Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural MRI of brain similarity networks

Abstract

Recent advances in structural MRI analytics now allow the network organization of individual brains to be comprehensively mapped through the use of the biologically principled metric of anatomical similarity. In this Review, we offer an overview of the measurement and meaning of structural MRI similarity, especially in relation to two key assumptions that often underlie its interpretation: (i) that MRI similarity can be representative of architectonic similarity between cortical areas and (ii) that similar areas are more likely to be axonally connected, as predicted by the homophily principle. We first introduce the historical roots and technical foundations of MRI similarity analysis and compare it with the distinct MRI techniques of structural covariance and tractography analysis. We contextualize this empirical work with two generative models of homophilic networks: an economic model of cost-constrained connectional homophily and a heterochronic model of ontogenetically phased cortical maturation. We then review (i) studies of the genetic and transcriptional architecture of MRI similarity in population-averaged and disorder-specific contexts and (ii) developmental studies of normative cohorts and clinical studies of neurodevelopmental and neurodegenerative disorders. Finally, we prioritize knowledge gaps that must be addressed to consolidate structural MRI similarity as an accessible, valid marker of the architecture and connectivity of an individual brain network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural MRI similarity estimation.
Fig. 2: Two key assumptions of structural MRI similarity analysis.
Fig. 3: Organizational properties of the neocortex.
Fig. 4: Frameworks of cortical evolution, maturation and organization.
Fig. 5: Two theories of homophilic network development.
Fig. 6: The genetic and transcriptional basis of structural similarity.

Similar content being viewed by others

References

  1. Seidlitz, J. et al. Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97, 231–247 (2018). This paper introduced morphometric similarity networks as a proxy for axonal connectivity by benchmarking morphometric similarity network metrics of similarity with tract-tracing data on axonal connectivity in animal models.

    Article  PubMed  Google Scholar 

  2. Sebenius, I. et al. Robust estimation of cortical similarity networks from brain MRI. Nat. Neurosci. 26, 1461–1471 (2023). This paper introduced morphometric inverse divergence (MIND) as a flexible framework for measuring single-subject cortical similarity networks from one or more diverse MRI features, and validated MIND network phenotypes as heritable and closely coupled to cortically patterned gene expression.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhou, L. et al. Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures. PLoS ONE 6, e21935 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Homan, P. et al. Structural similarity networks predict clinical outcome in early-phase psychosis. Neuropsychopharmacology 44, 915–922 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tijms, B. M., Seriès, P., Willshaw, D. J. & Lawrie, S. M. Similarity-based extraction of individual networks from gray matter MRI scans. Cereb. Cortex 22, 1530–1541 (2012). This work was one of the first to generate single-subject structural MRI similarity networks and characterize their network properties.

    Article  PubMed  Google Scholar 

  6. Kong, X.-Z. et al. Mapping individual brain networks using statistical similarity in regional morphology from MRI. PLoS ONE 10, e0141840 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Batalle, D. et al. Normalization of similarity-based individual brain networks from gray matter MRI and its association with neurodevelopment in infants with intrauterine growth restriction. NeuroImage 83, 901–911 (2013).

    Article  PubMed  Google Scholar 

  8. Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biol. 17, e3000284 (2019). This paper introduced microstructural profile covariance networks and validated them anatomically against microscopic histological benchmarks from the BigBrain dataset.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cai, M. et al. Individual-level brain morphological similarity networks: current methodologies and applications. CNS Neurosci. Ther. 29, 3713–3724 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang, J., Jin, S. & Li, J. Brain connectome from neuronal morphology. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3913903/v1 (2024).

  11. Wang, J. & He, Y. Toward individualized connectomes of brain morphology. Trends Neurosci. 47, 106–119 (2024).

    Article  PubMed  Google Scholar 

  12. Lanciego, J. L. & Wouterlood, F. G. Neuroanatomical tract-tracing techniques that did go viral. Brain Struct. Funct. 225, 1193–1224 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rubinov, M., Ypma, R. J., Watson, C. & Bullmore, E. T. Wiring cost and topological participation of the mouse brain connectome. Proc. Natl Acad. Sci. USA 112, 10032–10037 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mori, S. & Zhang, J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51, 527–539 (2006).

    Article  PubMed  Google Scholar 

  15. Jbabdi, S. & Johansen-Berg, H. Tractography: where do we go from here? Brain Connect. 1, 169–183 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Alexander-Bloch, A., Giedd, J. N. & Bullmore, E. Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci. 14, 322–336 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. García-Cabezas, M. Á., Zikopoulos, B. & Barbas, H. The structural model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct. Funct. 224, 985–1008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barbas, H. & Rempel-Clower, N. Cortical structure predicts the pattern of corticocortical connections. Cereb. Cortex 7, 635–646 (1997).

    Article  PubMed  Google Scholar 

  20. Barbas, H. General cortical and special prefrontal connections: principles from structure to function. Annu. Rev. Neurosci. 38, 269–289 (2015).

    Article  PubMed  Google Scholar 

  21. Dauguet, J. et al. Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. NeuroImage 37, 530–538 (2007).

    Article  PubMed  Google Scholar 

  22. Donahue, C. J. et al. Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J. Neurosci. 36, 6758–6770 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gajwani, M. et al. Can hubs of the human connectome be identified consistently with diffusion MRI? Netw. Neurosci. 7, 1326–1350 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cieslak, M. et al. QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. Nat. Methods 18, 775–778 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maier-Hein, K. H., Neher, P. F., Houde, J. C. & Others The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8, 1349 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thomas, C. et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl Acad. Sci. USA 111, 16574–16579 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Walker, L. et al. Diffusion tensor imaging in young children with autism: biological effects and potential confounds. Biol. Psychiatry 72, 1043–1051 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lerch, J. P. et al. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. NeuroImage 31, 993–1003 (2006).

    Article  PubMed  Google Scholar 

  29. Váša, F. et al. Adolescent tuning of association cortex in human structural brain networks. Cereb. Cortex 28, 281–294 (2018).

    Article  PubMed  Google Scholar 

  30. Stauffer, E.-M. et al. The genetic relationships between brain structure and schizophrenia. Nat. Commun. 14, 7820 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wright, I. C. et al. Supra-regional brain systems and the neuropathology of schizophrenia. Cereb. Cortex 9, 366–378 (1999).

    Article  PubMed  Google Scholar 

  32. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gong, G., He, Y., Chen, Z. J. & Evans, A. C. Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex. NeuroImage 59, 1239–1248 (2012).

    Article  PubMed  Google Scholar 

  34. Yee, Y. et al. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity. NeuroImage 179, 357–372 (2018).

    Article  PubMed  Google Scholar 

  35. Valk, S. L. et al. Shaping brain structure: genetic and phylogenetic axes of macroscale organization of cortical thickness. Sci. Adv. 6, eabb3417 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fürtjes, A. E. et al. General dimensions of human brain morphometry inferred from genome-wide association data. Hum. Brain Mapp. 44, 3311–3323 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Romero-Garcia, R. et al. Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. NeuroImage 171, 256–267 (2018).

    Article  PubMed  Google Scholar 

  38. Lerch, J. P. et al. Studying neuroanatomy using MRI. Nat. Neurosci. 20, 314–326 (2017).

    Article  PubMed  Google Scholar 

  39. Weiskopf, N. et al. Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Front. Neurosci. 7, 95 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31, 11597–11616 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61, 1000–1016 (2012).

    Article  PubMed  Google Scholar 

  42. Fornito, A., Zalesky, A. & Bullmore, E. T. Fundamentals of Brain Network Analysis (Academic Press, 2016).

  43. Nadig, A. et al. Morphological integration of the human brain across adolescence and adulthood. Proc. Natl Acad. Sci. USA 118, e2023860118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Paquola, C. et al. Shifts in myeloarchitecture characterise adolescent development of cortical gradients. eLife 8, e50482 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Paquola, C. & Hong, S.-J. The potential of myelin-sensitive imaging: redefining spatiotemporal patterns of myeloarchitecture. Biol. Psychiatry 93, 442–454 (2023).

    Article  PubMed  Google Scholar 

  46. Snyder, W. E. et al. A bimodal taxonomy of adult human brain sulcal morphology related to timing of fetal sulcation and trans-sulcal gene expression gradients. Neuron 112, 3396–3411 (2024).

    Article  PubMed  Google Scholar 

  47. Hagiwara, A. et al. Myelin measurement: comparison between simultaneous tissue relaxometry, magnetization transfer saturation index, and Tw/Tw ratio methods. Sci. Rep. 8, 10554 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang, N. et al. Neurite orientation dispersion and density imaging of mouse brain microstructure. Brain Struct. Funct. 224, 1797–1813 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sato, K. et al. Understanding microstructure of the brain by comparison of neurite orientation dispersion and density imaging (NODDI) with transparent mouse brain. Acta Radiol. Open 6, 2058460117703816 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Markov, N. T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Knoblauch, K., Van Essen, D. C. & Kennedy, H. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cerebral 24, 17–36 (2014).

    Google Scholar 

  52. Amunts, K. et al. BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013).

    Article  PubMed  Google Scholar 

  53. Wei, Y., Scholtens, L. H., Turk, E. & van den Heuvel, M. P. Multiscale examination of cytoarchitectonic similarity and human brain connectivity. Netw. Neurosci. 3, 124–137 (2019).

    Article  PubMed  Google Scholar 

  54. Hilgetag, C. C., Medalla, M., Beul, S. F. & Barbas, H. The primate connectome in context: principles of connections of the cortical visual system. NeuroImage 134, 685–702 (2016).

    Article  PubMed  Google Scholar 

  55. Hakosalo, H. The brain under the knife: serial sectioning and the development of late nineteenth-century neuroanatomy. Stud. Hist. Philos. Biol. Biomed. Sci. 37, 172–202 (2006).

    Article  PubMed  Google Scholar 

  56. Shepherd, G. M. Foundations of the Neuron Doctrine (Oxford Univ. Press, 2015).

  57. Earl Walker, A. The Primate Thalamus (The Univ. Chicago Press, 1938).

  58. Flechsig, P. Anatomie des menschlichen Gehirns und Rückenmarks: auf myelogenetischer Grundlage. https://doi.org/10.1001/jama.1921.02630100050037 (1920).

  59. Barbas, H. Pattern in the laminar origin of corticocortical connections. J. Comp. Neurol. 252, 415–422 (1986). This paper observed that the architectonic type of a region influences the laminar specificity of axonal projections to and from it, thereby providing foundational evidence for the structural model.

    Article  PubMed  Google Scholar 

  60. Beul, S. F. & Hilgetag, C. C. Neuron density fundamentally relates to architecture and connectivity of the primate cerebral cortex. NeuroImage 189, 777–792 (2019).

    Article  PubMed  Google Scholar 

  61. Beul, S. F., Goulas, A. & Hilgetag, C. C. An architectonic type principle in the development of laminar patterns of cortico-cortical connections. Brain Struct. Funct. 226, 979–987 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Goulas, A., Majka, P., Rosa, M. G. P. & Hilgetag, C. C. A blueprint of mammalian cortical connectomes. PLoS Biol. 17, e2005346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Uceda-Heras, A., Aparicio-Rodríguez, G. & García-Cabezas, M. Á. Hyperphosphorylated tau in Alzheimer’s disease disseminates along pathways predicted by the structural model for cortico-cortical connections. J. Comp. Neurol. 532, e25623 (2024).

    Article  PubMed  Google Scholar 

  64. Barbas, H. et al. Cortical circuit principles predict patterns of trauma induced tauopathy in humans. Preprint at bioRxiv https://doi.org/10.1101/2024.05.02.592271 (2024).

  65. Ohm, D. T. et al. Cytoarchitectonic gradients of laminar degeneration in behavioral variant frontotemporal dementia. Preprint at bioRxiv https://doi.org/10.1101/2024.04.05.588259 (2024).

  66. Akarca, D. et al. Homophilic wiring principles underpin neuronal network topology in vitro. Preprint at bioRxiv https://doi.org/10.1101/2022.03.09.483605 (2022).

  67. Pathak, A., Chatterjee, N. & Sinha, S. Developmental trajectory of Caenorhabditis elegans nervous system governs its structural organization. PLoS Comput. Biol. 16, e1007602 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Beul, S. F., Grant, S. & Hilgetag, C. C. A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct. Funct. 220, 3167–3184 (2015).

    Article  PubMed  Google Scholar 

  69. Beul, S. F., Barbas, H. & Hilgetag, C. C. A predictive structural model of the primate connectome. Sci. Rep. 7, 43176 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Goulas, A., Uylings, H. B. & Hilgetag, C. C. Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse. Brain Struct. Funct. 222, 1281–1295 (2017).

    Article  PubMed  Google Scholar 

  71. Shafiei, E. et al. Topographic gradients of intrinsic dynamics across neocortex. eLife 9, e62116 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hansen, J. Y. et al. Integrating multimodal and multiscale connectivity blueprints of the human cerebral cortex in health and disease. PLoS Biol. 21, e3002314 (2023). This study compared different measures of inter-areal neurobiological similarity measured at the group level, finding a general homophilic tendency for diverse measures of similarity to be related to each other and to normative DTI-based structural connectivity.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bazinet, V. et al. Assortative mixing in micro-architecturally annotated brain connectomes. Nat. Commun. 14, 2850 (2023). This study used group-level tract-tracing and diffusion tensor imaging connectomes annotated with multiple microstructural features to demonstrate the homophilic tendency of similar regions to connect with one another.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Aparicio-Rodríguez, G. & García-Cabezas, M. Á. Comparison of the predictive power of two models of cortico-cortical connections in primates: the distance rule model and the structural model. Cereb. Cortex 33, 8131–8149 (2023).

    Article  PubMed  Google Scholar 

  75. Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ko, H. et al. The emergence of functional microcircuits in visual cortex. Nature 496, 96–100 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Harris, K. & Mrsic-Flogel, T. Cortical connectivity and sensory coding. Nature 503, 51–58 (2013).

    Article  PubMed  Google Scholar 

  78. Liu, L. et al. Neuronal connectivity as a determinant of cell types and subtypes. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2960606/v1 (2023).

  79. Sanes, J. R. & Zipursky, S. L. Synaptic specificity, recognition molecules, and assembly of neural circuits. Cell 181, 536–556 (2020).

    Article  PubMed  Google Scholar 

  80. Hilgetag, C. C., Beul, S. F., van Albada, S. J. & Goulas, A. An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Netw. Neurosci. 3, 905–923 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Beul, S. F., Goulas, A. & Hilgetag, C. C. Comprehensive computational modelling of the development of mammalian cortical connectivity underlying an architectonic type principle. PLoS Comput. Biol. 14, e1006550 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. 25, 1569–1581 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Horwitz, B., Duara, R. & Rapoport, S. I. Intercorrelations of glucose metabolic rates between brain regions: application to healthy males in a state of reduced sensory input. J. Cereb. Blood Flow Metab. 4, 484–499 (1984).

    Article  PubMed  Google Scholar 

  84. Wang, M. et al. Individual brain metabolic connectome indicator based on Kullback–Leibler divergence similarity estimation predicts progression from mild cognitive impairment to Alzheimer’s dementia. Eur. J. Nucl. Med. Mol. Imaging 47, 2753–2764 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhang, Y. et al. Bridging the gap between morphometric similarity mapping and gene transcription in Alzheimer’s disease. Front. Neurosci. 15, 731292 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fulcher, B. D. & Fornito, A. A transcriptional signature of hub connectivity in the mouse connectome. Proc. Natl Acad. Sci. USA 113, 1435–1440 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Richiardi, J. et al. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks. Science 348, 1241–1244 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vértes, P. E. et al. Simple models of human brain functional networks. Proc. Natl Acad. Sci. USA 109, 5868–5873 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Betzel, R. F. et al. Generative models of the human connectome. NeuroImage 124, 1054–1064 (2016).

    Article  PubMed  Google Scholar 

  90. Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).

    Article  PubMed  Google Scholar 

  91. Goulas, A., Betzel, R. F. & Hilgetag, C. C. Spatiotemporal ontogeny of brain wiring. Sci. Adv. 5, eaav9694 (2019). This study used computational modelling to simulate heterochronic and spatially ordered neurodevelopmental gradients as key drivers of anatomical connectivity across species.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Garcia-Lopez, P., Garcia-Marin, V. & Freire, M. The histological slides and drawings of Cajal. Front. Neuroanat. 4, 1156 (2010).

    Google Scholar 

  93. Cajal, S. R. y. Cajal’s Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, 1995).

  94. Bassett, D. S. et al. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput. Biol. 6, e1000748 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kaiser, M. & Hilgetag, C. C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, e95 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Assaf, Y., Bouznach, A., Zomet, O., Marom, A. & Yovel, Y. Conservation of brain connectivity and wiring across the mammalian class. Nat. Neurosci. 23, 805–808 (2020).

    Article  PubMed  Google Scholar 

  97. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  PubMed  Google Scholar 

  98. Oldham, S. et al. Modeling spatial, developmental, physiological, and topological constraints on human brain connectivity. Sci. Adv. 8, eabm6127 (2022). Using a generative modelling approach, this paper demonstrated that inter-regional transcriptional or microstructural similarity significantly improved models of anatomical connectivity in the human brain.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lynn, C. W., Holmes, C. M. & Palmer, S. E. Heavy-tailed neuronal connectivity arises from Hebbian self-organization. Nat. Phys. 20, 484–491 (2024).

    Article  Google Scholar 

  100. Vértes, P. E., Alexander-Bloch, A. & Bullmore, E. T. Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130531 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Puelles, L., Alonso, A., García-Calero, E. & Martínez-de-la-Torre, M. Concentric ring topology of mammalian cortical sectors and relevance for patterning studies. J. Comp. Neurol. 527, 1731–1752 (2019).

    Article  PubMed  Google Scholar 

  102. Grydeland, H. et al. Waves of maturation and senescence in micro-structural MRI markers of human cortical myelination over the lifespan. Cereb. Cortex 29, 1369–1381 (2019).

    Article  PubMed  Google Scholar 

  103. Whitaker, K. J. et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc. Natl Acad. Sci. USA 113, 9105–9110 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rakic, P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat. Rev. Neurosci. 3, 65–71 (2002).

    Article  PubMed  Google Scholar 

  105. Bayer, S. A. & Altman, J. Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Prog. Neurobiol. 29, 57–106 (1987).

    Article  PubMed  Google Scholar 

  106. Ruiz-Cabrera, S., Pérez-Santos, I., Zaldivar-Diez, J. & García-Cabezas, M. Á. Expansion modes of primate nervous system structures in the light of the Prosomeric Model. Front. Mammal Sci. https://doi.org/10.3389/fmamm.2023.1241573 (2023).

  107. Kahle, W. Studies on the matrix phases and the local differences in maturation in the embryonic human brain; I. The matrix phases in general. Dtsch. Z. Nervenheilkd. 166, 273–302 (1951).

    PubMed  Google Scholar 

  108. Barbas, H. & Hilgetag, C. C. From circuit principles to human psychiatric disorders. Biol. Psychiatry 93, 388–390 (2023). This commentary proposed a mechanistic link between similarity and risk for disorder.

    Article  PubMed  Google Scholar 

  109. Nicosia, V., Vértes, P. E., Schafer, W. R., Latora, V. & Bullmore, E. T. Phase transition in the economically modeled growth of a cellular nervous system. Proc. Natl Acad. Sci. USA 110, 7880–7885 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Alexander-Bloch, A. F., Raznahan, A., Giedd, J. & Bullmore, E. T. The convergence of maturational change and structural covariance in human cortical networks. J. Neurosci. 33, 2889–2899 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wu, X. et al. Morphometric dis-similarity between cortical and subcortical areas underlies cognitive function and psychiatric symptomatology: a preadolescence study from ABCD. Mol. Psychiatry 28, 1146–1158 (2023). This study extended SSNs to the subcortex and found that structural similarity between regions mirrored the similarity between the trajectories of their structural development in a large longitudinal cohort.

    Article  PubMed  Google Scholar 

  112. Telley, L. et al. Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351, 1443–1446 (2016).

    Article  PubMed  Google Scholar 

  113. Klingler, E. Temporal controls over cortical projection neuron fate diversity. Curr. Opin. Neurobiol. 79, 102677 (2023).

    Article  PubMed  Google Scholar 

  114. Pagliaro, A. et al. Temporal morphogen gradient-driven neural induction shapes single expanded neuroepithelium brain organoids with enhanced cortical identity. Nat. Commun. 14, 7361 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Valk, S. L. et al. Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex. Nat. Commun. 13, 2341 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Puelles, L. Comprehensive Developmental Neuroscience: Patterning and Cell Type Specification in the Developing CNS and PNS. Vol. 1 Ch. 10 (Elsevier, 2013).

  119. Puelles, L., Alonso, A. & García-Calero, E. Genoarchitectural definition of the adult mouse mesocortical ring: a contribution to cortical ring theory. J. Comp. Neurol. 532, e25647 (2024).

    Article  PubMed  Google Scholar 

  120. Niu, J. et al. Age-associated cortical similarity networks correlate with cell type-specific transcriptional signatures. Cereb. Cortex 34, bhad454 (2024).

    Article  PubMed  Google Scholar 

  121. Tranfa, M. et al. Mapping structural disconnection and morphometric similarity alterations in multiple sclerosis. Preprint at bioRxiv https://doi.org/10.1101/2024.06.19.24309154 (2024).

  122. Qu, J. et al. Transcriptional expression patterns of the cortical morphometric similarity network in progressive supranuclear palsy. CNS Neurosci. Ther. 30, e14901 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wang, Y. et al. Morphometric similarity differences in drug-naive Parkinson’s disease correlate with transcriptomic signatures. CNS Neurosci. Ther. 30, e14680 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Morgan, S. E., Seidlitz, J., Whitaker, K. J. & Others Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc. Natl Acad. Sci. USA 116, 9604–9609 (2019). One of the first clinical studies using morphometric similarity network analysis to identify reduced similarity of network hubs in schizophrenia and to show that the gene expression pattern co-located with this atypical network phenotype was enriched for neurodevelopmental and schizophrenia risk genes.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Xue, K. et al. Transcriptional signatures of the cortical morphometric similarity network gradient in first-episode, treatment-naive major depressive disorder. Neuropsychopharmacology 48, 518–528 (2023).

    Article  PubMed  Google Scholar 

  126. Zong, X. et al. Virtual histology of morphometric similarity network after risperidone monotherapy and imaging-epigenetic biomarkers for treatment response in first-episode schizophrenia. Asian J. Psychiatr. 80, 103406 (2023).

    Article  PubMed  Google Scholar 

  127. Yao, G. et al. Cortical structural changes of morphometric similarity network in early-onset schizophrenia correlate with specific transcriptional expression patterns. BMC Med. 21, 479 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Seidlitz, J. et al. Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic disorders. Nat. Commun. 11, 3358 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Brouwer, R. M. et al. Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nat. Neurosci. 25, 421–432 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Warrier, V. et al. Genetic insights into human cortical organization and development through genome-wide analyses of 2,347 neuroimaging phenotypes. Nat. Genet. 55, 1483–1493 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Fu, J. et al. Cross-ancestry genome-wide association studies of brain imaging phenotypes. Nat. Genet. 56, 1110–1120 (2024).

    Article  PubMed  Google Scholar 

  136. Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N. & Fischl, B. Spurious group differences due to head motion in a diffusion MRI study. NeuroImage 88, 79–90 (2014).

    Article  PubMed  Google Scholar 

  137. Hallgrímsson, B. & Hall, B. K. (eds.) Variation: A Central Concept in Biology (Elsevier, 2011).

  138. Hallgrímsson, B. et al. Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol. Biol. 36, 355–376 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhao, R. et al. Developmental pattern of individual morphometric similarity network in the human fetal brain. NeuroImage 283, 120410 (2023).

    Article  Google Scholar 

  140. Fenchel, D. et al. Development of microstructural and morphological cortical profiles in the neonatal brain. Cereb. Cortex 30, 5767–5779 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wang, Y. et al. Profiling cortical morphometric similarity in perinatal brains: insights from development, sex difference, and inter-individual variation. NeuroImage 295, 120660 (2024).

    Article  PubMed  Google Scholar 

  142. Dorfschmidt, L. et al. Human adolescent brain similarity development is different for paralimbic versus neocortical zones. Proc. Natl Acad. Sci. USA 121, e2314074121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Janssen, J. et al. Heterogeneity of morphometric similarity networks in health and schizophrenia. Preprint at bioRxiv https://doi.org/10.1101/2024.03.26.586768 (2024).

  144. Li, J., Wang, Q., Li, K., Yao, L. & Guo, X. Tracking age-related topological changes in individual brain morphological networks across the human lifespan. J. Magn. Reson. Imaging 59, 1841–1851 (2024).

    Article  PubMed  Google Scholar 

  145. Li, J. et al. Morphometric brain organization across the human lifespan reveals increased dispersion linked to cognitive performance. PLoS Biol. 22, e3002647 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chi, J. G., Dooling, E. C. & Gilles, F. H. Gyral development of the human brain. Ann. Neurol. 1, 86–93 (1977).

    Article  PubMed  Google Scholar 

  147. Galdi, P. et al. Neonatal morphometric similarity networks predict atypical brain development associated with preterm birth. in Connectomics in NeuroImaging 47–57 (Springer International Publishing, 2018).

  148. Fenchel, D. et al. Neonatal multi-modal cortical profiles predict 18-month developmental outcomes. Dev. Cogn. Neurosci. 54, 101103 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yao, G. et al. Transcriptional patterns of the cortical morphometric inverse divergence in first-episode, treatment-naive early-onset schizophrenia. NeuroImage 285, 120493 (2024).

    Article  PubMed  Google Scholar 

  150. Park, H. W., Kim, S. Y. & Lee, W. H. Graph convolutional network with morphometric similarity networks for schizophrenia classification. in Medical Image Computing and Computer Assisted Intervention — MICCAI 2023, 626–636 (Springer Nature Switzerland, 2023).

  151. Lei, W. et al. Cell-type-specific genes associated with cortical structural abnormalities in pediatric bipolar disorder. Psychoradiology 2, 56–65 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Li, J. et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat. Commun. 12, 1647 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sowell, E. R. et al. Mapping cortical change across the human life span. Nat. Neurosci. 6, 309–315 (2003).

    Article  PubMed  Google Scholar 

  154. Jenkins, L. M. et al. Disinhibition in dementia related to reduced morphometric similarity of cognitive control network. Brain Commun. 6, fcae124 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Royer, J. et al. Cortical microstructural gradients capture memory network reorganization in temporal lobe epilepsy. Brain 146, 3923–3937 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Martins, D. et al. Transcriptional and cellular signatures of cortical morphometric remodelling in chronic pain. Pain 163, e759–e773 (2022).

    Article  PubMed  Google Scholar 

  157. Haroutunian, V., Katsel, P. & Schmeidler, J. Transcriptional vulnerability of brain regions in Alzheimer’s disease and dementia. Neurobiol. Aging 30, 561–573 (2009).

    Article  PubMed  Google Scholar 

  158. Barbas, H. Anatomic basis of cognitive–emotional interactions in the primate prefrontal cortex. Neurosci. Biobehav. Rev. 19, 499–510 (1995).

    Article  PubMed  Google Scholar 

  159. Dosenbach, N. U. F. et al. Real-time motion analytics during brain MRI improve data quality and reduce costs. NeuroImage 161, 80–93 (2017).

    Article  PubMed  Google Scholar 

  160. Reuter, M. et al. Head motion during MRI acquisition reduces gray matter volume and thickness estimates. NeuroImage 107, 107–115 (2015).

    Article  PubMed  Google Scholar 

  161. Alexander-Bloch, A. et al. Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI. Hum. Brain Mapp. 37, 2385–2397 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Pardoe, H. R. & Martin, S. P. In-scanner head motion and structural covariance networks. Hum. Brain Mapp. 43, 4335–4346 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Yeterian, E. H. & Pandya, D. N. Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. J. Comp. Neurol. 312, 43–67 (1991).

    Article  PubMed  Google Scholar 

  165. Del Rey, N. L.-G. & García-Cabezas, M. Á. Cytology, architecture, development, and connections of the primate striatum: hints for human pathology. Neurobiol. Dis. 176, 105945 (2023).

    Article  PubMed  Google Scholar 

  166. King, D. J. & Wood, A. G. Clinically feasible brain morphometric similarity network construction approaches with restricted magnetic resonance imaging acquisitions. Netw. Neurosci. 4, 274–291 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Billot, B. et al. SynthSeg: segmentation of brain MRI scans of any contrast and resolution without retraining. Med. Image Anal. 86, 102789 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Sarracanie, M. et al. Low-cost high-performance MRI. Sci. Rep. 5, 15177 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Váša, F. et al. Rapid processing and quantitative evaluation of structural brain scans for adaptive multimodal imaging. Hum. Brain Mapp. 43, 1749–1765 (2022).

    Article  PubMed  Google Scholar 

  170. Prado, P. et al. Author correction: the BrainLat project, a multimodal neuroimaging dataset of neurodegeneration from underrepresented backgrounds. Sci. Data 11, 19 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Deoni, S. C. L. et al. Development of a mobile low-field MRI scanner. Sci. Rep. 12, 5690 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Abate, F. et al. UNITY: a low-field magnetic resonance neuroimaging initiative to characterize neurodevelopment in low and middle-income settings. Dev. Cogn. Neurosci. 69, 101397 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Alger, J. R. The diffusion tensor imaging toolbox. J. Neurosci. 32, 7418–7428 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Cruz-Rizzolo, R. J., De Lima, M. A. X., Ervolino, E., de Oliveira, J. A. & Casatti, C. A. Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey. BMC Neurosci. 12, 6 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Brodmann, K. Vergleichende Lokalisationslehre Der Grosshirnrinde in Ihren Prinzipien Dargestellt Auf Grund Des Zellenbaues (Barth, 1909).

  176. García-Cabezas, M. Á., Hacker, J. L. & Zikopoulos, B. Homology of neocortical areas in rats and primates based on cortical type analysis: an update of the hypothesis on the dual origin of the neocortex. Brain Struct. Funct. 228, 1069–1093 (2023).

    Article  PubMed  Google Scholar 

  177. Sancha-Velasco, A., Uceda-Heras, A. & García-Cabezas, M. Á. Cortical type: a conceptual tool for meaningful biological interpretation of high-throughput gene expression data in the human cerebral cortex. Front. Neuroanat. 17, 1187280 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Sanides, F. Structure and function of the human frontal lobe. Neuropsychologia 2, 209–219 (1964).

    Article  Google Scholar 

  179. Pandya, D., Petrides, M. & Cipolloni, P. B. Cerebral Cortex: Architecture, Connections, and the Dual Origin Concept (Oxford Univ. Press, 2015).

  180. Pijnenburg, R. et al. Myelo- and cytoarchitectonic microstructural and functional human cortical atlases reconstructed in common MRI space. NeuroImage 239, 118274 (2021).

    Article  PubMed  Google Scholar 

  181. Goulas, A., Margulies, D. S., Bezgin, G. & Hilgetag, C. C. The architecture of mammalian cortical connectomes in light of the theory of the dual origin of the cerebral cortex. Cortex 118, 244–261 (2019).

    Article  PubMed  Google Scholar 

  182. Petersen, S. E., Seitzman, B. A., Nelson, S. M., Wig, G. S. & Gordon, E. M. Principles of cortical areas and their implications for neuroimaging. Neuron 112, 2837–2853 (2024).

    Article  PubMed  Google Scholar 

  183. Talairach, J. & Tournoux, P. Co-Planar Stereotaxis Atlas of the Human Brain (Georg Thieme, 1988).

  184. Zilles, K. Brodmann: a pioneer of human brain mapping — his impact on concepts of cortical organization. Brain 141, 3262–3278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Nieuwenhuys, R., Broere, C. A. J. & Cerliani, L. A new myeloarchitectonic map of the human neocortex based on data from the Vogt–Vogt school. Brain Struct. Funct. 220, 2551–2573 (2015).

    Article  PubMed  Google Scholar 

  186. von Economo, C. F., Koskinas, G. N. & Triarhou, L. C. Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex, Vol. 10. (Karger, 2008).

  187. von Economo, C. F. & Koskinas, G. N. Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen (1925).

  188. Rose, M. Über das histogenetische Prinzip der Einteilung der Grosshirnrinde. J. Psychol. Neurol. 32, 97–160 (1929).

    Google Scholar 

  189. Filimonoff, I. N. A rational subdivision of the cerebral cortex. Arch. Neurol. Psychiatry 58, 296–311 (1947).

    Article  PubMed  Google Scholar 

  190. Yakovlev, P. I. Pathoarchitectonic studies of cerebral malformations. III. Arrhinencephalies (holotelencephalies). J. Neuropathol. Exp. Neurol. 18, 22–55 (1959).

    Article  PubMed  Google Scholar 

  191. Mesulam, M. M. Principles of Behavioral and Cognitive Neurology (Oxford Univ. Press, 2000).

  192. Sanides, F. Architectonics of the human frontal lobe of the brain. With a demonstration of the principles of its formation as a reflection of phylogenetic differentiation of the cerebral cortex. Monogr. Gesamtgeb. Neurol. Psychiatr. 98, 1–201 (1962).

    PubMed  Google Scholar 

  193. Mesulam, M. M. & Mufson, E. J. Insula of the old world monkey. Architectonics in the insulo‐orbito‐temporal component of the paralimbic brain. J. Comp. Neurol. 212, 1–22 (1982).

    Article  PubMed  Google Scholar 

  194. Dart, R. A. The dual structure of the neopallium: its history and significance. J. Anat. 69, 3–19 (1934).

    PubMed  PubMed Central  Google Scholar 

  195. Abbie, A. A. Cortical lamination in a polyprotodont marsupial, Perameles nasuta. J. Comp. Neurol. 76, 509–536 (1942).

    Article  Google Scholar 

  196. Cheverud, J. M. A comparison of genetic and phenotypic correlations. Evolution 42, 958–968 (1988).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I.S., L.D. and E.B. researched data for the article. All authors provided substantial contributions to the discussion of content, wrote the article and reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Isaac Sebenius or Lena Dorfschmidt.

Ethics declarations

Competing interests

E.B. receives consultancy fees from Boehringer Ingelheim, Sosei Heptares, SR One and GlaxoSmithKline and receives royalties from Hachette, Elsevier. E.B., A.A.-B. and J.S. are co-founders of, and hold equity in, Centile Bioscience Inc. I.S., L.D. and S.E.M. declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Miguel Garcia-Cabezas, Claus Hilgetag, Feng Liu and Zonglei Zhen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anlagen

Anlagen are initial clusters of embryonic cells, or more generally the foundations of future tissue types that will differentiate with development.

Architectome

Architectome is a representation of the cortical patterning of differentiation, myelination or lamination in terms of inter-areal similarity.

Connectivity

Connectivity in the context of cortical anatomy refers primarily to monosynaptic axonal connections between areas, such as demonstrated by tract-tracing studies in animal models and approximated by structural MRI similarity and DTI-based tractography.

Connectome

Connectome is a representation of connections in the brain in terms of neuronal or white matter connections.

Cytoarchitectonic

Cytoarchitectonics is the study of the cellular composition, clustering and layering of neuronal tissue including, but not limited to, the proportion of different cell types and their orientation in space; historically rooted in microscopic histology.

Heterochronic

Heterochronic refers to differences in timing or duration of developmental or evolutionary processes in different brain regions.

Homophily

Homophily means that structurally similar cortical areas are more likely to be connected than dissimilar areas, and that structurally similar areas are also likely to be similar to each other in terms of functional connectivity, gene co-expression and other aspects of similarity. Homophily has several near-synonyms, including assortativity, clustering and local efficiency in the language of graph theory. Heterophily is the opposite of homophily, meaning that structurally dissimilar cortical areas are more likely to be axonally connected.

Isocortex

Isocortex has been subdivided into three cytoarchitectonically distinct zones of eulaminate cortex, or into functionally differentiated zones of unimodal or heteromodal association cortex.

Lamination

Lamination is the property of grey matter tissue being organized into a series of layers defined by cell composition.

Mesocortex

Mesocortex, including the insular and cingulate gyrus, has been further subdivided into more primitive (peri-allocortical, agranular) and more evolved (pro-isocortical, dysgranular) zones of cortex.

Myeloarchitectonic

Myeloarchitectonic is often used to refer to the layering and density of myelinated axonal fibres in microscopic histological studies of the cortex but can also be used to refer to the macroscopic organization of white matter tracts interconnecting cortical areas.

Similarity

Similarity is estimated as the association, usually correlation or divergence, between two areas in terms of the vector or distribution of one or more structural MRI metrics of geometry or tissue composition measured locally in each area.

Structural model

Structural model links cytoarchitectonic class with connectivity by showing that the probability and type of connection between two cortical areas depend on their cortical type; areas of the same type will likely be connected across all layers of cortex, whereas areas of different types have lamina-specific connections.

Topological similarity

Topological similarity refers to the similarity between two nodes in a network based on the similarity of their connectivity profiles (for example, in terms of nodal network properties).

Transcription

Transcription refers to the cellular process of copying the genetic information stored in a segment of DNA into an RNA copy.

Wiring cost

Wiring cost refers to the biological cost of forming and maintaining axonal connections between cortical areas, which is often approximated by the physical distance of the connection.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebenius, I., Dorfschmidt, L., Seidlitz, J. et al. Structural MRI of brain similarity networks. Nat. Rev. Neurosci. 26, 42–59 (2025). https://doi.org/10.1038/s41583-024-00882-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-024-00882-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing