & Juneja, D. Delphi methodology in healthcare research: how to decide its appropriateness. World J. Methodol. 11, 116–129 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Vidal, J. P. et al. Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation. Brain Struct. Funct. 229, 1087–1101 (2024).

    Article  PubMed  Google Scholar 

  143. Oxenford, S. et al. Lead-OR: a multimodal platform for deep brain stimulation surgery. eLife 11, e72929 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fan, L. et al. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. van Oort, E. S. B. et al. Functional parcellation using time courses of instantaneous connectivity. Neuroimage 170, 31–40 (2018).

    Article  PubMed  Google Scholar 

  146. Danet, L. et al. Medial thalamic stroke and its impact on familiarity and recollection. eLife 6, e28141 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Pitel, A.-L. et al. Macrostructural abnormalities in Korsakoff syndrome compared with uncomplicated alcoholism. Neurology 78, 1330–1333 (2012).

    Article  PubMed  Google Scholar 

  148. Alegro, M. et al. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 634–642 (IEEE Computer Society, 2016).

  149. Alho, A. T. D. L. et al. Magnetic resonance diffusion tensor imaging for the pedunculopontine nucleus: proof of concept and histological correlation. Brain Struct. Funct. 222, 2547–2558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Alho, E. J. L. et al. High thickness histological sections as alternative to study the three-dimensional microscopic human sub-cortical neuroanatomy. Brain Struct. Funct. 223, 1121–1132 (2018).

    Article  PubMed  Google Scholar 

  151. Mollink, J. et al. Evaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imaging. Neuroimage 157, 561–574 (2017).

    Article  PubMed  Google Scholar 

  152. Sitek, K. R. et al. Mapping the human subcortical auditory system using histology, postmortem MRI and in vivo MRI at 7T. eLife 8, e48932 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jorge, J. et al. Improved susceptibility-weighted imaging for high contrast and resolution thalamic nuclei mapping at 7T. Magn. Reson. Med. 84, 1218–1234 (2020).

    Article  PubMed  Google Scholar 

  154. Abosch, A., Yacoub, E., Ugurbil, K. & Harel, N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery 67, 1745–1756 (2010).

    Article  PubMed  Google Scholar 

  155. Deshmane, A., Gulani, V., Griswold, M. A. & Seiberlich, N. Parallel MR imaging. J. Magn. Reson. Imaging 36, 55–72 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Marques, J. P. et al. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49, 1271–1281 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Thalamus Nuclei Neuroimaging Group (TANGO) consortium can be followed and reached via our website. S.S. was supported by the French National Institute for Health and Medical Research (INSERM), Label Excellence de la Région Normandie, the French National Agency for Research (ANR), the Fondation pour la Recherche Médicale (FRM; ING20140129160). R.A.M.H. was supported by H2020 Marie Skłodowska Curie Actions, Grant/Award Number: 101061988. V.J.K. was supported by the Deutsche Forschungsgemeinschaft, DFG SCHE 658/17. G.P. and A.L. were supported by RIPARTI – “assegni di RIcerca per riPARTire con le Imprese” initiative, APULIA REGION (POC PUGLIA FESR-FSE 2014 / 2020), Project Code 79ed97ad. G.P. was supported by the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), “MNESYS, A multiscale integrated approach to the study of the nervous system in health and disease”) (PE0000006) – (DN. 1553 11.10.2022). T.T. was supported by University of Bordeaux’s IdEx “Investments for the Future” RRI programme “IMPACT” (IMaging for Precision medicine within A Collaborative Translational programme), and IHU Precision & Global Vascular Brain Health Institute, ANR-23-IAHU-000, which received financial support from the France 2030 programme. M.B.C. is funded by CIBM Center for Biomedical Imaging, a Swiss research centre of excellence founded and supported by CHUV, UNIL, EPFL, UNIGE and HUG, and also by Swiss National Science Foundation grants 205321-157040. A.-L.P. was supported by the INSERM, Label Excellence de la Région Normandie, the ANR, the FRM, the French Universitary Institute. A.A. was supported by ZonMW Open competition Grant 09120012110015 JPND/ZonMW (grant 73305113). M.S. was supported by National Institutes of Health NIBIB R01 EB032674. M.H. was supported by the National Institute for Health Research and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, and reviewed and/or edited the manuscript before submission. M.H. and S.S. wrote the article.

Corresponding authors

Correspondence to Shailendra Segobin or Michael Hornberger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Rosanna Olsen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

FMRIB Software Library: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases

FreeSurfer software suite: https://surfer.nmr.mgh.harvard.edu/

Harmonized Hippocampal Protocol: http://www.hippocampal-protocol.net/SOPs/index.php

Hippocampal Subfields Group: https://hippocampalsubfields.com/

Human Brain Atlas: https://hba.neura.edu.au/methods/

Human Brainnetome Atlas: https://atlas.brainnetome.org/

Lead-DBS: https://www.lead-dbs.org/

TANGO: https://thalamicsegmentation.github.io/

THOMAS: https://github.com/thalamicseg

Zenodo: https://doi.org/10.5281/zenodo.1253021

Glossary

Bayesian inference

An analysis technique that involves the use of probabilities to infer a hypothesized outcome.

Blood oxygen level-dependent (BOLD) signal

BOLD variations occur due to changes in deoxyhaemoglobin (which is paramagnetic) that are in turn caused by local changes in blood flow due to neuronal activity.

Diffusion MRI

Refers to imaging the microscopic motion of water molecules. When magnetic field gradients are applied on either side of the refocusing pulse in a spin-echo experiment, motion will result in reduction of the refocused MRI signal, which can be quantified and related to the diffusion coefficient.

Diffusion tensor imaging

(DTI). In diffusion MRI, by applying gradients in specific directions, information on preferential direction of motion can be inferred. One such method involves representing it as a tensor with the ellipsoid representing the three principal directions.

Echo-planar imaging

An ultra-fast variant of gradient or spin-echo MRI, in which multiple (or even all) k-space lines are acquired within a single repetition time. Echo-planar imaging is used when very fast acquisitions are required. Its high temporal resolution allows imaging of rapid physiological processes with decreased motion artefacts.

Fractional anisotropy

A scalar measurement from DTI that reflects the microstructural integrity of white matter tracts.

Functional MRI

(fMRI). A means for depicting brain activity by measuring regional BOLD variations in the brain.

Image registration

The mathematical operation that warps one image, called the source, to a target image. Registration can be rigid body, when the source and target are from the same brain, or non-linear, when matching a source to a template.

Mesh-based representation

A method that generally involves partitioning an image into tiny polygons in a process called tessellation. This term is used in the field of computer vision to describe the representation of 3D objects.

Nulling

The process of eliminating the magnetic signal coming from a particular tissue.

Partial volume effects

Effects that occur when a voxel contains signals from two or more tissues. The resultant signal is therefore an average of the signal arising from these tissues. Qualitatively, the image appears blurred and is quantitatively biased. Partial volume effects are particularly prominent in small regions or along borders of regions.

Proton density

The concentration of protons in each voxel, indicated by the voxel intensity.

Quantitative susceptibility mapping

Uses both magnitude and phase as a combined process to highlight the presence of compounds that could be diamagnetic (for example, calcification), paramagnetic (for example, deoxyhaemoglobin, due to fewer red blood cells causing anaemia) or ferromagnetic (for example, high iron content, making it behave as a magnet on its own).

Relaxation

The spin from hydrogen atoms aligns with the scanner’s main magnetic field (B0) in the longitudinal plane. When a radiofrequency pulse is applied, the spins absorb energy and their magnetization flips from the longitudinal into the transverse plane. When removed, the spins undergo relaxation to align again with the main B0 magnetization.

Relaxation times

The time taken by the spins from the hydrogen atoms to lose their energy. Transverse and longitudinal relaxation times are labelled T1 and T2, respectively.

Resting-state fMRI

(rs-fMRI). Refers to measuring the fluctuations occurring in the brain when not subject to a specific task. Studies can be hypothesis driven, directly looking at the synchronicity between regions in either static (time invariant) or dynamic (observing switching or transitions) models, at a whole-brain level, through independent component analysis or graph theory methods.

Susceptibility

Each hydrogen atom has a local magnetic field associated to it. The human body also contains other compounds (for example, calcium) that have magnetic properties, hence distorting the local magnetic field. This leads to a change in the phase of local tissue and hence to a change in the signal measured.

Susceptibility-weighted imaging

Shows the presence (through magnitude only) of tissue susceptibility by weighting the resulting MRI images.

T1-weighted (T1w) imaging

Imaging in which the contrast between tissues is due to the differences in their T1 relaxation times. The longer the T1 relaxation time, the darker the signal (for example, cerebrospinal fluid has much longer T1 relaxation times than white or grey matter and is dark in T1w-MRI).

T2-weighted imaging

Imaging in which the contrast between tissues is due to the differences in their T2 relaxation times.

T2*-weighted imaging

Imaging in which the contrast between tissues is due to the differences in their T2* relaxation times. This method takes into account magnetic field inhomogeneities in addition to T2 relaxation and is therefore faster than T2.

Tractography

Modelling of the pathway of white matter tracts using scalar and vector measurements from diffusion tensor imaging.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segobin, S., Haast, R.A.M., Kumar, V.J. et al. A roadmap towards standardized neuroimaging approaches for human thalamic nuclei. Nat. Rev. Neurosci. 25, 792–808 (2024). https://doi.org/10.1038/s41583-024-00867-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-024-00867-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing