Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural circuit basis of pathological anxiety

Abstract

Anxiety disorders are the most prevalent mental health conditions worldwide. Unfortunately, the understanding of the precise neurobiological mechanisms that underlie these disorders remains limited. Current diagnostic classifications, based on observable symptoms rather than underlying pathophysiology, do not capture the heterogeneity within and across anxiety disorders. Recent advances in functional neuroimaging have provided new insights into the neural circuits implicated in pathological anxiety, revealing dysfunctions that cut across traditional diagnostic boundaries. In this Review, we synthesize evidence that highlights abnormalities in neurobehavioural systems related to negative valence, positive valence, cognitive systems and social processes. We emphasize that pathological anxiety arises not only from heightened reactivity in acute threat (‘fear’) circuits but also from alterations in circuits that mediate distant (potential) and sustained threat, reward processing, cognitive control and social processing. We discuss how circuit vulnerabilities can lead to the emergence and maintenance of pathological anxiety. Once established, these neural abnormalities can be exacerbated by maladaptive behaviours that prevent extinction learning and perpetuate anxiety disorders. By delineating the specific neural mechanisms in each neurobiological system, we aim to contribute to a more comprehensive understanding of the neurobiology of anxiety disorders, potentially informing future research directions in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current conceptualizations for treatment of pathological anxiety.
Fig. 2: Brain circuitry of the RDoC domains and constructs that are relevant to pathological anxiety.
Fig. 3: Emergence of pathological anxiety.

Similar content being viewed by others

References

  1. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9, 137–150 (2022).

    Article  PubMed Central  Google Scholar 

  2. Institute for Health Metrics and Evaluation (IHME). GBD Results. Seattle, WA: IHME, University of Washington https://vizhub.healthdata.org/gbd-results/ (2024).

  3. World Health Organization. Mental health and COVID-19: early evidence of the pandemic’s impact: scientific brief. World Health Organization, https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief-Mental_health-2022.1 (2022).

  4. Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B. & Prévost, C. The ecology of human fear: survival optimization and the nervous system. Front. Neurosci. 9, 55 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hartley, C. A. & Phelps, E. A. Anxiety and decision-making. Biol. Psychiatry 72, 113–118 (2012).

    Article  PubMed  Google Scholar 

  6. Beesdo-Baum, K. & Knappe, S. Developmental epidemiology of anxiety disorders. Child. Adolesc. Psychiatr. Clin. N. Am. 21, 457–478 (2012).

    Article  PubMed  Google Scholar 

  7. Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 14, 417–428 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Funkhouser, C. J., Klemballa, D. M. & Shankman, S. A. Using what we know about threat reactivity models to understand mental health during the COVID-19 pandemic. Behav. Res. Ther. 153, 104082 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bzdok, D. & Dunbar, R. I. M. Social isolation and the brain in the pandemic era. Nat. Hum. Behav. 6, 1333–1343 (2022).

    Article  PubMed  Google Scholar 

  10. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. (APA, 2013).

  11. Stein, D. J. et al. Mental, behavioral and neurodevelopmental disorders in the ICD-11: an international perspective on key changes and controversies. BMC Med. 18, 21 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hyman, S. E. Can neuroscience be integrated into the DSM-V? Nat. Rev. Neurosci. 8, 725–732 (2007).

    Article  PubMed  Google Scholar 

  13. Insel, T. et al. Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010). This landmark paper introduces the RDoC framework, an approach to classifying mental disorders on the basis of neurobiological dimensions.

    Article  PubMed  Google Scholar 

  14. Goldstein-Piekarski, A. N., Williams, L. M. & Humphreys, K. A trans-diagnostic review of anxiety disorder comorbidity and the impact of multiple exclusion criteria on studying clinical outcomes in anxiety disorders. Transl. Psychiatry 6, e847 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Craske, M. G. et al. Anxiety disorders. Nat. Rev. Dis. Prim. 3, 17024 (2017).

    Article  PubMed  Google Scholar 

  16. Liu, X. et al. Pathological fear, anxiety and negative affect exhibit distinct neurostructural signatures: evidence from psychiatric neuroimaging meta-analysis. Transl. Psychiatry 12, 405 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu, J. et al. Anxious brain networks: a coordinate-based activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neurosci. Biobehav. Rev. 96, 21–30 (2019).

    Article  PubMed  Google Scholar 

  18. Kolesar, T. A., Bilevicius, E., Wilson, A. D. & Kornelsen, J. Systematic review and meta-analyses of neural structural and functional differences in generalized anxiety disorder and healthy controls using magnetic resonance imaging. NeuroImage Clin. 24, 102016 (2019). This meta-analysis offers a robust examination of neuroimaging findings in individuals with GAD.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Parsaei, M. et al. Microstructural white matter alterations associated with social anxiety disorders: a systematic review. J. Affect. Disord. 350, 78–88 (2024).

    Article  PubMed  Google Scholar 

  20. Insel, T. R. The NIMH Research Domain Criteria (RDoC) project: precision medicine for psychiatry. Am. J. Psychiatry 171, 395–397 (2014).

    Article  PubMed  Google Scholar 

  21. McTeague, L. M. & Lang, P. J. The anxiety spectrum and the reflex physiology of defense: from circumscribed fear to broad distress. Depress Anxiety 29, 264–281 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. McTeague, L. M. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am. J. Psychiatry 174, 676–685 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lang, P. J., McTeague, L. M. & Bradley, M. M. RDoC, DSM, and the reflex physiology of fear: a biodimensional analysis of the anxiety disorders spectrum. Psychophysiology 53, 336–347 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sambuco, N., Bradley, M., Herring, D., Hillbrandt, K. & Lang, P. J. Transdiagnostic trauma severity in anxiety and mood disorders: functional brain activity during emotional scene processing. Psychophysiology 57, e13349 (2020).

    Article  PubMed  Google Scholar 

  25. Cuthbert, B. N. The PRISM project: social withdrawal from an RDoC perspective. Neurosci. Biobehav. Rev. 97, 34–37 (2019).

    Article  PubMed  Google Scholar 

  26. Morris, S. E. et al. Revisiting the seven pillars of RDoC. BMC Med. 20, 220 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. National Institute of Mental Health. Arousal and regulatory systems: Workshop Proceedings. NIMH https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/arousal-and-regulatory-systems-workshop-proceedings (2012).

  28. Hyman, S. E. Psychiatric disorders: grounded in human biology but not natural kinds. Perspect. Biol. Med. 64, 6–28 (2021). This work challenges the traditional view of psychiatric disorders as discrete categories, suggesting that they represent heterogeneous and quantitative deviations from health.

    Article  PubMed  Google Scholar 

  29. LeDoux, J. E. The Emotional Brain: The Mysterious Underpinnings of Emotional Life (Simon and Schuster, 1998).

  30. Méndez-Bértolo, C. et al. A fast pathway for fear in human amygdala. Nat. Neurosci. 19, 1041–1049 (2016).

    Article  PubMed  Google Scholar 

  31. Tovote, P., Fadok, J. P. & Lüthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).

    Article  PubMed  Google Scholar 

  32. Shin, L. M. & Liberzon, I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35, 169–191 (2010).

    Article  PubMed  Google Scholar 

  33. LeDoux, J. & Daw, N. D. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat. Rev. Neurosci. 19, 269–282 (2018). This Review provides a contemporary perspective on the neural circuitry involved in threat processing and defensive behaviours, updating traditional models.

    Article  PubMed  Google Scholar 

  34. Grogans, S. E. et al. The nature and neurobiology of fear and anxiety: state of the science and opportunities for accelerating discovery. Neurosci. Biobehav. Rev. 151, 105237 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kenwood, M. M., Kalin, N. H. & Barbas, H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 47, 260–275 (2022).

    Article  PubMed  Google Scholar 

  36. Robinson, O. J., Pike, A. C., Cornwell, B. & Grillon, C. The translational neural circuitry of anxiety. J. Neurol. Neurosurg. Psychiatry 90, 1353–1360 (2019).

    PubMed  Google Scholar 

  37. Paulus, M. P. & Stein, M. B. An insular view of anxiety. Biol. Psychiatry 60, 383–387 (2006).

    Article  PubMed  Google Scholar 

  38. Gu, X., Hof, P. R., Friston, K. J. & Fan, J. Anterior insular cortex and emotional awareness. J. Comp. Neurol. 521, 3371–3388 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lipka, J., Hoffmann, M., Miltner, W. H. R. & Straube, T. Effects of cognitive-behavioral therapy on brain responses to subliminal and supraliminal threat and their functional significance in specific phobia. Biol. Psychiatry 76, 869–877 (2014).

    Article  PubMed  Google Scholar 

  40. Robinson, O. J. et al. Towards a mechanistic understanding of pathological anxiety: the dorsal medial prefrontal–amygdala ‘aversive amplification’ circuit in unmedicated generalized and social anxiety disorders. Lancet Psychiatry 1, 294–302 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wiemer, J. et al. Brain activity associated with illusory correlations in animal phobia. Soc. Cogn. Affect. Neurosci. 10, 969–977 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wiemer, J. & Pauli, P. Enhanced functional connectivity between sensorimotor and visual cortex predicts covariation bias in spider phobia. Biol. Psychol. 121, 128–137 (2016).

    Article  PubMed  Google Scholar 

  43. Fonzo, G. A. et al. Common and disorder-specific neural responses to emotional faces in generalised anxiety, social anxiety and panic disorders. Br. J. Psychiatry 206, 206–215 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brühl, A. B., Delsignore, A., Komossa, K. & Weidt, S. Neuroimaging in social anxiety disorder—a meta-analytic review resulting in a new neurofunctional model. Neurosci. Biobehav. Rev. 47, 260–280 (2014).

    Article  PubMed  Google Scholar 

  45. Buff, C. et al. Specifically altered brain responses to threat in generalized anxiety disorder relative to social anxiety disorder and panic disorder. Neuroimage Clin. 12, 698–706 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Peng, Y. et al. Threat neurocircuitry predicts the development of anxiety and depression symptoms in a longitudinal study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 8, 102–110 (2023). This longitudinal study demonstrates the predictive power of threat-related neural activity in the development of anxiety and depression symptoms, highlighting the importance of early intervention.

    PubMed  Google Scholar 

  47. Avery, S. N., Clauss, J. A. & Blackford, J. U. The human BNST: functional role in anxiety and addiction. Neuropsychopharmacology 41, 126–141 (2016). This review focuses on the role of the BNST in anxiety and addiction, emphasizing its involvement in processing potential threats and maintaining sustained anxiety states.

    Article  PubMed  Google Scholar 

  48. Lebow, M. A. & Chen, A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol. Psychiatry 21, 450–463 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gu, Y., Gu, S., Lei, Y. & Li, H. From uncertainty to anxiety: how uncertainty fuels anxiety in a process mediated by intolerance of uncertainty. Neural Plasticity 2020, 8866386 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Carleton, R. N. The intolerance of uncertainty construct in the context of anxiety disorders: theoretical and practical perspectives. Expert. Rev. Neurother. 12, 937–947 (2012).

    Article  PubMed  Google Scholar 

  51. Cisler, J. M. & Koster, E. H. Mechanisms of attentional biases towards threat in anxiety disorders: an integrative review. Clin. Psychol. Rev. 30, 203–216 (2010).

    Article  PubMed  Google Scholar 

  52. Buff, C. et al. Activity alterations in the bed nucleus of the stria terminalis and amygdala during threat anticipation in generalized anxiety disorder. Soc. Cogn. Affect. Neurosci. 12, 1766–1774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J. & van IJzendoorn, M. H. Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychol. Bull. 133, 1–24 (2007).

    Article  PubMed  Google Scholar 

  54. MacLeod, C., Mathews, A. & Tata, P. Attentional bias in emotional disorders. J. Abnorm. Psychol. 95, 15 (1986).

    Article  PubMed  Google Scholar 

  55. Knight, L. K. & Depue, B. E. New frontiers in anxiety research: the translational potential of the bed nucleus of the stria terminalis. Front. Psychiatry 10, 510 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yassa, M. A., Hazlett, R. L., Stark, C. E. L. & Hoehn-Saric, R. Functional MRI of the amygdala and bed nucleus of the stria terminalis during conditions of uncertainty in generalized anxiety disorder. J. Psychiatr. Res. 46, 1045–1052 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hiser, J., Schneider, B. & Koenigs, M. Uncertainty potentiates neural and cardiac responses to visual stimuli in anxiety disorders. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 725–734 (2021).

    PubMed  PubMed Central  Google Scholar 

  58. Akiki, T. J. & Abdallah, C. G. Determining the hierarchical architecture of the human brain using subject-level clustering of functional networks. Sci. Rep. 9, 19290 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang, X. et al. Anterior insular cortex plays a critical role in interoceptive attention. eLife 8, e42265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cui, H. et al. Insula shows abnormal task-evoked and resting-state activity in first-episode drug-naïve generalized anxiety disorder. Depress Anxiety 37, 632–644 (2020).

    Article  PubMed  Google Scholar 

  61. Smith, N. J., Markowitz, S. Y., Hoffman, A. N. & Fanselow, M. S. Adaptation of threat responses within the negative valence framework. Front. Syst. Neurosci. 16, 886771 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Corchs, F. & Schiller, D. Threat-related disorders as persistent motivational states of defense. Curr. Opin. Behav. Sci. 26, 62–68 (2019).

    Article  PubMed  Google Scholar 

  63. Gottlieb, J. & Balan, P. Attention as a decision in information space. Trends Cogn. Sci. 14, 240–248 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sylvester, C. M. et al. Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci. 35, 527–535 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002). This foundational Review elucidates the neural mechanisms underlying attentional control, differentiating between top-down and bottom-up processes, crucial for understanding attentional control in anxiety disorders.

    Article  PubMed  Google Scholar 

  67. Szczepanski, S. M., Pinsk, M. A., Douglas, M. M., Kastner, S. & Saalmann, Y. B. Functional and structural architecture of the human dorsal frontoparietal attention network. Proc. Natl Acad. Sci. USA 110, 15806–15811 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Long, N. M. & Kuhl, B. A. Bottom-up and top-down factors differentially influence stimulus representations across large-scale attentional networks. J. Neurosci. 38, 2495 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Arnsten, A. F. T. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 10, 410–422 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Feng, C. et al. Neural substrates of the emotion-word and emotional counting Stroop tasks in healthy and clinical populations: a meta-analysis of functional brain imaging studies. NeuroImage 173, 258–274 (2018).

    Article  PubMed  Google Scholar 

  71. Price, R. B., Eldreth, D. A. & Mohlman, J. Deficient prefrontal attentional control in late-life generalized anxiety disorder: an fMRI investigation. Transl. Psychiatry 1, e46 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Strawn, J. R. et al. Neurocircuitry of generalized anxiety disorder in adolescents: a pilot functional neuroimaging and functional connectivity study. Depress Anxiety 29, 939–947 (2012).

    Article  PubMed  Google Scholar 

  73. Phan, K. L. et al. Corticolimbic brain reactivity to social signals of threat before and after sertraline treatment in generalized social phobia. Biol. Psychiatry 73, 329–336 (2013).

    Article  PubMed  Google Scholar 

  74. Tol, M.-J. V. et al. Functional magnetic resonance imaging correlates of emotional word encoding and recognition in depression and anxiety disorders. Biol. Psychiatry 71, 593–602 (2012).

    Article  PubMed  Google Scholar 

  75. Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

    Article  PubMed  Google Scholar 

  76. Haber, S. N. & Behrens, T. E. The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 83, 1019–1039 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hoflich, A., Michenthaler, P., Kasper, S. & Lanzenberger, R. Circuit mechanisms of reward, anhedonia, and depression. Int. J. Neuropsychopharmacol. 22, 105–118 (2019).

    Article  PubMed  Google Scholar 

  78. Richey, J. A. et al. Sensitivity shift theory: a developmental model of positive affect and motivational deficits in social anxiety disorder. Clin. Psychol. Rev. 72, 101756 (2019).

    Article  PubMed  Google Scholar 

  79. Kashdan, T. B. Social anxiety spectrum and diminished positive experiences: theoretical synthesis and meta-analysis. Clin. Psychol. Rev. 27, 348–365 (2007).

    Article  PubMed  Google Scholar 

  80. Richey, J. A. et al. Spatiotemporal dissociation of brain activity underlying threat and reward in social anxiety disorder. Soc. Cogn. Affect. Neurosci. 12, 81–94 (2017).

    Article  Google Scholar 

  81. Crane, N. A., Chang, F., Kinney, K. L. & Klumpp, H. Individual differences in striatal and amygdala response to emotional faces are related to symptom severity in social anxiety disorder. Neuroimage Clin. 30, 102615 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Held-Poschardt, D. et al. Reward and loss anticipation in panic disorder: an fMRI study. Psychiatry Res. Neuroimaging 271, 111–117 (2018).

    Article  PubMed  Google Scholar 

  83. McDermott, T. J. et al. Striatal reactivity during emotion and reward relates to approach-avoidance conflict behaviour and is altered in adults with anxiety or depression. J. Psychiatry Neurosci. 47, E311–E322 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sripada, C., Angstadt, M., Liberzon, I., McCabe, K. & Phan, K. L. Aberrant reward center response to partner reputation during a social exchange game in generalized social phobia. Depress Anxiety 30, 353–361 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sareen, J. et al. Striatal function in generalized social phobia: a functional magnetic resonance imaging study. Biol. Psychiatry 61, 396–404 (2007).

    Article  PubMed  Google Scholar 

  86. Reilly, E. E. et al. Diagnostic and dimensional evaluation of implicit reward learning in social anxiety disorder and major depression. Depress Anxiety 37, 1221–1230 (2020).

    Article  PubMed  Google Scholar 

  87. White, S. F. et al. Prediction error representation in individuals with generalized anxiety disorder during passive avoidance. Am. J. Psychiatry 174, 110–117 (2017).

    Article  PubMed  Google Scholar 

  88. Rauch, S. L. et al. Probing striatal function in obsessive-compulsive disorder: a PET study of implicit sequence learning. J. Neuropsychiatry Clin. Neurosci. 9, 568–573 (1997).

    Article  PubMed  Google Scholar 

  89. Rauch, S. L. et al. Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Hum. Brain Mapp. 5, 124–132 (1997).

    Article  PubMed  Google Scholar 

  90. Martis, B., Wright, C. I., McMullin, K. G., Shin, L. M. & Rauch, S. L. Functional magnetic resonance imaging evidence for a lack of striatal dysfunction during implicit sequence learning in individuals with animal phobia. Am. J. Psychiatry 161, 67–71 (2004).

    Article  PubMed  Google Scholar 

  91. Williams, L. M. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 3, 472–480 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dixon, M. L. et al. Emotion regulation in social anxiety disorder: reappraisal and acceptance of negative self-beliefs. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 119–129 (2020).

    PubMed  Google Scholar 

  93. Fales, C. L. et al. Anxiety and cognitive efficiency: differential modulation of transient and sustained neural activity during a working memory task. Cogn. Affect. Behav. Neurosci. 8, 239–253 (2008).

    Article  PubMed  Google Scholar 

  94. Park, J. I., Kim, G. W., Jeong, G. W., Chung, G. H. & Yang, J. C. Brain activation patterns associated with the effects of emotional distracters during working memory maintenance in patients with generalized anxiety disorder. Psychiatry Investig. 13, 152–156 (2016).

    Article  PubMed  Google Scholar 

  95. Balderston, N. L. et al. Anxiety patients show reduced working memory related dlPFC activation during safety and threat. Depress Anxiety 34, 25–36 (2017). This study examines the neural activity associated with working memory in individuals with anxiety disorders, revealing reduced activation in the dlPFC.

    Article  PubMed  Google Scholar 

  96. Makovac, E. et al. Response time as a proxy of ongoing mental state: a combined fMRI and pupillometry study in generalized anxiety disorder. Neuroimage 191, 380–391 (2019).

    Article  PubMed  Google Scholar 

  97. Braver, T. S., Gray, J. R., & Burgess, G. C. in Variation in Working Memory (eds Conway, A. R. A. et al.) Ch. 4, 76–106 (Oxford Univ. Press, 2007).

  98. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Borkovec, T. et al. in Generalized Anxiety Disorder: Advances in Research and Practice (eds Heimberg, R. G. et al.) 77–108 (Guilford Press, 2004).

  100. Diwadkar, V. A. et al. Attempts at memory control induce dysfunctional brain activation profiles in generalized anxiety disorder: an exploratory fMRI study. Psychiatry Res. Neuroimaging 266, 42–52 (2017).

    Article  PubMed  Google Scholar 

  101. Moon, C. M., Yang, J. C. & Jeong, G. W. Explicit verbal memory impairments associated with brain functional deficits and morphological alterations in patients with generalized anxiety disorder. J. Affect. Disord. 186, 328–336 (2015).

    Article  PubMed  Google Scholar 

  102. Schurz, M. et al. Toward a hierarchical model of social cognition: a neuroimaging meta-analysis and integrative review of empathy and theory of mind. Psychol. Bull. 147, 293 (2021).

    Article  PubMed  Google Scholar 

  103. Van Overwalle, F. Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30, 829–858 (2009).

    Article  PubMed  Google Scholar 

  104. Baumeister, R. F. & Leary, M. R. The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 117, 497–529 (1995).

    Article  PubMed  Google Scholar 

  105. Eisenberger, N. I., Lieberman, M. D. & Williams, K. D. Does rejection hurt? An fMRI study of social exclusion. Science 302, 290–292 (2003).

    Article  PubMed  Google Scholar 

  106. Eisenberger, N. I. & Lieberman, M. D. Why rejection hurts: a common neural alarm system for physical and social pain. Trends Cogn. Sci. 8, 294–300 (2004).

    Article  PubMed  Google Scholar 

  107. Beyer, F., Münte, T. F. & Krämer, U. M. Increased neural reactivity to socio-emotional stimuli links social exclusion and aggression. Biol. Psychol. 96, 102–110 (2014).

    Article  PubMed  Google Scholar 

  108. Bolling, D. Z. et al. Dissociable brain mechanisms for processing social exclusion and rule violation. Neuroimage 54, 2462–2471 (2011).

    Article  PubMed  Google Scholar 

  109. Moor, B. G. et al. Social exclusion and punishment of excluders: neural correlates and developmental trajectories. Neuroimage 59, 708–717 (2012).

    Article  PubMed  Google Scholar 

  110. Cacioppo, S. et al. A quantitative meta-analysis of functional imaging studies of social rejection. Sci. Rep. 3, 2027 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang, H., Braun, C. & Enck, P. How the brain reacts to social stress (exclusion)—a scoping review. Neurosci. Biobehav. Rev. 80, 80–88 (2017).

    Article  PubMed  Google Scholar 

  112. Morrison, A. S. & Heimberg, R. G. Social anxiety and social anxiety disorder. Annu. Rev. Clin. Psychol. 9, 249–274 (2013).

    Article  PubMed  Google Scholar 

  113. Heeren, A. et al. Correlates of social exclusion in social anxiety disorder: an fMRI study. Sci. Rep. 7, 260 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Belyk, M., Brown, S., Lim, J. & Kotz, S. A. Convergence of semantics and emotional expression within the IFG pars orbitalis. NeuroImage 156, 240–248 (2017).

    Article  PubMed  Google Scholar 

  115. Nagels, A., Kircher, T., Steines, M. & Straube, B. Feeling addressed! The role of body orientation and co-speech gesture in social communication. Hum. Brain Mapp. 36, 1925–1936 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Nishiyama, Y. et al. fMRI study of social anxiety during social ostracism with and without emotional support. PLoS ONE 10, e0127426 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lieberman, M. D. Social cognitive neuroscience: a review of core processes. Annu. Rev. Psychol. 58, 259–289 (2007).

    Article  PubMed  Google Scholar 

  118. Venezia, J. H. et al. Auditory, visual and audiovisual speech processing streams in superior temporal sulcus. Front. Hum. Neurosci. 11, 174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ghazanfar, A. A., Chandrasekaran, C. & Logothetis, N. K. Interactions between the superior temporal sulcus and auditory cortex mediate dynamic face/voice integration in rhesus monkeys. J. Neurosci. 28, 4457–4469 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Müri, R. M. Cortical control of facial expression. J. Comp. Neurol. 524, 1578–1585 (2016).

    Article  PubMed  Google Scholar 

  122. Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    Article  PubMed  Google Scholar 

  123. Demenescu, L. R., Kortekaas, R., den Boer, J. A. & Aleman, A. Impaired attribution of emotion to facial expressions in anxiety and major depression. PLoS ONE 5, e15058 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Frick, A., Howner, K., Fischer, H., Kristiansson, M. & Furmark, T. Altered fusiform connectivity during processing of fearful faces in social anxiety disorder. Transl. Psychiatry 3, e312 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Brown, L. A. et al. Self-referential processing during observation of a speech performance task in social anxiety disorder from pre- to post-treatment: evidence of disrupted neural activation. Psychiatry Res. Neuroimaging 284, 13–20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Monticelli, M. et al. Where we mentalize: main cortical areas involved in mentalization. Front. Neurol. 12, 712532 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lee, S. M., Gao, T. & McCarthy, G. Attributing intentions to random motion engages the posterior superior temporal sulcus. Soc. Cogn. Affect. Neurosci. 9, 81–87 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gao, T., Scholl, B. J. & McCarthy, G. Dissociating the detection of intentionality from animacy in the right posterior superior temporal sulcus. J. Neurosci. 32, 14276–14280 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Li, W., Mai, X. & Liu, C. The default mode network and social understanding of others: what do brain connectivity studies tell us. Front. Hum. Neurosci. 8, 74 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Mennin, D. S. & Fresco, D. M. What, me worry and ruminate about DSM‐5 and RDoC? The importance of targeting negative self‐referential processing. Clin. Psychol. Sci. Pract. 20, 258–267 (2013).

    Article  Google Scholar 

  131. Cui, Q. et al. Neural mechanisms of aberrant self-referential processing in patients with generalized anxiety disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 119, 110595 (2022).

    Article  PubMed  Google Scholar 

  132. Heitmann, C. Y. et al. Brain activation to task-irrelevant disorder-related threat in social anxiety disorder: the impact of symptom severity. NeuroImage Clin. 14, 323–333 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Washburn, D., Wilson, G., Roes, M., Rnic, K. & Harkness, K. L. Theory of mind in social anxiety disorder, depression, and comorbid conditions. J. Anxiety Disord. 37, 71–77 (2016).

    Article  PubMed  Google Scholar 

  134. Hezel, D. M. & McNally, R. J. Theory of mind impairments in social anxiety disorder. Behav. Ther. 45, 530–540 (2014).

    Article  PubMed  Google Scholar 

  135. Cui, Q. et al. Social anxiety disorder exhibit impaired networks involved in self and theory of mind processing. Soc. Cogn. Affect. Neurosci. 12, 1284–1295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Hettema, J. M., Prescott, C. A., Myers, J., Neale, M. C. & Kendler, K. S. The structure of genetic and environmental risk factors for anxiety disorders in men and women. Arch. Gen. Psychiatry 62, 182–189 (2005).

    Article  PubMed  Google Scholar 

  137. Duman, R. S., Aghajanian, G. K., Sanacora, G. & Krystal, J. H. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med. 22, 238–249 (2016). This Perspective explores the mechanisms and consequences of synaptic plasticity in stress-related disorders.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Patel, D., Anilkumar, S., Chattarji, S. & Buwalda, B. Repeated social stress leads to contrasting patterns of structural plasticity in the amygdala and hippocampus. Behav. Brain Res. 347, 314–324 (2018).

    Article  PubMed  Google Scholar 

  139. Shansky, R. M., Hamo, C., Hof, P. R., McEwen, B. S. & Morrison, J. H. Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb. Cortex 19, 2479–2484 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Drabant, E. M. et al. Experiential, autonomic, and neural responses during threat anticipation vary as a function of threat intensity and neuroticism. NeuroImage 55, 401–410 (2011).

    Article  PubMed  Google Scholar 

  141. Walker, D. L., Miles, L. A. & Davis, M. Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1291–1308 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ye, Z., Hammer, A., Camara, E. & Münte, T. F. Pramipexole modulates the neural network of reward anticipation. Hum. Brain Mapp. 32, 800–811 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ventorp, F. et al. Preliminary evidence of efficacy and target engagementof pramipexole in anhedonic depression. Psychiatr. Res. Clin. Pract. 4, 42–47 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Krystal, A. D. et al. A randomized proof-of-mechanism trial applying the ‘fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia. Nat. Med. 26, 760–768 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Herbert, J. D. et al. Social skills training augments the effectiveness of cognitive behavioral group therapy for social anxiety disorder. Behav. Ther. 36, 125–138 (2005).

    Article  Google Scholar 

  146. Hur, J. W. et al. Virtual reality-based psychotherapy in social anxiety disorder: fMRI study using a self-referential task. JMIR Ment. Health 8, e25731 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Pico-Perez, M. et al. Neural predictors of cognitive-behavior therapy outcome in anxiety-related disorders: a meta-analysis of task-based fMRI studies. Psychol. Med. 53, 3387–3395 (2023).

    Article  PubMed  Google Scholar 

  148. Haller, S. P. et al. Normalization of fronto-parietal activation by cognitive-behavioral therapy in unmedicated pediatric patients with anxiety disorders. Am. J. Psychiatry 181, 201–212 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Frick, A. et al. Anterior cingulate cortex activity as a candidate biomarker for treatment selection in social anxiety disorder. BJPsych Open. 4, 157–159 (2018). This work identifies ACC activity as a biomarker for SAD treatment selection, underscoring personalized medicine applications.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Whitfield-Gabrieli, S. et al. Brain connectomics predict response to treatment in social anxiety disorder. Mol. Psychiatry 21, 680–685 (2016).

    Article  PubMed  Google Scholar 

  151. Månsson, K. N. et al. Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning. Transl. Psychiatry 5, e530 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Lantrip, C., Gunning, F. M., Flashman, L., Roth, R. M. & Holtzheimer, P. E. Effects of transcranial magnetic stimulation on the cognitive control of emotion: potential antidepressant mechanisms. J. ECT 33, 73–80 (2017).

    Article  PubMed  Google Scholar 

  153. Cirillo, P. et al. Transcranial magnetic stimulation in anxiety and trauma-related disorders: a systematic review and meta-analysis. Brain Behav. 9, e01284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Tozzi, L. et al. Personalized brain circuit scores identify clinically distinct biotypes in depression and anxiety. Nat. Med. 30, 2076–2087 (2024). This study demonstrates the potential of machine learning and neuroimaging in identifying circuit-based biotypes within anxiety and depression on the basis of patterns of brain circuit dysfunction.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bruin, W. B. et al. Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning. Nat. Ment. Health 2, 104–118 (2024).

    Article  Google Scholar 

  156. Wang, J. et al. The critical mediating roles of the middle temporal gyrus and ventrolateral prefrontal cortex in the dynamic processing of interpersonal emotion regulation. NeuroImage 300, 120789 (2024).

    Article  PubMed  Google Scholar 

  157. Caro, J. O. et al. BrainLM: a foundation model for brain activity recordings. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.557460 (2024).

  158. Peelen, M. V. & Downing, P. E. Testing cognitive theories with multivariate pattern analysis of neuroimaging data. Nat. Hum. Behav. 7, 1430–1441 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Woo, C. W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Etkin, A. A reckoning and research agenda for neuroimaging in psychiatry. Am. J. Psychiatry 176, 507–511 (2019).

    Article  PubMed  Google Scholar 

  161. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bas-Hoogendam, J. M. et al. ENIGMA-Anxiety Working Group. Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum. Brain Mapp. 43, 83–112 (2022).

    Article  PubMed  Google Scholar 

  164. Eickhoff, S. B., Milham, M. & Vanderwal, T. Towards clinical applications of movie fMRI. Neuroimage 217, 116860 (2020).

    Article  PubMed  Google Scholar 

  165. Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014).

    Article  PubMed  Google Scholar 

  166. Drzewiecki, C. M. & Fox, A. S. Understanding the heterogeneity of anxiety using a translational neuroscience approach. Cogn. Affect. Behav. Neurosci. 24, 228–245 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Bas-Hoogendam, J. M. et al. The Leiden Family Lab Study on Social Anxiety Disorder: a multiplex, multigenerational family study on neurocognitive endophenotypes. Int. J. Methods Psychiatr. Res. 27, e1616 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Bas-Hoogendam, J. M. et al. Neurobiological candidate endophenotypes of social anxiety disorder. Neurosci. Biobehav. Rev. 71, 362–378 (2016).

    Article  PubMed  Google Scholar 

  169. Schumann, G. et al. Stratified medicine for mental disorders. Eur. Neuropsychopharmacol. 24, 5–50 (2014).

    Article  PubMed  Google Scholar 

  170. Crosby, D. et al. The MRC framework for the development, design and analysis of stratified medicine research: enabling stratified, precision and personalised medicine. Medical Research Council. Retrieved from https://eprints.ncl.ac.uk/file_store/production/245866/BC30D1BC-D614-44A3-8D16-48982EB0D7F3.pdf (2017).

  171. Williams, L. M. Special report: precision psychiatry—are we getting closer? Psychiatric News 57, https://doi.org/10.1176/appi.pn.2022.09.9.23 (2022).

  172. Insel, T. R. & Cuthbert, B. N. Brain disorders? Precisely. Science 348, 499–500 (2015).

    Article  PubMed  Google Scholar 

  173. Gkintoni, E. & Ortiz, P. S. Neuropsychology of generalized anxiety disorder in clinical setting: a systematic evaluation. Healthcare 11, 2446 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Aikins, D. E. & Craske, M. G. Cognitive theories of generalized anxiety disorder. Psychiatr. Clin. North. Am. 24, 57–74 (2001).

    Article  PubMed  Google Scholar 

  175. Baussay, A. et al. The capacity of cognitive tests to detect generalized anxiety disorder (GAD): a pilot study. J. Psychiatr. Res. 174, 94–100 (2024).

    Article  PubMed  Google Scholar 

  176. Alvi, T., Kouros, C. D., Lee, J., Fulford, D. & Tabak, B. A. Social anxiety is negatively associated with theory of mind and empathic accuracy. J. Abnorm. Psychol. 129, 108–113 (2020).

    Article  PubMed  Google Scholar 

  177. Alvi, T., Kumar, D. & Tabak, B. A. Social anxiety and behavioral assessments of social cognition: a systematic review. J. Affect. Disord. 311, 17–30 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  178. O’Toole, M. S., Pedersen, A. D., Hougaard, E. & Rosenberg, N. K. Neuropsychological test performance in social anxiety disorder. Nord. J. Psychiatry 69, 1726–1734 (2015).

    Article  Google Scholar 

  179. O’Toole, M. S. & Pedersen, A. D. A systematic review of neuropsychological performance in social anxiety disorder. Nord. J. Psychiatry 65, 147–161 (2011).

    Article  PubMed  Google Scholar 

  180. Chen, J., Short, M. & Kemps, E. Interpretation bias in social anxiety: a systematic review and meta-analysis. J. Affect. Disord. 276, 1119–1130 (2020).

    Article  PubMed  Google Scholar 

  181. Giomi, S. et al. Executive functions in panic disorder: a mini-review. J. Affect. Disord. 288, 107–113 (2021).

    Article  PubMed  Google Scholar 

  182. Harber, L. et al. Meta-analysis of neuropsychological studies in panic disorder patients: evidence of impaired performance during the emotional Stroop task. Neuropsychobiology 78, 7–13 (2019).

    Article  PubMed  Google Scholar 

  183. O’Sullivan, K. & Newman, E. F. Neuropsychological impairments in panic disorder: a systematic review. J. Affect. Disord. 167, 268–284 (2014).

    Article  PubMed  Google Scholar 

  184. Sutterby, S. R. & Bedwell, J. S. Lack of neuropsychological deficits in generalized social phobia. PLoS ONE 7, e42675 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Airaksinen, E., Larsson, M. & Forsell, Y. Neuropsychological functions in anxiety disorders in population-based samples: evidence of episodic memory dysfunction. J. Psychiatr. Res. 39, 207–214 (2005).

    Article  PubMed  Google Scholar 

  186. McNally, R. J. & Foa, E. B. Cognition and agoraphobia: bias in the interpretation of threat. Cogn. Ther. Res. 11, 567–581 (1987).

    Article  Google Scholar 

  187. Keshavan, M. S. & Clementz, B. A. Precision medicine for psychosis: a revolution at the interface of psychiatry and neurology. Nat. Rev. Neurol. 19, 193–194 (2023).

    PubMed  Google Scholar 

  188. Taylor, S., Abramowitz, J. S. & McKay, D. Non-adherence and non-response in the treatment of anxiety disorders. J. Anxiety Disord. 26, 583–589 (2012).

    Article  PubMed  Google Scholar 

  189. Fernandes, B. S. et al. The new field of ‘precision psychiatry’. BMC Med. 15, 80 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Williams, L. M. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress Anxiety 34, 9–24 (2017).

    Article  PubMed  Google Scholar 

  191. Etkin, A. Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders. Am. J. Psychiatry https://doi.org/10.1176/appi.ajp.2011.10091290 (2011).

  192. Sindermann, L. et al. Systematic transdiagnostic review of magnetic-resonance imaging results: depression, anxiety disorders and their co-occurrence. J. Psychiatr. Res. 142, 226–239 (2021).

    Article  PubMed  Google Scholar 

  193. Zhang, W. N., Chang, S. H., Guo, L. Y., Zhang, K. L. & Wang, J. The neural correlates of reward-related processing in major depressive disorder: a meta-analysis of functional magnetic resonance imaging studies. J. Affect. Disord. 151, 531–539 (2013).

    Article  PubMed  Google Scholar 

  194. Heitmann, C. Y. et al. Neural correlates of anticipation and processing of performance feedback in social anxiety. Hum. Brain Mapp. 35, 6023–6031 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) (grant numbers R01MH101496 (L.M.W.; NCT02220309), U01MH109985 (L.M.W., J.J., C.B.)). The authors acknowledge the editing services of J. Kilner, MS, MA (Pittsburgh).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article. T.J.A., J.J. and C.B. contributed equally.

Corresponding author

Correspondence to Leanne M. Williams.

Ethics declarations

Competing interests

L.M.W. declares US Patent Applications 10/034,645 and 15/820,338: ‘Systems and methods for detecting complex networks in MRI image data’. T.J.A. serves on the scientific advisory board of and has stock options with Mindbloom, and receives payment for editorial work from Elsevier. L.T. is employed by Ceribell Inc. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Nic van der Wee, who co-reviewed with Janna Marie Bas-Hoogendam; Charles Sanislow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Acute threat system

Neural circuitry involved in immediate responses to imminent danger or threat stimuli.

Appraisal

An evaluation of the emotion-relevant aspects of a stimulus or event.

Default mode network

A neural network that is active when an individual is not focused on the outside world and is thought to be involved in self-referential processing.

Dorsal attention network

A brain network involved in top-down, voluntary allocation of attention, including the intraparietal sulcus and frontal eye fields.

Emotional valence

The intrinsic attractiveness (positive valence) or aversiveness (negative valence) of an event, object or situation.

Fear extinction

The gradual decrease in fear response to a conditioned stimulus that occurs when the stimulus is repeatedly presented without the associated aversive outcome.

Generalization

The process by which a learned response to a specific stimulus is transferred to other similar stimuli.

Implicit learning

Learning that occurs without conscious awareness or intention, whether of rewards, patterns or other information.

Maladaptive

Behaviours or responses that are counterproductive or interfere with an individual’s ability to adjust to situations.

Natural kinds

Distinct categories that exist independently of human classification, with clear boundaries between them.

Normative anxiety

Adaptive responses to potentially threatening situations or ambiguous circumstances that do not disrupt a person’s ability to function.

Reward learning

The process by which the brain associates certain behaviours or stimuli with rewards, occurring either implicitly (without conscious awareness) or explicitly (with conscious awareness).

Reward prediction errors

The differences between the expected reward and the actual reward received.

Reward valuation

The process by which the brain assigns value to different rewards.

Salience network

A large-scale brain network involved in detecting and filtering salient stimuli, comprising the anterior insula and dorsal anterior cingulate cortex (dACC).

Units of analysis

The major entities that are being analysed in a study, which can include genetic, neurocircuit, behavioural and self-report assessments.

Ventral attention network

A brain network involved in bottom-up, stimulus-driven attentional control, including the temporoparietal junction (TPJ) and ventral frontal cortex.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akiki, T.J., Jubeir, J., Bertrand, C. et al. Neural circuit basis of pathological anxiety. Nat. Rev. Neurosci. 26, 5–22 (2025). https://doi.org/10.1038/s41583-024-00880-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-024-00880-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing