Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers

Abstract

Extensive investigations spanning multiple levels of inquiry, from genetic to behavioural studies, have sought to unravel the mechanistic foundations of attention-deficit hyperactivity disorder (ADHD), with the aspiration of developing efficacious treatments for this condition. Despite these efforts, the pathogenesis of ADHD remains elusive. In this Review, we reflect on what has been learned about ADHD while also providing a framework that may serve as a roadmap for future investigations. We emphasize that ADHD is a highly heterogeneous disorder with multiple aetiologies that necessitates a multifactorial dimensional phenotype, rather than a fixed dichotomous conceptualization. We highlight new findings that suggest a more brain-wide, ‘global’ view of the disorder, rather than the traditional localizationist framework, which asserts that a limited set of brain regions or networks underlie ADHD. Last, we underscore how underpowered studies that have aimed to associate neurobiology with ADHD phenotypes have long precluded the field from making progress. However, a new age of ADHD research with refined phenotypes, advanced methods, creative study designs and adequately powered investigations is beginning to put the field on a good footing. Indeed, the field is at a promising juncture to advance the neurobiological understanding of ADHD and fulfil the promise of clinical utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key events and milestones in ADHD neurobiology research.
Fig. 2: Spatial scales of the nervous system for ADHD neurobiology investigation.
Fig. 3: New directions to improve power in neuroimaging studies of ADHD.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders DSM-IV (APA Publishing, 1994).

  2. Lange, K. W., Reichl, S., Lange, K. M., Tucha, L. & Tucha, O. The history of attention deficit hyperactivity disorder. Atten. Defic. Hyperact. Disord. 2, 241–255 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Still, G. F. The Goulstonian lectures on some abnormal psychical conditions in children.Lancet 159, 1008–1012 (1902).

    Article  Google Scholar 

  4. American Psychiatric Association. Committee on Nomenclature and Statistics. Diagnostic and Statistical Manual of Mental Disorders (APA Publishing, 1968).

  5. American Psychiatric Association Staff. Diagnostic and Statistical Manual of Mental Disorders (DSM-III) (APA Publishing, 1980).

  6. American Psychiatric Association. DSM-5 Classification (APA Publishing, 2016).

  7. Harrison, J. E., Weber, S., Jakob, R. & Chute, C. G. ICD-11: an international classification of diseases for the twenty-first century. BMC Med. Inform. Decis. Mak. 21, 206 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Erskine, H. E. et al. Epidemiological modelling of attention-deficit/hyperactivity disorder and conduct disorder for the Global Burden of Disease Study 2010. J. Child Psychol. Psychiatry 54, 1263–1274 (2013).

    Article  PubMed  Google Scholar 

  9. Salari, N. et al. The global prevalence of ADHD in children and adolescents: a systematic review and meta-analysis. Ital. J. Pediatr. 49, 48 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mowlem, F. D. et al. Sex differences in predicting ADHD clinical diagnosis and pharmacological treatment. Eur. Child Adolesc. Psychiatry 28, 481–489 (2019).

    Article  PubMed  Google Scholar 

  11. Danielson, M. L. et al. Prevalence of parent-reported ADHD diagnosis and associated treatment among U.S. children and adolescents, 2016. J. Clin. Child Adolesc. Psychol. 47, 199–212 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sonuga-Barke, E. J. S. Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol. Psychiatry 57, 1231–1238 (2005).

    Article  PubMed  Google Scholar 

  13. Luo, Y., Weibman, D., Halperin, J. M. & Li, X. A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD). Front. Hum. Neurosci. 13, 42 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nigg, J. T., Karalunas, S. L., Feczko, E. & Fair, D. A. Toward a revised nosology for attention-deficit/hyperactivity disorder heterogeneity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 726–737 (2020).

    PubMed  PubMed Central  Google Scholar 

  15. Fair, D. A., Bathula, D., Nikolas, M. A. & Nigg, J. T. Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proc. Natl Acad. Sci. USA 109, 6769–6774 (2012). This study suggested that typically developing children can be classified into distinct neuropsychological subgroups and that heterogeneity in individuals with ADHD might be ‘nested’ in such normal variation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Posner, J., Park, C. & Wang, Z. Connecting the dots: a review of resting connectivity MRI studies in attention-deficit/hyperactivity disorder. Neuropsychol. Rev. 24, 3–15 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. American Psychiatric Association. Desk Reference to the Diagnostic Criteria from DSM-5-TR (APA Publishing, 2022).

  18. Cherkasova, M., Sulla, E. M., Dalena, K. L., Pondé, M. P. & Hechtman, L. Developmental course of attention deficit hyperactivity disorder and its predictors. J. Can. Acad. Child Adolesc. Psychiatry 22, 47–54 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Erskine, H. E. et al. Long-term outcomes of attention-deficit/hyperactivity disorder and conduct disorder: a systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 55, 841–850 (2016).

    Article  PubMed  Google Scholar 

  20. Hinshaw, S. P. & Arnold, L. E.; For the MTA Cooperative Group.ADHD, multimodal treatment, and longitudinal outcome: evidence, paradox, and challenge. Wiley Interdiscip. Rev. Cogn. Sci. 6, 39–52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Swanson, J. M. et al. Young adult outcomes in the follow-up of the multimodal treatment study of attention-deficit/hyperactivity disorder: symptom persistence, source discrepancy, and height suppression. J. Child Psychol. Psychiatry 58, 663–678 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reale, L. et al. Comorbidity prevalence and treatment outcome in children and adolescents with ADHD. Eur. Child Adolesc. Psychiatry 26, 1443–1457 (2017).

    Article  PubMed  Google Scholar 

  23. Sun, S. et al. Association of psychiatric comorbidity with the risk of premature death among children and adults with attention-deficit/hyperactivity disorder. JAMA Psychiatry 76, 1141–1149 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baumeister, A. A., Henderson, K., Pow, J. L. & Advokat, C. The early history of the neuroscience of attention-deficit/hyperactivity disorder. J. Hist. Neurosci. 21, 263–279 (2012).

    Article  PubMed  Google Scholar 

  25. Barkley, R. A. & Peters, H. The earliest reference to ADHD in the medical literature? Melchior Adam Weikard’s description in 1775 of “Attention Deficit” (Mangel der Aufmerksamkeit, Attentio Volubilis). J. Atten. Disord. 16, 623–630 (2012).

    Article  PubMed  Google Scholar 

  26. Crichton, A. An Inquiry Into the Nature and Origin of Mental Derangement: Comprehending a Concise System of the Physiology and Pathology of the Human Mind and a History of the Passions and Their Effects (T. Cadell, Junior, and W. Davies, 1798).

  27. Jasper, H. H., Solomon, P. & Bradley, C. Electroencephalographic analyses of behavior problem children. Am. J. Psychiatry 95, 641–658 (1938).

    Article  Google Scholar 

  28. Laufer, M. W., Denhoff, E. & Solomons, G. Hyperkinetic impulse disorder in childrenʼs behavior problems. Psychosom. Med. 19, 38–49 (1957).

    Article  PubMed  Google Scholar 

  29. Strohl, M. P. Bradley’s Benzedrine studies on children with behavioral disorders. Yale J. Biol. Med. 84, 27–33 (2011).

    PubMed  PubMed Central  Google Scholar 

  30. Heal, D. J., Smith, S. L., Gosden, J. & Nutt, D. J. Amphetamine, past and present — a pharmacological and clinical perspective. J. Psychopharmacol. 27, 479–496 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jaeschke, R. R., Sujkowska, E. & Sowa-Kućma, M. Methylphenidate for attention-deficit/hyperactivity disorder in adults: a narrative review. Psychopharmacology 238, 2667–2691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zametkin, A. J. & Rapoport, J. L. Neurobiology of attention deficit disorder with hyperactivity: where have we come in 50 years? J. Am. Acad. Child Adolesc. Psychiatry 26, 676–686 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Baumgaertel, A., Blaskey, L. & Antia, S. X. In: The Medical Basis of Psychiatry 3rd edn, Vol. 3 (eds Fatemi, S. H. & Clayton, P. J.) 301–333 (2008).

  34. Wenthur, C. J. Classics in chemical neuroscience: methylphenidate. ACS Chem. Neurosci. 7, 1030–1040 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Mueller, A., Hong, D. S., Shepard, S. & Moore, T. Linking ADHD to the neural circuitry of attention. Trends Cogn. Sci. 21, 474–488 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Churchland, P. S. & Sejnowski, T. J. Perspectives on cognitive neuroscience. Science 242, 741–745 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Nigg, J. T. & Casey, B. J. An integrative theory of attention-deficit/ hyperactivity disorder based on the cognitive and affective neurosciences. Dev. Psychopathol. 17, 785–806 (2005).

    Article  PubMed  Google Scholar 

  38. Tripp, G. & Alsop, B. Sensitivity to reward frequency in boys with attention deficit hyperactivity disorder. J. Clin. Child Psychol. 28, 366–375 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Kollins, S. H., Lane, S. D. & Shapiro, S. K. Experimental analysis of childhood psychopathology: a laboratory matching analysis of the behavior of children diagnosed with Attention-Deficit Hyperactivity Disorder (ADHD). Psychol. Rec. 47, 25–44 (1997).

    Article  Google Scholar 

  40. Antrop, I. et al. ADHD and delay aversion: the influence of non-temporal stimulation on choice for delayed rewards. J. Child Psychol. Psychiatry 47, 1152–1158 (2006).

    Article  PubMed  Google Scholar 

  41. Kuntsi, J., Oosterlaan, J. & Stevenson, J. Psychological mechanisms in hyperactivity: I response inhibition deficit, working memory impairment, delay aversion, or something else? J. Child Psychol. Psychiatry 42, 199–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Firestone, P. & Douglas, V. The effects of reward and punishment on reaction times and autonomic activity in hyperactive and normal children. J. Abnorm. Child Psychol. 3, 201–216 (1975).

    Article  CAS  PubMed  Google Scholar 

  43. Volkow, N. D. et al. Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA 302, 1084–1091 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Volkow, N. D. et al. Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol. Psychiatry 16, 1147–1154 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Wise, R. A. Brain reward circuitry. Neuron 36, 229–240 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Johansen, E. B. et al. Origins of altered reinforcement effects in ADHD. Behav. Brain Funct. 5, 7 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kuntsi, J. & Klein, C. Intraindividual variability in ADHD and its implications for research of causal links. Curr. Top. Behav. Neurosci. 9, 67–91 (2012).

    Article  PubMed  Google Scholar 

  48. Sergeant, J. The cognitive-energetic model: an empirical approach to attention-deficit hyperactivity disorder. Neurosci. Biobehav. Rev. 24, 7–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. van der Meere, J. J., Börger, N. A. & Wiersema, J. R. ADHD: State regulation and motivation. Curr. Med. Lit. Psychiatry 21, 14–20 (2010).

    Google Scholar 

  50. Zentall, S. Optimal stimulation as theoretical basis of hyperactivity. Am. J. Orthopsychiatry 45, 549–563 (1975).

    Article  PubMed  Google Scholar 

  51. Bellato, A., Arora, I., Hollis, C. & Groom, M. J. Is autonomic nervous system function atypical in attention deficit hyperactivity disorder (ADHD)? A systematic review of the evidence. Neurosci. Biobehav. Rev. 108, 182–206 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Wekerle, C., Bennett, T. & Francis, K. Child sexual abuse and adolescent sexuality. in Handbook of Child and Adolescent Sexuality (eds Bromberg, D. S. & O’Donohue, W. T.) 325–345 (Elsevier, 2013).

  53. Petersen, S. E. & Posner, M. I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yerkes, R. M. & Dodson, J. D. The relation of strength of stimulus to rapidity of habit‐formation. J. Comp. Neurol. Psychol. 18, 459–482 (1908).

    Article  Google Scholar 

  55. Geissler, J., Romanos, M., Hegerl, U. & Hensch, T. Hyperactivity and sensation seeking as autoregulatory attempts to stabilize brain arousal in ADHD and mania? Atten. Defic. Hyperact. Disord. 6, 159–173 (2014).

    Article  PubMed  Google Scholar 

  56. Faraone, S. V. et al. Practitioner review: emotional dysregulation in attention-deficit/hyperactivity disorder— implications for clinical recognition and intervention. J. Child Psychol. Psychiatry 60, 133–150 (2019).

    Article  PubMed  Google Scholar 

  57. Hvolby, A. Associations of sleep disturbance with ADHD: implications for treatment. Atten. Defic. Hyperact. Disord. 7, 1–18 (2015).

    Article  PubMed  Google Scholar 

  58. Isaksson, J., Nilsson, K. W., Nyberg, F., Hogmark, A. & Lindblad, F. Cortisol levels in children with attention-deficit/hyperactivity disorder. J. Psychiatr. Res. 46, 1398–1405 (2012).

    Article  PubMed  Google Scholar 

  59. Hanć, T. & Cortese, S. Attention deficit/hyperactivity-disorder and obesity: a review and model of current hypotheses explaining their comorbidity. Neurosci. Biobehav. Rev. 92, 16–28 (2018).

    Article  PubMed  Google Scholar 

  60. Metin, B., Roeyers, H., Wiersema, J. R., van der Meere, J. & Sonuga-Barke, E. A meta-analytic study of event rate effects on Go/No-Go performance in attention-deficit/hyperactivity disorder. Biol. Psychiatry 72, 990–996 (2012).

    Article  PubMed  Google Scholar 

  61. Epstein, J. N. et al. Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations. Neuropsychology 25, 427–441 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kiiski, H. et al. EEG spectral power, but not theta/beta ratio, is a neuromarker for adult ADHD. Eur. J. Neurosci. 51, 2095–2109 (2020).

    Article  PubMed  Google Scholar 

  63. Saad, J. F., Kohn, M. R., Clarke, S., Lagopoulos, J. & Hermens, D. F. Is the theta/beta EEG marker for ADHD inherently flawed? J. Atten. Disord. 22, 815–826 (2018).

    Article  PubMed  Google Scholar 

  64. Nigg, J. T. et al. Executive functions and ADHD in adults: evidence for selective effects on ADHD symptom domains. J. Abnorm. Psychol. 114, 706–717 (2005).

    Article  PubMed  Google Scholar 

  65. Rubia, K., Smith, A. & Taylor, E. Performance of children with attention deficit hyperactivity disorder (ADHD) on a test battery of impulsiveness. Child Neuropsychol. 13, 276–304 (2007).

    Article  PubMed  Google Scholar 

  66. Pineda-Alhucema, W., Aristizabal, E., Escudero-Cabarcas, J., Acosta-López, J. E. & Vélez, J. I. Executive function and theory of mind in children with ADHD: a systematic review. Neuropsychol. Rev. 28, 341–358 (2018).

    Article  PubMed  Google Scholar 

  67. Cordova, M. et al. Heterogeneity of executive function revealed by a functional random forest approach across ADHD and ASD. NeuroImage Clin. 26, 102245 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Alvarez, J. A. & Emory, E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol. Rev. 16, 17–42 (2006).

    Article  PubMed  Google Scholar 

  69. Lambek, R. et al. Validating neuropsychological subtypes of ADHD: how do children with and without an executive function deficit differ? Executive dysfunction subtypes. J. Child Psychol. Psychiatry 51, 895–904 (2010).

    Article  PubMed  Google Scholar 

  70. Petrovic, P. & Castellanos, F. X. Top-down dysregulation — from ADHD to emotional instability.Front. Behav. Neurosci. 10, 70 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rubia, K., Alegría, A. A. & Brinson, H. Brain abnormalities in attention-deficit hyperactivity disorder: a review. Rev. Neurol. 58, S3–S16 (2014).

    PubMed  Google Scholar 

  72. Valera, E. M., Faraone, S. V., Murray, K. E. & Seidman, L. J. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol. Psychiatry 61, 1361–1369 (2007).

    Article  PubMed  Google Scholar 

  73. Sonuga-Barke, E. J. S. & Castellanos, F. X. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci. Biobehav. Rev. 31, 977–986 (2007). This paper reviewed the putative role of default-mode interference as a cause of performance variability in ADHD.

    Article  PubMed  Google Scholar 

  74. Cortese, S. et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am. J. Psychiatry 169, 1038–1055 (2012).

    Article  PubMed  Google Scholar 

  75. Castellanos, F. X., Sonuga-Barke, E. J. S., Milham, M. P. & Tannock, R. Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn. Sci. 10, 117–123 (2006).

    Article  PubMed  Google Scholar 

  76. Asherson, P., Buitelaar, J., Faraone, S. V. & Rohde, L. A. Adult attention-deficit hyperactivity disorder: key conceptual issues. Lancet Psychiatry 3, 568–578 (2016).

    Article  PubMed  Google Scholar 

  77. Franke, B. ‘Modernizing the concept of ADHD’ (MocA) Team. Editorial: it is time to modernize the concept of ADHD! J. Child Psychol. Psychiatry 64, 845–847 (2023).

    Article  PubMed  Google Scholar 

  78. Paule, M. G. et al. Attention deficit/hyperactivity disorder: characteristics, interventions and models. Neurotoxicol. Teratol. 22, 631–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Faraone, S. V. & Radonjić, N. V. In Tasman’s Psychiatry (eds. Tasman, A. et al.) 1–28 (Springer International Publishing, 2020).

  80. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Article  CAS  PubMed  Google Scholar 

  81. Saint-Cyr, J. A. Frontal-striatal circuit functions: context, sequence, and consequence. J. Int. Neuropsychol. Soc. 9, 103–127 (2003).

    Article  PubMed  Google Scholar 

  82. Casey, B. J. et al. Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 36, 374–383 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Steele, C. C., Peterson, J. R., Marshall, A. T., Stuebing, S. L. & Kirkpatrick, K. Nucleus accumbens core lesions induce sub-optimal choice and reduce sensitivity to magnitude and delay in impulsive choice tasks. Behav. Brain Res. 339, 28–38 (2018).

    Article  PubMed  Google Scholar 

  84. Cardinal, R. N., Winstanley, C. A., Robbins, T. W. & Everitt, B. J. Limbic corticostriatal systems and delayed reinforcement. Ann. N. Y. Acad. Sci. 1021, 33–50 (2004).

    Article  PubMed  Google Scholar 

  85. Marsh, R., Maia, T. V. & Peterson, B. S. Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. Am. J. Psychiatry 166, 664–674 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cubillo, A., Halari, R., Smith, A., Taylor, E. & Rubia, K. A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with Attention Deficit Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex 48, 194–215 (2012).

    Article  PubMed  Google Scholar 

  87. Vaidya, C. J. et al. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc. Natl Acad. Sci. USA 95, 14494–14499 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rubia, K. et al. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am. J. Psychiatry 156, 891–896 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Rubia, K., Alegria, A. & Brinson, H. Imaging the ADHD brain: disorder-specificity, medication effects and clinical translation. Expert Rev. Neurother. 14, 519–538 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Dillo, W. et al. Neuronal correlates of ADHD in adults with evidence for compensation strategies — a functional MRI study with a Go/No-Go paradigm. Ger. Med. Sci. 8, Doc09 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Karch, S. et al. Neural correlates (ERP/fMRI) of voluntary selection in adult ADHD patients. Eur. Arch. Psychiatry Clin. Neurosci. 260, 427–440 (2010).

    Article  PubMed  Google Scholar 

  92. Carmona, S. et al. Response inhibition and reward anticipation in medication-naïve adults with attention-deficit/hyperactivity disorder: a within-subject case-control neuroimaging study. Hum. Brain Mapp. 33, 2350–2361 (2012).

    Article  PubMed  Google Scholar 

  93. Norman, L. J., Sudre, G., Price, J. & Shaw, P. Subcortico-cortical dysconnectivity in ADHD: a voxel-wise mega-analysis across multiple cohorts. Am. J. Psychiatry 181, 553–562 (2024). This large-scale mega-analysis showed that dysconnectivity in subcortical–cortical circuits in ADHD has small effect sizes and captures only a fraction of the complex pathophysiology of ADHD.

    Article  PubMed  Google Scholar 

  94. Rubia, K. Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Front. Hum. Neurosci. 12, 100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Castellanos, F. X. & Proal, E. Large-scale brain systems in ADHD: beyond the prefrontal–striatal model. Trends Cogn. Sci. 16, 17–26 (2012).

    Article  PubMed  Google Scholar 

  96. Dosenbach, N. U. F. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl Acad. Sci. USA 104, 11073–11078 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fair, D. A. et al. The maturing architecture of the brain’s default network. Proc. Natl Acad. Sci. USA 105, 4028–4032 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. McCarthy, H. et al. Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood. JAMA Psychiatry 70, 1329–1337 (2013).

    Article  PubMed  Google Scholar 

  100. Shaw, P. et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc. Natl Acad. Sci. USA 104, 19649–19654 (2007). This study demonstrated delay in regional cortical maturation in ADHD, most prominent in prefrontal regions important for control of cognitive processes, including attention and motor planning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sripada, C. et al. Disrupted network architecture of the resting brain in attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 35, 4693–4705 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Icer, S., Gengec Benli, S. & Ozmen, S. Differences in brain networks of children with ADHD: whole‐brain analysis of resting‐state fMRI. Int. J. Imaging Syst. Technol. 29, 645–662 (2019).

    Article  Google Scholar 

  103. Ahrendts, J. et al. Visual cortex abnormalities in adults with ADHD: a structural MRI study. World J. Biol. Psychiatry 12, 260–270 (2011).

    Article  PubMed  Google Scholar 

  104. Chen, C. et al. Altered functional connectivity in children with ADHD revealed by scalp EEG: an ERP study. Neural Plast. 2021, 6615384 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bush, G. Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 35, 278–300 (2010).

    Article  PubMed  Google Scholar 

  106. Blomberg, R. et al. Aberrant resting-state connectivity of auditory, ventral attention/salience and default-mode networks in adults with attention deficit hyperactivity disorder. Front. Neurosci. 16, 972730 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sutcubasi, B. et al. Resting-state network dysconnectivity in ADHD: a system-neuroscience-based meta-analysis. World J. Biol. Psychiatry 21, 662–672 (2020).

    Article  PubMed  Google Scholar 

  108. Shaw, P. et al. Trajectories of cerebral cortical development in childhood and adolescence and adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 74, 599–606 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Metin, B. et al. Dysfunctional modulation of default mode network activity in attention-deficit/hyperactivity disorder. J. Abnorm. Psychol. 124, 208–214 (2015).

    Article  PubMed  Google Scholar 

  110. Fair, D. A. et al. Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol. Psychiatry 68, 1084–1091 (2010). This study showed that atypical consolidation of the DMN over development has a role in ADHD.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Tian, L. et al. Enhanced resting-state brain activities in ADHD patients: a fMRI study. Brain Dev. 30, 342–348 (2008). This study measured resting-state brain activity pattern differences between individuals with ADHD and matched controls and found that the former exhibited more significant resting-state brain activities in basic sensory and sensory-related cortices.

    Article  PubMed  Google Scholar 

  112. Liddle, E. B. et al. Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate. J. Child Psychol. Psychiatry 52, 761–771 (2011).

    Article  PubMed  Google Scholar 

  113. Peterson, B. S. et al. An FMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. Am. J. Psychiatry 166, 1286–1294 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Battel, L. et al. Intrinsic brain connectivity following long-term treatment with methylphenidate in children with attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 26, 555–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Picon, F. A. et al. Methylphenidate alters functional connectivity of default mode network in drug-naive male adults with ADHD. J. Atten. Disord. 24, 447–455 (2020).

    Article  PubMed  Google Scholar 

  116. Hart, H., Radua, J., Mataix-Cols, D. & Rubia, K. Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neurosci. Biobehav. Rev. 36, 2248–2256 (2012).

    Article  PubMed  Google Scholar 

  117. Lei, D. et al. Functional MRI reveals different response inhibition between adults and children with ADHD. Neuropsychology 29, 874–881 (2015).

    Article  PubMed  Google Scholar 

  118. Norman, L. J. et al. Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: a comparative meta-analysis. JAMA Psychiatry 73, 815–825 (2016).

    Article  PubMed  Google Scholar 

  119. Lukito, S. et al. Reduced inferior fronto-insular-thalamic activation during failed inhibition in young adults with combined ASD and ADHD compared to typically developing and pure disorder groups. Transl. Psychiatry 13, 133 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Coull, J. T., Cheng, R.-K. & Meck, W. H. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36, 3–25 (2011).

    Article  PubMed  Google Scholar 

  121. Smith, A. B., Taylor, E., Brammer, M., Halari, R. & Rubia, K. Reduced activation in right lateral prefrontal cortex and anterior cingulate gyrus in medication‐naïve adolescents with attention deficit hyperactivity disorder during time discrimination. J. Child Psychol. Psychiatry 49, 977–985 (2008).

    Article  PubMed  Google Scholar 

  122. Rubia, K. In: Oxford Textbook of Attention Deficit Hyperactivity Disorder (eds. Banaschewski, T. et al.) 64–72 (Oxford Medicine Online, 2018).

  123. Szekely, E., Sudre, G. P., Sharp, W., Leibenluft, E. & Shaw, P. Defining the neural substrate of the adult outcome of childhood ADHD: a multimodal neuroimaging study of response inhibition. Am. J. Psychiatry 174, 867–876 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Plichta, M. M. et al. Neural hyporesponsiveness and hyperresponsiveness during immediate and delayed reward processing in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 65, 7–14 (2009).

    Article  PubMed  Google Scholar 

  125. Wilbertz, G. et al. Neural and psychophysiological markers of delay aversion in attention-deficit hyperactivity disorder. J. Abnorm. Psychol. 122, 566–572 (2013).

    Article  PubMed  Google Scholar 

  126. Gilbert, D. L., Isaacs, K. M., Augusta, M., Macneil, L. K. & Mostofsky, S. H. Motor cortex inhibition: a marker of ADHD behavior and motor development in children. Neurology 76, 615–621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sutcubasi Kaya, B. et al. Gray matter increase in motor cortex in pediatric ADHD: a voxel-based morphometry study. J. Atten. Disord. 22, 611–618 (2018).

    Article  PubMed  Google Scholar 

  128. van Hulst, B. M. et al. Children with ADHD symptoms show decreased activity in ventral striatum during the anticipation of reward, irrespective of ADHD diagnosis. J. Child Psychol. Psychiatry 58, 206–214 (2017).

    Article  PubMed  Google Scholar 

  129. Mukherjee, P. et al. Associations of irritability with functional connectivity of amygdala and nucleus accumbens in adolescents and young adults with ADHD. J. Atten. Disord. 26, 1040–1050 (2022).

    Article  PubMed  Google Scholar 

  130. Hoogman, M. et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 4, 310–319 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mooney, M. A. et al. Smaller total brain volume but not subcortical structure volume related to common genetic risk for ADHD. Psychol. Med. 51, 1279–1288 (2021).

    Article  PubMed  Google Scholar 

  132. Davenport, N. D., Karatekin, C., White, T. & Lim, K. O. Differential fractional anisotropy abnormalities in adolescents with ADHD or schizophrenia. Psychiatry Res. 181, 193–198 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Makris, N. et al. Attention and executive systems abnormalities in adults with childhood ADHD: a DT-MRI study of connections. Cereb. Cortex 18, 1210–1220 (2008).

    Article  PubMed  Google Scholar 

  134. Wu, W. et al. Detecting microstructural white matter abnormalities of frontal pathways in children with ADHD using advanced diffusion models. Brain Imaging Behav. 14, 981–997 (2020).

    Article  PubMed  Google Scholar 

  135. Ashtari, M. et al. Attention-deficit/hyperactivity disorder: a preliminary diffusion tensor imaging study. Biol. Psychiatry 57, 448–455 (2005).

    Article  PubMed  Google Scholar 

  136. Parlatini, V. et al. White matter alterations in attention-deficit/hyperactivity disorder (ADHD): a systematic review of 129 diffusion imaging studies with meta-analysis. Mol. Psychiatry https://doi.org/10.1038/s41380-023-02173-1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Sudre, G. et al. A mega-analytic study of white matter microstructural differences across 5 cohorts of youths with attention-deficit/hyperactivity disorder. Biol. Psychiatry 94, 18–28 (2023).

    Article  PubMed  Google Scholar 

  138. Connaughton, M., Whelan, R., O’Hanlon, E. & McGrath, J. White matter microstructure in children and adolescents with ADHD. Neuroimage Clin. 33, 102957 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Cools, R., Froböse, M., Aarts, E. & Hofmans, L. Dopamine and the motivation of cognitive control.Handb. Clin. Neurol. 163, 123–143 (2019).

    Article  PubMed  Google Scholar 

  140. Nieoullon, A. & Coquerel, A. Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr. Opin. Neurol. 16, S3–S9 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Aarts, E. et al. Reward modulation of cognitive function in adult attention-deficit/hyperactivity disorder: a pilot study on the role of striatal dopamine. Behav. Pharmacol. 26, 227–240 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Grace, A. A. & Bunney, B. S. In: Neurotransmitter Actions in the Vertebrate Nervous System (eds. Rogawski, M. A. & Barker, J. L.) 285–319 (Springer, 1985).

  143. Grace, A. A., Floresco, S. B., Goto, Y. & Lodge, D. J. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 30, 220–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Robbins, T. W. & Sahakian, B. J. “Paradoxical” effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioural pharmacology. Neuropharmacology 18, 931–950 (1979).

    Article  CAS  PubMed  Google Scholar 

  145. Goto, Y. & Grace, A. A. Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat. Neurosci. 8, 805–812 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Brennan, A. R. & Arnsten, A. F. T. Neuronal mechanisms underlying attention deficit hyperactivity disorder: the influence of arousal on prefrontal cortical function. Ann. N. Y. Acad. Sci. 1129, 236–245 (2008). This work discusses the influence of arousal on the functioning of the prefrontal cortex and its implications for ADHD.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Li, B. M., Mao, Z. M., Wang, M. & Mei, Z. T. Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to spatial working memory in monkeys. Neuropsychopharmacology 21, 601–610 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Wang, M., Vijayraghavan, S. & Goldman-Rakic, P. S. Selective D2 receptor actions on the functional circuitry of working memory. Science 303, 853–856 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Brozoski, T. J., Brown, R. M., Rosvold, H. E. & Goldman, P. S. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205, 929–932 (1979).

    Article  CAS  PubMed  Google Scholar 

  150. Leo, D. & Gainetdinov, R. R. Transgenic mouse models for ADHD. Cell Tissue Res. 354, 259–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kim, D., Yadav, D. & Song, M. An updated review on animal models to study attention-deficit hyperactivity disorder. Transl. Psychiatry 14, 187 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tripp, G. & Wickens, J. R. Neurobiology of ADHD. Neuropharmacology 57, 579–589 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Faraone, S. V. The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci. Biobehav. Rev. 87, 255–270 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Volkow, N. D., Fowler, J. S., Wang, G., Ding, Y. & Gatley, S. J. Mechanism of action of methylphenidate: insights from PET imaging studies. J. Atten. Disord. 6, S31–S43 (2002).

    Article  PubMed  Google Scholar 

  155. Perugi, G., De Rosa, U. & Barbuti, M. What value do norepinephrine/dopamine dual reuptake inhibitors have to the current treatment of adult attention deficit hyperactivity disorder (ADHD) treatment armamentarium? Expert Opin. Pharmacother. 23, 1975–1978 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Seeman, P. & Madras, B. Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis. Behav. Brain Res. 130, 79–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Fuller, J. A. et al. Role of homeostatic feedback mechanisms in modulating methylphenidate actions on phasic dopamine signaling in the striatum of awake behaving rats. Prog. Neurobiol. 182, 101681 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Li, Y.-T., Huang, Y.-L., Chen, J.-J. J., Hyland, B. I. & Wickens, J. R. Phasic dopamine signals are reduced in the spontaneously hypertensive rat and increased by methylphenidate. Eur. J. Neurosci. 59, 1567–1584 (2024).

    Article  CAS  PubMed  Google Scholar 

  159. Manza, P. et al. Brain connectivity changes to fast versus slow dopamine increases. Neuropsychopharmacology 49, 924–932 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Moeller, S. J. et al. Methylphenidate enhances executive function and optimizes prefrontal function in both health and cocaine addiction. Cereb. Cortex 24, 643–653 (2014).

    Article  PubMed  Google Scholar 

  161. Schlösser, R. G. M. et al. Dopaminergic modulation of brain systems subserving decision making under uncertainty: a study with fMRI and methylphenidate challenge.Synapse 63, 429–442 (2009).

    Article  PubMed  Google Scholar 

  162. Tomasi, D. et al. Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. Neuroimage 54, 3101–3110 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Oswald, L. M. et al. Risky decision-making and ventral striatal dopamine responses to amphetamine: a positron emission tomography [11C]raclopride study in healthy adults. Neuroimage 113, 26–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Hariri, A. R. et al. Dextroamphetamine modulates the response of the human amygdala. Neuropsychopharmacology 27, 1036–1040 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Haber, S. N. Corticostriatal circuitry. Dialogues Clin. Neurosci. 18, 7–21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Furukawa, E. et al. Methylphenidate modifies reward cue responses in adults with ADHD: An fMRI study. Neuropharmacology 162, 107833 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Cortese, S. The neurobiology and genetics of attention-deficit/hyperactivity disorder (ADHD): what every clinician should know. Eur. J. Paediatr. Neurol. 16, 422–433 (2012).

    Article  PubMed  Google Scholar 

  168. Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Prim. 1, 15020 (2015).

    Article  PubMed  Google Scholar 

  169. Arnsten, A. F. T. Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23, 33–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Chen, M.-H. et al. Association between psychiatric disorders and iron deficiency anemia among children and adolescents: a nationwide population-based study. BMC Psychiatry 13, 161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang, W. et al. Association of anemia with neurodevelopmental disorders in a nationally representative sample of US children. J. Pediatr. 228, 183–189.e2 (2021).

    Article  PubMed  Google Scholar 

  172. Beard, J. Iron deficiency alters brain development and functioning. J. Nutr. 133, 1468S–1472SS (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Erikson, K. M., Jones, B. C., Hess, E. J., Zhang, Q. & Beard, J. L. Iron deficiency decreases dopamine D1 and D2 receptors in rat brain. Pharmacol. Biochem. Behav. 69, 409–418 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Wiesinger, J. A. et al. Down-regulation of dopamine transporter by iron chelation in vitro is mediated by altered trafficking, not synthesis. J. Neurochem. 100, 167–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Bianco, L. E., Wiesinger, J., Earley, C. J., Jones, B. C. & Beard, J. L. Iron deficiency alters dopamine uptake and response to L-DOPA injection in Sprague-Dawley rats. J. Neurochem. 106, 205–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Beard, J. L. et al. Early postnatal iron repletion overcomes lasting effects of gestational iron deficiency in rats. J. Nutr. 137, 1176–1182 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Larsen, B. et al. Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nat. Commun. 11, 846 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Parr, A. C. et al. Dopamine-related striatal neurophysiology is associated with specialization of frontostriatal reward circuitry through adolescence. Prog. Neurobiol. 201, 101997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Verbeeck, W., Bekkering, G. E., Van den Noortgate, W. & Kramers, C. Bupropion for attention deficit hyperactivity disorder (ADHD) in adults. Cochrane Database Syst. Rev. 10, CD009504 (2017).

    PubMed  Google Scholar 

  180. Arnsten, A. F. T. Guanfacine’s mechanism of action in treating prefrontal cortical disorders: successful translation across species. Neurobiol. Learn. Mem. 176, 107327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Arnsten, A. F. Development of the cerebral cortex: XIV. Stress impairs prefrontal cortical function. J. Am. Acad. Child Adolesc. Psychiatry 38, 220–222 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. Thapar, A. Discoveries on the genetics of ADHD in the 21st century: new findings and their implications. Am. J. Psychiatry 175, 943–950 (2018).

    Article  PubMed  Google Scholar 

  183. Kim, J. H. et al. Environmental risk factors, protective factors, and peripheral biomarkers for ADHD: an umbrella review. Lancet Psychiatry 7, 955–970 (2020).

    Article  PubMed  Google Scholar 

  184. Brikell, I., Kuja-Halkola, R. & Larsson, H. Heritability of attention-deficit hyperactivity disorder across the lifespan. Eur. Neuropsychopharmacol. 29, S757–S758 (2019).

    Article  Google Scholar 

  185. Larsson, H., Chang, Z., D’Onofrio, B. M. & Lichtenstein, P. The heritability of clinically diagnosed attention deficit hyperactivity disorder across the lifespan. Psychol. Med. 44, 2223–2229 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Faraone, S. V. & Doyle, A. E. The nature and heritability of attention-deficit/hyperactivity disorder. Child Adolesc. Psychiatr. Clin. North Am. 10, 299–316 (2001).

    Article  CAS  Google Scholar 

  187. Faraone, S. V. & Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 24, 562–575 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Banerjee, T. D., Middleton, F. & Faraone, S. V. Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatr. 96, 1269–1274 (2007).

    Article  PubMed  Google Scholar 

  189. Pingault, J.-B. et al. Genetic nurture versus genetic transmission of risk for ADHD traits in the Norwegian Mother, Father and Child Cohort Study. Mol. Psychiatry 28, 1731–1738 (2023).

    Article  PubMed  Google Scholar 

  190. Faraone, S. V. et al. Attention-deficit/hyperactivity disorder in adults: an overview. Biol. Psychiatry 48, 9–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  191. Samuel, V. J. et al. A pilot controlled family study of DSM-III-R and DSM-IV ADHD in African-American children. J. Am. Acad. Child Adolesc. Psychiatry 38, 34–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  192. Banaschewski, T., Becker, K., Scherag, S., Franke, B. & Coghill, D. Molecular genetics of attention-deficit/hyperactivity disorder: an overview. Eur. Child Adolesc. Psychiatry 19, 237–257 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Brookes, K. et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol. Psychiatry 11, 934–953 (2006).

    Article  CAS  PubMed  Google Scholar 

  194. Fisher, S. E. et al. A genomewide scan for loci involved in attention-deficit/hyperactivity disorder. Am. J. Hum. Genet. 70, 1183–1196 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Franke, B., Neale, B. M. & Faraone, S. V. Genome-wide association studies in ADHD. Hum. Genet. 126, 13–50 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019). This is a GWAS meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD.

    Article  CAS  PubMed  Google Scholar 

  197. Demontis, D. et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat. Genet. 55, 198–208 (2023). This GWAS meta-analysis of ADHD comprising 38,691 individuals with ADHD and 186,843 controls identified 27 genome-wide significant loci, highlighting 76 potential risk genes enriched among genes expressed particularly in early brain development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Bonvicini, C. et al. DRD4 48 bp multiallelic variants as age-population-specific biomarkers in attention-deficit/hyperactivity disorder. Transl. Psychiatry 10, 70 (2020). This study suggests that DRD4 48 bp variable number tandem repeat variants should be considered as biomarkers to support the diagnosis of ADHD and to predict methylphenidate response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. McLennan, J. D. Understanding attention deficit hyperactivity disorder as a continuum. Can. Fam. Physician 62, 979–982 (2016).

    PubMed  PubMed Central  Google Scholar 

  201. Kotov, R. et al. The hierarchical taxonomy of psychopathology (HiTOP): a dimensional alternative to traditional nosologies. J. Abnorm. Psychol. 126, 454–477 (2017).

    Article  PubMed  Google Scholar 

  202. Kelly, J. R., Clarke, G., Cryan, J. F. & Dinan, T. G. Dimensional thinking in psychiatry in the era of the Research Domain Criteria (RDoC). Ir. J. Psychol. Med. 35, 89–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Feczko, E. et al. The heterogeneity problem: approaches to identify psychiatric subtypes. Trends Cogn. Sci. 23, 584–601 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Feczko, E. & Fair, D. A. Methods and challenges for assessing heterogeneity. Biol. Psychiatry 88, 9–17 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Molenaar, P. C. M. A manifesto on psychology as idiographic science: bringing the person back into scientific psychology, this time forever. Measurement 2, 201–218 (2004).

    Google Scholar 

  206. Karalunas, S. L. et al. Subtyping attention-deficit/hyperactivity disorder using temperament dimensions: toward biologically based nosologic criteria. JAMA Psychiatry 71, 1015–1024 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Demontis, D. et al. Identification of risk variants and characterization of the polygenic architecture of disruptive behavior disorders in the context of ADHD. Preprint at bioRxiv https://doi.org/10.1101/791160 (2019).

    Article  Google Scholar 

  208. Ribasés, M. et al. Genetic architecture of ADHD and overlap with other psychiatric disorders and cognition-related phenotypes.Neurosci. Biobehav. Rev. 153, 105313 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Kessler, R. C. et al. The effects of temporally secondary co-morbid mental disorders on the associations of DSM-IV ADHD with adverse outcomes in the US National Comorbidity Survey Replication Adolescent Supplement (NCS-A). Psychol. Med. 44, 1779–1792 (2014).

    Article  CAS  PubMed  Google Scholar 

  210. Cordova, M. M. et al. Attention-deficit/hyperactivity disorder: restricted phenotypes prevalence, comorbidity, and polygenic risk sensitivity in the ABCD baseline cohort. J. Am. Acad. Child Adolesc. Psychiatry 61, 1273–1284 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Barkley, R. A. The inattentive type of ADHD as a distinct disorder: what remains to be done. Clin. Psychol. 8, 489–501 (2001).

    Google Scholar 

  212. Barkley, R. A. In: Handbook of Executive Functioning (eds. Goldstein, S. & Naglieri, J. A.) 245–263 (Springer, 2014).

  213. Barkley, R. A. Distinguishing sluggish cognitive tempo from ADHD in children and adolescents: executive functioning, impairment, and comorbidity. J. Clin. Child Adolesc. Psychol. 42, 161–173 (2013).

    Article  PubMed  Google Scholar 

  214. Lahey, B. B. Using dispositions to understand otherwise intractable causal pathways to psychological problems during childhood and adolescence.J. Clin. Child Adolesc. Psychol. 53, 328–341 (2024).

    Article  PubMed  Google Scholar 

  215. Grevet, E. H. et al. The course of attention-deficit/hyperactivity disorder through midlife. Eur. Arch. Psychiatry Clin. Neurosci. 274, 59–70 (2024).

    Article  PubMed  Google Scholar 

  216. Elison, J. T. Editorial: considering transient instantiators. Dev. Psychopathol. 32, 1173–1174 (2020).

    Article  PubMed  Google Scholar 

  217. Sonuga-Barke, E. J. S. & Halperin, J. M. Developmental phenotypes and causal pathways in attention deficit/hyperactivity disorder: potential targets for early intervention? J. Child Psychol. Psychiatry 51, 368–389 (2010).

    Article  PubMed  Google Scholar 

  218. Marquand, A. F., Wolfers, T. & Dinga, R. In Personalized Psychiatry: Big Data Analytics in Mental Health (eds. Passos, I. C., Mwangi, B. & Kapczinski, F.) 119–134 (Springer International Publishing, 2019).

  219. Marquand, A. F., Wolfers, T., Mennes, M., Buitelaar, J. & Beckmann, C. F. Beyond lumping and splitting: a review of computational approaches for stratifying psychiatric disorders. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1, 433–447 (2016).

    PubMed  PubMed Central  Google Scholar 

  220. Dinga, R. et al. Evaluating the evidence for biotypes of depression: methodological replication and extension of. Neuroimage Clin. 22, 101796 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Parkes, L., Satterthwaite, T. D. & Bassett, D. S. Towards precise resting-state fMRI biomarkers in psychiatry: synthesizing developments in transdiagnostic research, dimensional models of psychopathology, and normative neurodevelopment. Curr. Opin. Neurobiol. 65, 120–128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Muetzel, R. L. et al. Tracking brain development and dimensional psychiatric symptoms in children: a longitudinal population-based neuroimaging study. Am. J. Psychiatry 175, 54–62 (2018).

    Article  PubMed  Google Scholar 

  223. Conway, C. & Krueger, R. Rethinking mental disorder diagnosis: data-driven psychological dimensions, not categories, as a framework for mental health research, treatment, and training. Curr. Direct. Psychol. Sci. 30, https://doi.org/10.1177/0963721421990353 (2021).

  224. Achenbach, T. M. Bottom-up and top-down paradigms for psychopathology: a half-century Odyssey. Annu. Rev. Clin. Psychol. 16, 1–24 (2020).

    Article  PubMed  Google Scholar 

  225. Sanislow, C. A., Morris, S. E., Cuthbert, B. N. & Pacheco, J. Development and environment in the National Institute of Mental Health (NIMH) research domain criteria. J. Psychopathol. Clin. Sci. 131, 653–659 (2022).

    Article  PubMed  Google Scholar 

  226. Morris, S. E. et al. Revisiting the seven pillars of RDoC. BMC Med. 20, 220 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Michelini, G. et al. Delineating and validating higher-order dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) study. Transl. Psychiatry 9, 261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Sagvolden, T., Russell, V. A., Aase, H., Johansen, E. B. & Farshbaf, M. Rodent models of attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1239–1247 (2005).

    Article  PubMed  Google Scholar 

  229. Moore, D. R., Burgard, D. A., Larson, R. G. & Ferm, M. Psychostimulant use among college students during periods of high and low stress: an interdisciplinary approach utilizing both self-report and unobtrusive chemical sample data. Addict. Behav. 39, 987–993 (2014).

    Article  CAS  PubMed  Google Scholar 

  230. Henry, T. R., Fogleman, N. D., Nugiel, T. & Cohen, J. R. Effect of methylphenidate on functional controllability: a preliminary study in medication-naïve children with ADHD. Transl. Psychiatry 12, 518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Weiss, M. et al. Characteristics of ADHD symptom response/remission in a clinical trial of methylphenidate extended release.J. Clin. Med. Res. 8, 461 (2019).

    CAS  Google Scholar 

  232. Shimizu, S. et al. Guanfacine enhances cardiac acetylcholine release with little effect on norepinephrine release in anesthetized rabbits. Auton. Neurosci. 187, 84–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  233. Singh, A., Potter, A. & Newhouse, P. Nicotinic acetylcholine receptor system and neuropsychiatric disorders. IDrugs 7, 1096–1103 (2004).

    CAS  PubMed  Google Scholar 

  234. Koevoet, D., Deschamps, P. K. H. & Kenemans, J. L. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: a comparison to attention-deficit hyperactivity disorder. Front. Neurosci. 16, 1078586 (2022).

    Article  PubMed  Google Scholar 

  235. Lesch, K. P., Merker, S., Reif, A. & Novak, M. Dances with black widow spiders: dysregulation of glutamate signalling enters centre stage in ADHD. Eur. Neuropsychopharmacol. 23, 479–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  236. Vidor, M. V. et al. Emerging findings of glutamate–glutamine imbalance in the medial prefrontal cortex in attention deficit/hyperactivity disorder: systematic review and meta-analysis of spectroscopy studies. Eur. Arch. Psychiatry Clin. Neurosci. 272, 1395–1411 (2022).

    Article  PubMed  Google Scholar 

  237. Oades, R. D. In: Handbook of Behavioral Neuroscience Vol. 21 (eds. Müller, C. P. & Jacobs, B. L.) 565–584 (Elsevier, 2010).

  238. Tang, C., Wei, Y., Zhao, J. & Nie, J. Different developmental pattern of brain activities in ADHD: a study of resting-state fMRI. Dev. Neurosci. 40, 246–257 (2018).

    Article  CAS  PubMed  Google Scholar 

  239. Mooney, M. A. et al. Cumulative effects of resting-state connectivity across all brain networks significantly correlate with attention-deficit hyperactivity disorder symptoms. J. Neurosci. 44, e1202232023 (2024). In this study, a polyneuro risk score representing cumulative ADHD-associated resting-state connectivity was robustly associated with ADHD symptoms in two independent cohorts.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Castellanos, F. X. et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 63, 332–337 (2008).

    Article  PubMed  Google Scholar 

  241. Qiu, M.-G. et al. Changes of brain structure and function in ADHD children. Brain Topogr. 24, 243–252 (2011).

    Article  PubMed  Google Scholar 

  242. Cortese, S., Aoki, Y. Y., Itahashi, T., Castellanos, F. X. & Eickhoff, S. B. Systematic review and meta-analysis: resting-state functional magnetic resonance imaging studies of attention-deficit/hyperactivity disorder. J. Am. Acad. Chil. Adolesc. Psychiatry 60, 61–75 (2021).

    Article  Google Scholar 

  243. Saad, J. F., Griffiths, K. R. & Korgaonkar, M. S. A systematic review of imaging studies in the combined and inattentive subtypes of attention deficit hyperactivity disorder. Front. Integr. Neurosci. 14, 31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Noble, S., Curtiss, J., Pessoa, L. & Scheinost, D. The tip of the iceberg: a call to embrace anti-localizationism in human neuroscience research. Imaging Neurosci. 2, 1–10 (2024).

    Article  Google Scholar 

  245. Fisher, R. A. XV. — The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1919).

    Article  Google Scholar 

  246. Galton, F. Typical Laws of Heredity (Royal Institution of Great Britain, 1877).

  247. Green, A., Baroud, E., DiSalvo, M., Faraone, S. V. & Biederman, J. Examining the impact of ADHD polygenic risk scores on ADHD and associated outcomes: a systematic review and meta-analysis. J. Psychiatr. Res. 155, 49–67 (2022).

    Article  PubMed  Google Scholar 

  248. Pereira-Sanchez, V. & Castellanos, F. X. Neuroimaging in attention-deficit/hyperactivity disorder. Curr. Opin. Psychiatry 34, 105–111 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Marek, S. et al. Publisher correction: Reproducible brain-wide association studies require thousands of individuals. Nature 605, E11 (2022). This study showed that effects for brain–behaviour associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at small sample sizes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Tervo-Clemmens, B. et al. Reply to: Multivariate BWAS can be replicable with moderate sample sizes. Nature 615, E8–E12 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Owens, M. M. et al. Test-retest reliability of the neuroanatomical correlates of impulsive personality traits in the adolescent brain cognitive development study. J. Psychopathol. Clin. Sci. 132, 779–792 (2023).

    Article  PubMed  Google Scholar 

  252. Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    Article  CAS  PubMed  Google Scholar 

  253. Riccioni, A., Radua, J., Ashaye, F. O., Solmi, M. & Cortese, S. Systematic review and meta-analysis: reporting and representation of race/ethnicity in 310 randomized controlled trials of attention-deficit/hyperactivity disorder medications.J. Am. Acad. Child Adolesc. Psychiatry 63, 698–707 (2024).

    Article  PubMed  Google Scholar 

  254. Cénat, J. M. et al. Prevalence and risk factors associated with attention-deficit/hyperactivity disorder among US Black individuals: a systematic review and meta-analysis. JAMA Psychiatry 78, 21–28 (2021).

    Article  PubMed  Google Scholar 

  255. Ioannidis, J. P. A. Why most published research findings are false. PLoS Med. 2, e124 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Head, M. L., Holman, L., Lanfear, R., Kahn, A. T. & Jennions, M. D. The extent and consequences of p-hacking in science. PLoS Biol. 13, e1002106 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  257. van Zwet, E. W. & Cator, E. A. The significance filter, the winner’s curse and the need to shrink. Stat. Neerl. 75, 437–452 (2021).

    Article  Google Scholar 

  258. Kiar, G. et al. Align with the NMIND consortium for better neuroimaging. Nat. Hum. Behav. 7, 1027–1028 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Gratton, C., Nelson, S. M. & Gordon, E. M. Brain-behavior correlations: two paths toward reliability. Neuron 110, 1446–1449 (2022). This study showed that effects for brain–behaviour associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at small sample sizes.

    Article  CAS  PubMed  Google Scholar 

  260. Tervo-Clemmens, B., Marek, S. & Barch, D. M. Tailoring psychiatric neuroimaging to translational goals. JAMA Psychiatry 80, 765–766 (2023). This work emphasizes the need of tailoring psychiatric neuroimaging paradigms toward clear translational and practical end goals.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Li, J. J. & He, Q. Polygenic scores for ADHD: a meta-analysis. Res. Child Adolesc. Psychopathol. 49, 297–310 (2021).

    Article  PubMed  Google Scholar 

  262. Ronald, A., de Bode, N. & Polderman, T. J. C. Systematic review: How the attention-deficit/hyperactivity disorder polygenic risk score adds to our understanding of ADHD and associated traits. J. Am. Acad. Child Adolesc. Psychiatry 60, 1234–1277 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Byington, N. et al. Polyneuro risk scores capture widely distributed connectivity patterns of cognition. Dev. Cogn. Neurosci. 60, 101231 (2023). This study shows that aggregation of small, globally distributed effects in the brain is most predictive of cognition.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Zhao, W. et al. Individual differences in cognitive performance are better predicted by global rather than localized BOLD activity patterns across the cortex. Cereb. Cortex 31, 1478–1488 (2021).

    Article  PubMed  Google Scholar 

  265. Wilder, J. The law of initial value in neurology and psychiatry; facts and problems. J. Nerv. Ment. Dis. 125, 73–86 (1957).

    Article  CAS  PubMed  Google Scholar 

  266. Tu, Y.-K. & Gilthorpe, M. S. Revisiting the relation between change and initial value: a review and evaluation. Stat. Med. 26, 443–457 (2007).

    Article  PubMed  Google Scholar 

  267. Newbold, D. J. et al. Plasticity and spontaneous activity pulses in disused human brain circuits. Neuron 107, 580–589.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Nigg, J. Parsing ADHD with temperament traits. Curr. Dir. Psychol. Sci. 31, 324–332 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Waszczuk, M. A. et al. Redefining phenotypes to advance psychiatric genetics: implications from hierarchical taxonomy of psychopathology. J. Abnorm. Psychol. 129, 143–161 (2020).

    Article  PubMed  Google Scholar 

  270. Shiffman, S. Conceptualizing analyses of ecological momentary assessment data. Nicotine Tob. Res. 16, S76–S87 (2014).

    Article  PubMed  Google Scholar 

  271. Thapar, A., Langley, K., O’donovan, M. & Owen, M. Refining the attention deficit hyperactivity disorder phenotype for molecular genetic studies. Mol. Psychiatry 11, 714–720 (2006).

    Article  CAS  PubMed  Google Scholar 

  272. Petersen, S. E. et al. Principles of cortical areas and their implications for neuroimaging. Neuron 112, 2837–2853 (2024).

    Article  CAS  PubMed  Google Scholar 

  273. Parker, H. S. et al. Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction. Bioinformatics 30, 2757–2763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Samea, F. et al. Brain alterations in children/adolescents with ADHD revisited: a neuroimaging meta-analysis of 96 structural and functional studies. Neurosci. Biobehav. Rev. 100, 1–8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Kozak, M. J. & Cuthbert, B. N. The NIMH research domain criteria initiative: background, issues, and pragmatics: NIMH research domain criteria initiative. Psychophysiology 53, 286–297 (2016).

    Article  PubMed  Google Scholar 

  277. Gates, K. M., Molenaar, P. C. M., Iyer, S. P., Nigg, J. T. & Fair, D. A. Organizing heterogeneous samples using community detection of GIMME-derived resting state functional networks. PLoS One 9, e91322 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Riglin, L. et al. Association of genetic risk variants with attention-deficit/hyperactivity disorder trajectories in the general population. JAMA Psychiatry 73, 1285–1292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Wolfers, T. et al. Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models. Psychol. Med. 50, 314–323 (2020).

    Article  PubMed  Google Scholar 

  280. Marquand, A. F., Rezek, I., Buitelaar, J. & Beckmann, C. F. Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies. Biol. Psychiatry 80, 552–561 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Grazioli, S. et al. Patterns of response to methylphenidate administration in children with ADHD: a personalized medicine approach through clustering analysis. Children 8, 1008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Zerbi, V. et al. Brain mapping across 16 autism mouse models reveals a spectrum of functional connectivity subtypes. Mol. Psychiatry 26, 7610–7620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Moore for assistance with figure preparation. This work was supported by National Institute of Health grants R37MH059105 (D.A.F.), DA041148 (D.A.F.), DA04112 (D.A.F.), MH115357 (D.A.F.), MH096773 (D.A.F.), MH122066 (D.A.F.), MH121276 (D.A.F.), MH124567 (D.A.F.) and DA057486 (B.T.-C.), as well as funding from the Lynne and Andrew Redleaf Foundation (D.A.F.).

Author information

Authors and Affiliations

Authors

Contributions

S.K. and G.G. researched data for the article. S.K., G.G., E.F., B.L., J.T.N., B.T.-C. and D.A.F. provided substantial contributions to discussion of the article’s content. S.K., G.G. and D.A.F. wrote the article. S.K., G.G., M.A.M., E.F., J.T.E., S.M.N., J.T.N., B.T.-C. and D.A.F. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Damien A. Fair.

Ethics declarations

Competing interests

D.A.F. is a patent holder on the Framewise Integrated Real-Time Motion Monitoring (FIRMM) software. He is also a co-founder of Turing Medical Inc., which licenses this software. S.M.N. is a consultant for Turing Medical Inc., which commercializes FIRMM technology. These interests have been reviewed and managed by the University of Minnesota in accordance with its conflict-of-interest policies. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Francisco Castellanos, who co-reviewed with Luis Martinez Agulleiro; Katya Rubia; and James Swanson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Brain networks

Interconnected regions of the brain that communicate with each other.

Brain-wide association studies

Approach used to identify associations between brain-wide imaging measures and various behaviours.

Effect sizes

Magnitudes of the relationships observed between variables in a study.

Functional connectivity

Measures the degree to which the activity in one brain region is related to activity in another region.

Heterogeneity

Variability in symptoms, aetiologies, mechanisms and responses to treatment among individuals with the disorder.

Localizationist framework

The concept that specific brain functions can be attributed to specific regions of the brain.

Phenotypes

Observable characteristics or traits of an organism.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koirala, S., Grimsrud, G., Mooney, M.A. et al. Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers. Nat. Rev. Neurosci. 25, 759–775 (2024). https://doi.org/10.1038/s41583-024-00869-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-024-00869-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing