Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structurally informed models of directed brain connectivity

Abstract

Understanding how one brain region exerts influence over another in vivo is profoundly constrained by models used to infer or predict directed connectivity. Although such neural interactions rely on the anatomy of the brain, it remains unclear whether, at the macroscale, structural (or anatomical) connectivity provides useful constraints on models of directed connectivity. Here, we review the current state of research on this question, highlighting a key distinction between inference-based effective connectivity and prediction-based directed functional connectivity. We explore the methods via which structural connectivity has been integrated into directed connectivity models: through prior distributions, fixed parameters in state-space models and inputs to structure learning algorithms. Although the evidence suggests that integrating structural connectivity substantially improves directed connectivity models, assessments of reliability and out-of-sample validity are lacking. We conclude this Review with a strategy for future research that addresses current challenges and identifies opportunities for advancing the integration of structural and directed connectivity to ultimately improve understanding of the brain in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generative and generic state-space models used in the context of functional MRI.
Fig. 2: Bayesian, embedded and machine-learning-based approaches to structurally informing directed connectivity models.
Fig. 3: Emerging directions for structurally informed models of directed connectivity.

Similar content being viewed by others

References

  1. Finn, E. S., Poldrack, R. A. & Shine, J. M. Functional neuroimaging as a catalyst for integrated neuroscience. Nature 623, 263–273 (2023).

    Article  PubMed  Google Scholar 

  2. Uludağ, K. & Roebroeck, A. General overview on the merits of multimodal neuroimaging data fusion. NeuroImage 102, 3–10 (2014).

    Article  PubMed  Google Scholar 

  3. Reid, A. T. et al. Advancing functional connectivity research from association to causation. Nat. Neurosci. 22, 1751–1760 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011).

    Article  PubMed  Google Scholar 

  5. Zhang, F. et al. Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. NeuroImage 249, 118870 (2022).

    Article  PubMed  Google Scholar 

  6. Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking structure and function in macroscale brain networks. Trends Cogn. Sci. 24, 302–315 (2020).

    Article  PubMed  Google Scholar 

  7. Fotiadis, P. et al. Structure–function coupling in macroscale human brain networks. Nat. Rev. Neurosci. 25, 688–704 (2024).

    Article  PubMed  Google Scholar 

  8. Seguin, C., Sporns, O. & Zalesky, A. Brain network communication: concepts, models and applications. Nat. Rev. Neurosci. 24, 557–574 (2023).

    Article  PubMed  Google Scholar 

  9. Ji, J. et al. A survey on brain effective connectivity network learning. IEEE Trans. Neural Netw. Learn. Syst. 34, 1879–1899 (2023).

    Article  PubMed  Google Scholar 

  10. Downar, J., Siddiqi, S. H., Mitra, A., Williams, N. & Liston, C. Mechanisms of action of TMS in the treatment of depression. in Emerging Neurobiology of Antidepressant Treatments (eds Browning, M., Cowen, P. J. & Sharp, T.) Vol. 66, 233–277 (Springer International Publishing, 2024).

  11. Wein, S. et al. Brain connectivity studies on structure–function relationships: a short survey with an emphasis on machine learning. Comput. Intell. Neurosci. 2021, 1–31 (2021).

    Article  Google Scholar 

  12. Stephan, K. E., Tittgemeyer, M., Knösche, T. R., Moran, R. J. & Friston, K. J. Tractography-based priors for dynamic causal models. NeuroImage 47, 1628–1638 (2009).

    Article  PubMed  Google Scholar 

  13. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Damoiseaux, J. S. & Greicius, M. D. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct. Funct. 213, 525–533 (2009).

    Article  PubMed  Google Scholar 

  15. Seguin, C., Razi, A. & Zalesky, A. Inferring neural signalling directionality from undirected structural connectomes. Nat. Commun. 10, 4289 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seguin, C. et al. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 111, 1391–1401.e5 (2023).

    Article  PubMed  Google Scholar 

  17. Friston, K. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol. 7, e1000033 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pearl, J. Causality: Models, Reasoning and Inference (Cambridge Univ. Press, 2009).

  19. Beckmann, C. F., DeLuca, M., Devlin, J. T. & Smith, S. M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. B 360, 1001–1013 (2005).

    Article  Google Scholar 

  20. Calhoun, V. D., Adali, T., Pearlson, G. D. & Pekar, J. J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14, 140–151 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Breakspear, M. ‘Dynamic’ connectivity in neural systems: theoretical and empirical considerations. Neuroinformatics 2, 205–226 (2004).

    Article  PubMed  Google Scholar 

  22. McIntosh, A. R. & Gonzalez-Lima, F. Structural equation modeling and its application to network analysis in functional brain imaging. Hum. Brain Mapp. 2, 2–22 (1994).

    Article  Google Scholar 

  23. Ozaki, T. Time Series Modeling of Neuroscience Data. https://doi.org/10.1201/b11527 (CRC Press, 2012).

  24. Razi, A. & Friston, K. J. The connected brain: causality, models, and intrinsic dynamics. IEEE Signal. Process. Mag. 33, 14–35 (2016).

    Article  Google Scholar 

  25. Valdes-Sosa, P. A., Roebroeck, A., Daunizeau, J. & Friston, K. Effective connectivity: influence, causality and biophysical modeling. NeuroImage 58, 339–361 (2011).

    Article  PubMed  Google Scholar 

  26. Sultana, T. et al. Neural mechanisms of emotional health in traumatic brain injury patients undergoing rTMS treatment. Mol. Psychiatry https://doi.org/10.1038/s41380-023-02159-z (2023).

  27. Barnett, L., Muthukumaraswamy, S. D., Carhart-Harris, R. L. & Seth, A. K. Decreased directed functional connectivity in the psychedelic state. NeuroImage 209, 116462 (2020).

    Article  PubMed  Google Scholar 

  28. Ou, J. et al. Characterizing and differentiating brain state dynamics via hidden Markov models. Brain Topogr. 28, 666–679 (2015).

    Article  PubMed  Google Scholar 

  29. Gerstein, G. L., Bedenbaugh, P. & Aertsen, A. M. H. J. Neuronal assemblies. IEEE Trans. Biomed. Eng. 36, 4–14 (1989).

    Article  PubMed  Google Scholar 

  30. Aertsen, A. M., Gerstein, G. L., Habib, M. K. & Palm, G. Dynamics of neuronal firing correlation: modulation of ‘effective connectivity’. J. Neurophysiol. 61, 900–917 (1989).

    Article  PubMed  Google Scholar 

  31. Mackie, J. L., Causes and conditions. Am. Philos. Q. 2, 245–264 (1965).

    Google Scholar 

  32. Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A. & Friston, K. J. Comparing hemodynamic models with DCM. NeuroImage 38, 387–401 (2007).

    Article  PubMed  Google Scholar 

  33. Daunizeau, J., Stephan, K. E. & Friston, K. J. Stochastic dynamic causal modelling of fMRI data: should we care about neural noise? NeuroImage 62, 464–481 (2012).

    Article  PubMed  Google Scholar 

  34. Aoki, M. State Space Modeling of Time Series (Springer, 1990).

  35. Peters, J., Bühlmann, P. & Meinshausen, N. Causal inference by using invariant prediction: identification and confidence intervals. J. R. Stat. Soc. Ser. B Stat. Methodol. 78, 947–1012 (2016).

    Article  Google Scholar 

  36. Bzdok, D. & Ioannidis, J. P. A. Exploration, inference, and prediction in neuroscience and biomedicine. Trends Neurosci. 42, 251–262 (2019).

    Article  PubMed  Google Scholar 

  37. Bzdok, D., Altman, N. & Krzywinski, M. Statistics versus machine learning. Nat. Methods 15, 233–234 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Razi, A. et al. Large-scale DCMs for resting-state fMRI. Netw. Neurosci. 1, 222–241 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stephan, K. E. et al. Ten simple rules for dynamic causal modeling. NeuroImage 49, 3099–3109 (2010).

    Article  PubMed  Google Scholar 

  40. Lee, P. M. Bayesian Statistics: An Introduction (Wiley, 2012).

  41. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. NeuroImage 19, 1273–1302 (2003).

    Article  PubMed  Google Scholar 

  42. Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J. & Penny, W. Variational free energy and the Laplace approximation. NeuroImage 34, 220–234 (2007).

    Article  PubMed  Google Scholar 

  43. Zeidman, P., Friston, K. & Parr, T. A primer on variational Laplace (VL). NeuroImage 279, 120310 (2023).

    Article  PubMed  Google Scholar 

  44. Harrison, L., Penny, W. D. & Friston, K. Multivariate autoregressive modeling of fMRI time series. NeuroImage 19, 1477–1491 (2003).

    Article  PubMed  Google Scholar 

  45. Wen, X., Rangarajan, G. & Ding, M. Is Granger causality a viable technique for analyzing fMRI data? PLoS ONE 8, e67428 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Grassmann, G. New considerations on the validity of the Wiener–Granger causality test. Heliyon 6, e05208 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wiener, N. The theory of prediction. in Modern Mathematics for the Engineer (ed. Beckenbach, E. F.) 165–187 (McGraw-Hill, 1956).

  48. Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424 (1969).

    Article  Google Scholar 

  49. Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000).

    Article  PubMed  Google Scholar 

  50. Bossomaier, T., Barnett, L., Harré, M. & Lizier, J. T. An Introduction to Transfer Entropy. https://doi.org/10.1007/978-3-319-43222-9 (Springer International Publishing, 2016).

  51. Nagle, A. et al. High-dimensional multivariate autoregressive model estimation of human electrophysiological data using fMRI priors. NeuroImage 277, 120211 (2023).

    Article  PubMed  Google Scholar 

  52. Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 87, 96–110 (2014).

    Article  PubMed  Google Scholar 

  53. Aguirre, G. K., Zarahn, E. & D’Esposito, M. The variability of human, BOLD hemodynamic responses. NeuroImage 8, 360–369 (1998).

    Article  PubMed  Google Scholar 

  54. Handwerker, D. A., Ollinger, J. M. & D’Esposito, M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage 21, 1639–1651 (2004).

    Article  PubMed  Google Scholar 

  55. Schilling, K. G. et al. Anomalous and heterogeneous characteristics of the BOLD hemodynamic response function in white matter. Cereb. Cortex Commun. 3, tgac035 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Aquino, K. M., Robinson, P. A., Schira, M. M. & Breakspear, M. Deconvolution of neural dynamics from fMRI data using a spatiotemporal hemodynamic response function. NeuroImage 94, 203–215 (2014).

    Article  PubMed  Google Scholar 

  57. David, O. et al. Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol. 6, e315 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Friston, K., Moran, R. & Seth, A. K. Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23, 172–178 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Deco, G., Kringelbach, M. L., Jirsa, V. K. & Ritter, P. The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Sci. Rep. 7, 3095 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dang, S., Chaudhury, S., Lall, B. & Roy, P. K. Tractography-based score for learning effective connectivity from multimodal imaging data using dynamic Bayesian networks. IEEE Trans. Biomed. Eng. https://doi.org/10.1109/TBME.2017.2738035 (2017).

  61. Ihalainen, R. et al. How hot is the hot zone? Computational modelling clarifies the role of parietal and frontoparietal connectivity during anaesthetic-induced loss of consciousness. NeuroImage 231, 117841 (2021).

    Article  PubMed  Google Scholar 

  62. Sokolov, A. A. et al. Linking structural and effective brain connectivity: structurally informed parametric empirical Bayes (si-PEB). Brain Struct. Funct. 224, 205–217 (2019).

    Article  PubMed  Google Scholar 

  63. Friston, K. J. et al. Bayesian model reduction and empirical Bayes for group (DCM) studies. NeuroImage 128, 413–431 (2016).

    Article  PubMed  Google Scholar 

  64. Frässle, S. et al. Whole-brain estimates of directed connectivity for human connectomics. NeuroImage 225, 117491 (2021).

    Article  PubMed  Google Scholar 

  65. Frässle, S. et al. Regression DCM for fMRI. NeuroImage 155, 406–421 (2017).

    Article  PubMed  Google Scholar 

  66. Frässle, S. et al. A generative model of whole-brain effective connectivity. NeuroImage 179, 505–529 (2018).

    Article  PubMed  Google Scholar 

  67. Pagnotta, M. F. & Plomp, G. Time-varying MVAR algorithms for directed connectivity analysis: critical comparison in simulations and benchmark EEG data. PLoS ONE 13, e0198846 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bi, K. et al. An enriched Granger causal model allowing variable static anatomical constraints. NeuroImage Clin. 21, 101592 (2019).

    Article  PubMed  Google Scholar 

  69. Chiang, S. et al. Bayesian vector autoregressive model for multi-subject effective connectivity inference using multi-modal neuroimaging data: Bayesian multi-modal VAR model. Hum. Brain Mapp. 38, 1311–1332 (2017).

    Article  PubMed  Google Scholar 

  70. Lurie, D. J. et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw. Neurosci. 4, 30–69 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liégeois, R., Laumann, T. O., Snyder, A. Z., Zhou, J. & Yeo, B. T. T. Interpreting temporal fluctuations in resting-state functional connectivity MRI. NeuroImage 163, 437–455 (2017).

    Article  PubMed  Google Scholar 

  72. Pascucci, D., Rubega, M. & Plomp, G. Modeling time-varying brain networks with a self-tuning optimized Kalman filter. PLoS Comput. Biol. 16, e1007566 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pascucci, D. et al. Structure supports function: informing directed and dynamic functional connectivity with anatomical priors. Netw. Neurosci. 6, 401–419 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fukushima, M., Yamashita, O., Knösche, T. R. & Sato, M. MEG source reconstruction based on identification of directed source interactions on whole-brain anatomical networks. NeuroImage 105, 408–427 (2015).

    Article  PubMed  Google Scholar 

  75. Gilson, M., Moreno-Bote, R., Ponce-Alvarez, A., Ritter, P. & Deco, G. Estimation of directed effective connectivity from fMRI functional connectivity hints at asymmetries of cortical connectome. PLoS Comput. Biol. 12, e1004762 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gilson, M. et al. Model-based whole-brain effective connectivity to study distributed cognition in health and disease. Netw. Neurosci. 4, 338–373 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rolls, E. T. et al. Effective connectivity in depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 187–197 (2018).

    PubMed  Google Scholar 

  78. Pallarés, V. et al. Extracting orthogonal subject- and condition-specific signatures from fMRI data using whole-brain effective connectivity. NeuroImage 178, 238–254 (2018).

    Article  PubMed  Google Scholar 

  79. De Filippi, E. et al. One session of fMRI-neurofeedback training on motor imagery modulates whole-brain effective connectivity and dynamical complexity. Cereb. Cortex Commun. 3, tgac027 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Aquino, K. M. et al. On the intersection between data quality and dynamical modelling of large-scale fMRI signals. NeuroImage 256, 119051 (2022).

    Article  PubMed  Google Scholar 

  81. Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).

    Article  PubMed  Google Scholar 

  82. Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M. & Friston, K. The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rolls, E. T., Deco, G., Huang, C.-C. & Feng, J. The effective connectivity of the human hippocampal memory system. Cereb. Cortex 32, 3706–3725 (2022).

    Article  PubMed  Google Scholar 

  84. Crimi, A., Dodero, L., Sambataro, F., Murino, V. & Sona, D. Structurally constrained effective brain connectivity. NeuroImage 239, 118288 (2021).

    Article  PubMed  Google Scholar 

  85. Wu, G.-R. et al. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Med. Image Anal. 17, 365–374 (2013).

    Article  PubMed  Google Scholar 

  86. Friston, K. J., Kahan, J., Biswal, B. & Razi, A. A DCM for resting state fMRI. NeuroImage 94, 396–407 (2014).

    Article  PubMed  Google Scholar 

  87. Novelli, L., Friston, K. & Razi, A. Spectral dynamic causal modelling: a didactic introduction and its relationship with functional connectivity. Netw. Neurosci. 8, 1–37 (2023).

    Google Scholar 

  88. Boutet, A. et al. Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nat. Commun. 12, 3043 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ji, J., Liu, J., Zou, A. & Zhang, A. ACOEC-FD: ant colony optimization for learning brain effective connectivity networks from functional MRI and diffusion tensor imaging. Front. Neurosci. 13, 1290 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bagheri, A., Dehshiri, M., Bagheri, Y., Akhondi-Asl, A. & Nadjar Araabi, B. Brain effective connectome based on fMRI and DTI data: Bayesian causal learning and assessment. PLoS ONE 18, e0289406 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Shiguihara, P., Lopes, A. D. A. & Mauricio, D. Dynamic Bayesian network modeling, learning, and inference: a survey. IEEE Access 9, 117639–117648 (2021).

    Article  Google Scholar 

  92. Wein, S. et al. A graph neural network framework for causal inference in brain networks. Sci. Rep. 11, 8061 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yuan, H., Yu, H., Gui, S. & Ji, S. Explainability in graph neural networks: a taxonomic survey. IEEE Trans. Pattern Anal. Mach. Intell. https://doi.org/10.1109/TPAMI.2022.3204236 (2022).

  94. Ying, Z., Bourgeois, D., You, J., Zitnik, M. & Leskovec, J. GNNExplainer: generating explanations for graph neural networks. in Advances in Neural Information Processing Systems (ed. Wallach, H. et al.) Vol. 32 (Curran Associates, Inc., 2019).

  95. Agarwal, C., Queen, O., Lakkaraju, H. & Zitnik, M. Evaluating explainability for graph neural networks. Sci. Data 10, 144 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Greaves, M. D., Novelli, L. & Razi, A. Structurally informed resting-state effective connectivity recapitulates cortical hierarchy. Preprint at bioRxiv https://doi.org/10.1101/2024.04.03.587831 (2024).

  97. Friston, K. Does predictive coding have a future? Nat. Neurosci. 21, 1019–1021 (2018).

    Article  PubMed  Google Scholar 

  98. Friston, K. J. & Stephan, K. E. Free-energy and the brain. Synthese 159, 417–458 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    Article  PubMed  Google Scholar 

  100. Sánchez-Cañizares, J. The free energy principle: good science and questionable philosophy in a grand unifying theory. Entropy 23, 238 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article  PubMed  Google Scholar 

  102. Bonetti, L. et al. Spatiotemporal brain hierarchies of auditory memory recognition and predictive coding. Nat. Commun. 15, 4313 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B 360, 815–836 (2005).

    Article  Google Scholar 

  104. Goodwin, I., Hester, R. & Garrido, M. I. Temporal stability of Bayesian belief updating in perceptual decision-making. Behav. Res. 84, 6349–6362 (2023).

    Article  Google Scholar 

  105. Sterzer, P. et al. The predictive coding account of psychosis. Biol. Psychiatry 84, 634–643 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Smith, R., Badcock, P. & Friston, K. J. Recent advances in the application of predictive coding and active inference models within clinical neuroscience. Psychiatry Clin. Neurosci. 75, 3–13 (2021).

    Article  PubMed  Google Scholar 

  107. Koubiyr, I. et al. Dynamic modular-level alterations of structural–functional coupling in clinically isolated syndrome. Brain 142, 3428–3439 (2019).

    Article  PubMed  Google Scholar 

  108. Luppi, A. I. et al. LSD alters dynamic integration and segregation in the human brain. NeuroImage 227, 117653 (2021).

    Article  PubMed  Google Scholar 

  109. Benozzo, D. et al. Macroscale coupling between structural and effective connectivity in the mouse brain. Sci. Rep. 14, 3142 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Baum, G. L. et al. Development of structure–function coupling in human brain networks during youth. Proc. Natl Acad. Sci. USA 117, 771–778 (2020).

    Article  PubMed  Google Scholar 

  112. Preti, M. G. & Van De Ville, D. Decoupling of brain function from structure reveals regional behavioral specialization in humans. Nat. Commun. 10, 4747 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gu, Z., Jamison, K. W., Sabuncu, M. R. & Kuceyeski, A. Heritability and interindividual variability of regional structure–function coupling. Nat. Commun. 12, 4894 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tanner, J. et al. A multi-modal, asymmetric, weighted, and signed description of anatomical connectivity. Nat. Commun. 15, 5865 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008).

    Article  Google Scholar 

  116. Sokolov, A. A. et al. Structural and effective brain connectivity underlying biological motion detection. Proc. Natl Acad. Sci. USA 115, E12034–E12042 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Vaughn, K. A., DeMaster, D., Kook, J. H., Vannucci, M. & Ewing‐Cobbs, L. Effective connectivity in the default mode network after paediatric traumatic brain injury. Eur. J. Neurosci. 55, 318–336 (2022).

    Article  PubMed  Google Scholar 

  118. Sokolov, A. A. et al. Asymmetric high-order anatomical brain connectivity sculpts effective connectivity. Netw. Neurosci. 4, 871–890 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bazinet, V., Hansen, J. Y. & Misic, B. Towards a biologically annotated brain connectome. Nat. Rev. Neurosci. 24, 747–760 (2023).

    Article  PubMed  Google Scholar 

  120. Baria, A. T. et al. Linking human brain local activity fluctuations to structural and functional network architectures. NeuroImage 73, 144–155 (2013).

    Article  PubMed  Google Scholar 

  121. Sethi, S. S., Zerbi, V., Wenderoth, N., Fornito, A. & Fulcher, B. D. Structural connectome topology relates to regional BOLD signal dynamics in the mouse brain. Chaos 27, 047405 (2017).

    Article  PubMed  Google Scholar 

  122. Fallon, J. et al. Timescales of spontaneous fMRI fluctuations relate to structural connectivity in the brain. Netw. Neurosci. 4, 788–806 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lee, T.-W. & Xue, S.-W. Linking graph features of anatomical architecture to regional brain activity: a multi-modal MRI study. Neurosci. Lett. 651, 123–127 (2017).

    Article  PubMed  Google Scholar 

  124. Jirsa, V. K., Sporns, O., Breakspear, M., Deco, G. & McIntosh, A. R. Towards the virtual brain: network modeling of the intact and the damaged brain. Arch. Ital. Biol. 148, 189–205 (2010).

    PubMed  Google Scholar 

  125. Hashemi, M. et al. The Bayesian virtual epileptic patient: a probabilistic framework designed to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread. NeuroImage 217, 116839 (2020).

    Article  PubMed  Google Scholar 

  126. Jha, J., Hashemi, M., Vattikonda, A. N., Wang, H. & Jirsa, V. Fully Bayesian estimation of virtual brain parameters with self-tuning Hamiltonian Monte Carlo. Mach. Learn. Sci. Technol. 3, 035016 (2022).

    Article  Google Scholar 

  127. Abdelnour, F., Voss, H. U. & Raj, A. Network diffusion accurately models the relationship between structural and functional brain connectivity networks. NeuroImage 90, 335–347 (2014).

    Article  PubMed  Google Scholar 

  128. Ereira, S., Waters, S., Razi, A. & Marshall, C. R. Early detection of dementia with default-mode network effective connectivity. Nat. Ment. Health 2, 787–800 (2024).

    Article  Google Scholar 

  129. Galioulline, H. et al. Predicting future depressive episodes from resting-state fMRI with generative embedding. NeuroImage 273, 119986 (2023).

    Article  PubMed  Google Scholar 

  130. Frässle, S. et al. Predicting individual clinical trajectories of depression with generative embedding. NeuroImage Clin. 26, 102213 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Brodersen, K. H. et al. Generative embedding for model-based classification of fMRI data. PLoS Comput. Biol. 7, e1002079 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Mehdary, A., Chehri, A., Jakimi, A. & Saadane, R. Hyperparameter optimization with genetic algorithms and XGBoost: a step forward in smart grid fraud detection. Sensors 24, 1230 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C. & Behrens, T. E. Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18, 1546–1555 (2015).

    Article  PubMed  Google Scholar 

  134. Maier-Hein, K. H. et al. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8, 1349 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Jbabdi, S., Behrens, T. E. J. & Smith, S. M. Crossing fibres in tract-based spatial statistics. NeuroImage 49, 249–256 (2010).

    Article  PubMed  Google Scholar 

  136. Reveley, C. et al. Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc. Natl Acad. Sci. USA 112, E2820–E2828 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Thomas, C. et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl Acad. Sci. USA 111, 16574–16579 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Dell’Acqua, F. & Tournier, J.-D. Modelling white matter with spherical deconvolution: how and why? NMR Biomed. 32, e3945 (2019).

    Article  PubMed  Google Scholar 

  139. Tournier, J.-D., Calamante, F. & Connelly, A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007).

    Article  PubMed  Google Scholar 

  140. Sarwar, T. et al. Evaluation of tractogram filtering methods using human-like connectome phantoms. NeuroImage 281, 120376 (2023).

    Article  PubMed  Google Scholar 

  141. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bernal-Casas, D., Lee, H. J., Weitz, A. J. & Lee, J. H. Studying brain circuit function with dynamic causal modeling for optogenetic fMRI. Neuron 93, 522–532.e5 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ryali, S. et al. Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions. NeuroImage 132, 398–405 (2016).

    Article  PubMed  Google Scholar 

  144. Siviero, I. et al. Graph analysis of TMS–EEG connectivity reveals hemispheric differences following occipital stimulation. Sensors 23, 8833 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hodkinson, D. J., Bungert, A., Bowtell, R., Jackson, S. R. & Jung, J. Operculo-insular and anterior cingulate plasticity induced by transcranial magnetic stimulation in the human motor cortex: a dynamic casual modeling study. J. Neurophysiol. 125, 1180–1190 (2021).

    Article  PubMed  Google Scholar 

  146. Yemini, E. et al. NeuroPAL: a multicolor atlas for whole-brain neuronal identification in C. elegans. Cell 184, 272–288.e11 (2021).

    Article  PubMed  Google Scholar 

  147. Randi, F., Sharma, A. K., Dvali, S. & Leifer, A. M. Neural signal propagation atlas of Caenorhabditis elegans. Nature 623, 406–414 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Creamer, M. S., Leifer, A. M. & Pillow, J. W. Bridging the gap between the connectome and whole-brain activity in C. elegans. Preprint at bioRxiv https://doi.org/10.1101/2024.09.22.614271 (2024).

  149. Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 72, 595–603 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Cash, R. F. H. & Zalesky, A. Personalized and circuit-based transcranial magnetic stimulation: evidence, controversies, and opportunities. Biol. Psychiatry 95, 510–522 (2024).

    Article  PubMed  Google Scholar 

  151. Cash, R. F. H. et al. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization. Biol. Psychiatry 86, e5–e7 (2019).

    Article  PubMed  Google Scholar 

  152. Weigand, A. et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol. Psychiatry 84, 28–37 (2018).

    Article  PubMed  Google Scholar 

  153. Isserles, M. et al. Deep transcranial magnetic stimulation combined with brief exposure for posttraumatic stress disorder: a prospective multisite randomized trial. Biol. Psychiatry 90, 721–728 (2021).

    Article  PubMed  Google Scholar 

  154. Balderston, N. L. et al. Proof of concept study to develop a novel connectivity-based electric-field modelling approach for individualized targeting of transcranial magnetic stimulation treatment. Neuropsychopharmacol 47, 588–598 (2022).

    Article  Google Scholar 

  155. Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E. & Penny, W. D. Statistical Parametric Mapping: The Analysis of Functional Brain Images (Elsevier Science, 2011).

  156. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. NeuroImage 9, 179–194 (1999).

    Article  PubMed  Google Scholar 

  157. Fornito, A., Zalesky, A. & Bullmore, E. T. Fundamentals of Brain Network Analysis (Elsevier/Academic Press, 2016).

  158. Roberts, S. J. & Penny, W. D. Variational Bayes for generalized autoregressive models. IEEE Trans. Signal. Process. 50, 2245–2257 (2002).

    Article  Google Scholar 

  159. Zeidman, P. et al. A guide to group effective connectivity analysis, part 2: second level analysis with PEB. NeuroImage 200, 12–25 (2019).

    Article  PubMed  Google Scholar 

  160. Shmueli, G. To explain or to predict? Stat. Sci. 25, 289–310 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors thank C. Seguin for valuable discussions that contributed to the development of this Review. M.D.G. is supported by an Australian Government Research Training Program Scholarship. M.D.G., L.N. and A.R. are funded by the Australian Research Council (ref. DP200100757). A.R. is also funded by Australian National Health and Medical Research Council Investigator Grant (ref. 1194910). A.R. is affiliated with The Wellcome Centre for Human Neuroimaging supported by core funding from Wellcome (203147/Z/16/Z). A.R. is a CIFAR Azrieli Global Scholar in the Brain, Mind & Consciousness Programme.

Author information

Authors and Affiliations

Authors

Contributions

M.D.G. wrote the article. All authors researched data for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Matthew D. Greaves or Adeel Razi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Amy Kuceyeski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bayes factor

A ratio comparing the evidence for two competing models, quantifying how much more likely the data are under one model than the other.

Biologically annotated connectomes

Connectome maps that include detailed biological information about the properties and functions of neural connections and regions.

Connectome

A comprehensive map of neural connections in the brain, representing the wiring diagram of the brain at the level of neurons or brain regions.

Construct validity

The degree to which a model accurately represents and measures the theoretical concepts or constructs it is intended to reflect, often evaluated through comparisons with other established models.

Cross-species validity

The extent to which a model or finding can be consistently applied and can produce similar results across different species, such as humans and non-human animals, which demonstrates robustness and generalizability.

Cross-spectral density

A frequency-domain measure that captures the amplitude and phase relationships between two signals across different frequencies, indicating their coherence and interaction strength.

Double-gamma

A predefined, standard model of the brain’s BOLD response to neuronal activity, using a function that captures both the primary peak and subsequent undershoot.

Effective mechanism

An insufficient, non-redundant part of an unnecessary but sufficient condition for bringing about certain observations (such as the influence that a specific gene expression pattern exerts on the development of a particular phenotype).

Embeddings

Representations of complex data in a lower-dimensional space that preserves relevant information and relationships.

Face validity

Refers (in modelling) to the extent to which a model seems effective and plausible, and is often assessed through simulations.

Free energy principle

A theoretical framework that suggests that the brain minimizes a quantity called free energy to maintain a stable internal state and reduce uncertainty about its environment.

Generative models

Describes how data are produced by underlying causes or processes, allowing for the simulation or generation of new data based on its structure and parameters.

Gradient descent

A fundamental optimization algorithm used in machine learning and statistics to minimize the error of a model by iteratively adjusting its parameters in the direction that reduces the error, based on the gradient of the loss function with respect to the parameters.

Graph-theoretical models

A mathematical model that uses the principles of graph theory and can be used to describe and analyse the network structure of the brain.

Grid search

A systematic, exhaustive search process used to tune hyperparameters by evaluating a model for each combination of specified parameter values.

Inverse problem

Involves inferring the unknown parameters or unobserved states of a system from observed data.

Kalman filtering

A recursive algorithm that estimates the state of a dynamic system by predicting the state and error covariance and then updating them with new observations weighted by the Kalman gain, which determines the influence of the new observations based on their estimated reliability.

Neural elements

Any component of a neural network that can process or transmit information, ranging from single neurons to larger, macroscale brain regions.

Neuronal populations

Groups of neurons that are treated as a single unit for the purpose of modelling the neural dynamics and interactions within and between different regions of the brain.

Optogenetics

A technique that involves the use of light to control cells within living tissue, typically neurons, that have been genetically modified to express light-sensitive ion channels.

Out-of-sample validity

The extent to which the results of a statistical model or analysis generalize to new, unseen data not used during the model training or fitting process.

Power-law

A mathematical relationship in which one quantity varies as a power of another, often seen in the spectral density of neural signals, in which lower frequencies have higher power, typically following a 1/f pattern.

Predictive coding

A theoretical framework that suggests the brain constantly generates and updates predictions about sensory inputs and uses the resulting prediction errors to refine its internal models of the environment.

Predictive validity

The extent to which a measurement or model accurately forecasts or predicts outcomes or behaviours in future, unseen situations, thereby demonstrating its effectiveness and applicability beyond the initial data used to create it.

Random effects

Here, a random effects model is a statistical model that accounts for variability across individuals by treating group-level parameters as random variables and is often used in Bayesian frameworks to improve the robustness of group-level inferences.

Regularization

A technique used in modelling to impose constraints or add information to prevent overfitting and improve generalizability by penalizing complex models.

Reliability

The consistency of a measurement, particularly emphasizing its ability to produce stable and consistent results upon repeated testing within the same subjects under similar conditions.

Savage–Dickey density ratio

A special case of the Bayes factor that compares the prior and posterior densities of a parameter at a specific value, used for efficiently testing point hypotheses in nested models.

Second-order statistics

Statistical measures that capture the relationships between pairs of data points, such as covariance and correlation, which describe the variability and dependencies in a data set.

Statistical conclusion validity

The degree to which conclusions about the relationship among variables based on the data are correct or reasonable.

Streamline

A space curve traced via a tractography algorithm and guided by the local orientations of a vector field computed from diffusion-weighted imaging.

Structural covariance analysis

A method that identifies relationships between brain regions by examining correlations in morphological features, such as cortical thickness or grey matter volume, across individuals.

Structure learning

The process of identifying the underlying structure or dependencies among variables in a data set, applicable in probabilistic graphical models and graph neural networks for predicting or inferring graph topologies.

Temporal precedence

The concept that one event occurs before another in time, serving as a necessary condition for directionality in neural interactions, helping to establish which brain region is likely influencing another.

Time constants

In the context of neural dynamics and functional MRI, time constants represent the rate at which a system returns to equilibrium after a perturbation, and to accurately capture these dynamics, the sampling rate must meet the Nyquist criterion, sampling at least twice the highest frequency present.

Tractography

Various algorithms applied to diffusion-weighted imaging to piece together streamline trajectories that correspond to probable nerve tract pathways.

Transcranial magnetic stimulation

A non-invasive procedure that uses magnetic fields to stimulate neurons, often used to study brain function and — increasingly — to treat neuropsychiatric disorders.

Unimodal–transmodal cortical hierarchy

A gradient or axis in the cerebral cortex that reflects increasing complexity of information processing, from sensory (unimodal) areas that handle basic sensory inputs to higher-order (transmodal) areas that integrate multisensory information and support complex cognitive functions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greaves, M.D., Novelli, L., Mansour L., S. et al. Structurally informed models of directed brain connectivity. Nat. Rev. Neurosci. 26, 23–41 (2025). https://doi.org/10.1038/s41583-024-00881-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-024-00881-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing