Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Musical neurodynamics

Abstract

A great deal of research in the neuroscience of music suggests that neural oscillations synchronize with musical stimuli. Although neural synchronization is a well-studied mechanism underpinning expectation, it has even more far-reaching implications for music. In this Perspective, we survey the literature on the neuroscience of music, including pitch, harmony, melody, tonality, rhythm, metre, groove and affect. We describe how fundamental dynamical principles based on known neural mechanisms can explain basic aspects of music perception and performance, as summarized in neural resonance theory. Building on principles such as resonance, stability, attunement and strong anticipation, we propose that people anticipate musical events not through predictive neural models, but because brain–body dynamics physically embody musical structure. The interaction of certain kinds of sounds with ongoing pattern-forming dynamics results in patterns of perception, action and coordination that we collectively experience as music. Statistically universal structures may have arisen in music because they correspond to stable states of complex, pattern-forming dynamical systems. This analysis of empirical findings from the perspective of neurodynamic principles sheds new light on the neuroscience of music and what makes music powerful.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timescales of neural oscillations and music.
Fig. 2: The predictions of neural resonance theory.
Fig. 3: Stability predictions across timescales.
Fig. 4: Rhythm and temporal structure.
Fig. 5: Consonance, melody and tonality.

Similar content being viewed by others

References

  1. Zuckerkandl, V. The Sense of Music (Princeton Univ. Press, 1959).

  2. Mehr, S. A. et al. Universality and diversity in human song. Science 366, eaax0868 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Savage, P. E., Brown, S., Sakai, E. & Currie, T. E. Statistical universals reveal the structures and functions of human music. Proc. Natl Acad. Sci. USA 112, 8987–8992 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meyer, L. B. Emotion and Meaning in Music (Univ. Chicago Press, 1956).

  5. Large, E. W. & Kim, J. C. in Foundations in Music Psychology: Theory and Research (eds Rentfrow, P. J. & Levitin, D. J.) 221–263 (MIT Press, 2019).

  6. Huron, D. Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, 2006).

  7. Vuust, P., Heggli, O. A., Friston, K. J. & Kringelbach, M. L. Music in the brain. Nat. Rev. Neurosci. 23, 287–305 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Buzsáki, G. & Vöröslakos, M. Brain rhythms have come of age. Neuron 111, 922–926 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lakatos, P., Gross, J. & Thut, G. A new unifying account of the roles of neuronal entrainment. Curr. Biol. 29, R890–R905 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Hoppensteadt, F. C. & Izhikevich, E. M. Weakly Connected Neural Networks (Springer, 1997).

  12. Kim, J. C. & Large, E. W. Signal processing in periodically forced gradient frequency neural networks. Front. Comput. Neurosci. 9, 152 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Large, E. W., Almonte, F. V. & Velasco, M. J. A canonical model for gradient frequency neural networks. Phys. Nonlinear Phenom. 239, 905–911 (2010).

    Article  CAS  Google Scholar 

  14. Gibson, J. J. The Ecological Approach to Visual Perception: Classic Edition (Houghton Mifflin, 1979).

  15. Haken, H., Kelso, J. A. S. & Bunz, H. A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51, 347–356 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Large, E. W. & Jones, M. R. The dynamics of attending: how people track time-varying events. Psychol. Rev. 106, 119–159 (1999).

    Article  Google Scholar 

  17. Thompson, E. & Varela, F. J. Radical embodiment: neural dynamics and consciousness. Trends Cogn. Sci. 5, 418–425 (2001).

    Article  PubMed  Google Scholar 

  18. Kim, J. C. & Large, E. W. Mode locking in periodically forced gradient frequency neural networks. Phys. Rev. E 99, 022421 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, J. C. & Large, E. W. Multifrequency Hebbian plasticity in coupled neural oscillators. Biol. Cybern. 115, 43–57 (2021).

    Article  PubMed  Google Scholar 

  20. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: a Universal Concept in Nonlinear Sciences Vol. 2 (Cambridge Univ. Press, 2002).

  21. Izhikevich, E. M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (MIT Press, 2007).

  22. Eguíluz, V. M., Ospeck, M., Choe, Y., Hudspeth, A. J. & Magnasco, M. O. Essential nonlinearities in hearing. Phys. Rev. Lett. 84, 5232–5235 (2000).

    Article  PubMed  Google Scholar 

  23. Laudanski, J., Coombes, S., Palmer, A. R. & Sumner, C. J. Mode-locked spike trains in responses of ventral cochlear nucleus chopper and onset neurons to periodic stimuli. J. Neurophysiol. 103, 1226–1237 (2010).

    Article  PubMed  Google Scholar 

  24. Fujioka, T., Trainor, L. J., Large, E. W. & Ross, B. Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J. Neurosci. 32, 1791–1802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I. & Schroeder, C. E. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Strogatz, S. H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Westview Press, 2014).

  27. Peper, C. L. E., Beek, P. J. & van Wieringen, P. C. W. Coupling strength in tapping a 2:3 polyrhythm. Hum. Mov. Sci. 14, 217–245 (1995).

    Article  Google Scholar 

  28. Tichko, P., Kim, J. C. & Large, E. W. Bouncing the network: a dynamical systems model of auditory–vestibular interactions underlying infants’ perception of musical rhythm. Dev. Sci. 24, e13103 (2021).

    Article  PubMed  Google Scholar 

  29. Roman, I. R., Roman, A. S., Kim, J. C. & Large, E. W. Hebbian learning with elasticity explains how the spontaneous motor tempo affects music performance synchronization. PLoS Comput. Biol. 19, e1011154 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tichko, P. & Large, E. W. Modeling infants’ perceptual narrowing to musical rhythms: neural oscillation and Hebbian plasticity. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.14050 (2019).

  31. Stepp, N. & Turvey, M. T. On strong anticipation. Cogn. Syst. Res. 11, 148–164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stepp, N. & Turvey, M. T. The muddle of anticipation. Ecol. Psychol. 27, 103–126 (2015).

    Article  Google Scholar 

  33. Voss, H. U. Anticipating chaotic synchronization. Phys. Rev. E 61, 5115–5119 (2000).

    Article  CAS  Google Scholar 

  34. Schuster, H. G. & Wagner, P. Mutual entrainment of two limit cycle oscillators with time delayed coupling. Prog. Theor. Phys. 81, 939–945 (1989).

    Article  Google Scholar 

  35. Demos, A. P., Layeghi, H., Wanderley, M. M. & Palmer, C. Staying together: a bidirectional delay-coupled approach to joint action. Cogn. Sci. 43, e12766 (2019).

    Article  PubMed  Google Scholar 

  36. Patel, A. D. & Iversen, J. R. The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Front. Syst. Neurosci. 8, 57 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dubois, D. M. Incursive and hyperincursive systems, fractal machine and anticipatory logic. In AIP Conference Proceedings Vol. 573 (ed. Dubois, D. M.) 437–451 (AIP, 2001).

  38. Roman, I. R., Washburn, A., Large, E. W., Chafe, C. & Fujioka, T. Delayed feedback embedded in perception-action coordination cycles results in anticipation behavior during synchronized rhythmic action: a dynamical systems approach. PLoS Comput. Biol. 15, e1007371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Repp, B. H. Sensorimotor synchronization: a review of the tapping literature. Psychon. Bull. Rev. 12, 969–992 (2005).

    Article  PubMed  Google Scholar 

  40. Jones, M. R. Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychol. Rev. 83, 323–355 (1976).

    Article  CAS  PubMed  Google Scholar 

  41. Correa, Á. & Nobre, A. C. Neural modulation by regularity and passage of time. J. Neurophysiol. 100, 1649–1655 (2008).

    Article  PubMed  Google Scholar 

  42. Henry, M. J. & Herrmann, B. Low-frequency neural oscillations support dynamic attending in temporal context. Timing Time Percept. 2, 62–86 (2014).

    Article  Google Scholar 

  43. Jones, M. R., Moynihan, H., MacKenzie, N. & Puente, J. Temporal aspects of stimulus-driven attending in dynamic arrays. Psychol. Sci. 13, 313–319 (2002).

    Article  PubMed  Google Scholar 

  44. Rohenkohl, G. & Nobre, A. C. Alpha oscillations related to anticipatory attention follow temporal expectations. J. Neurosci. 31, 14076–14084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fitzroy, A. B. & Sanders, L. D. Musical meter modulates the allocation of attention across time. J. Cogn. Neurosci. 27, 2339–2351 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Herbst, S. K., Stefanics, G. & Obleser, J. Endogenous modulation of delta phase by expectation — a replication of Stefanics et al., 2010. Cortex 149, 226–245 (2022).

    Article  PubMed  Google Scholar 

  47. Ding, N. et al. Temporal modulations in speech and music. Neurosci. Biobehav. Rev. 81, 181–187 (2017).

    Article  PubMed  Google Scholar 

  48. Harding, E. E., Sammler, D., Henry, M. J., Large, E. W. & Kotz, S. A. Cortical tracking of rhythm in music and speech. Neuroimage 185, 96–101 (2019).

    Article  PubMed  Google Scholar 

  49. Herrmann, B., Henry, M. J., Grigutsch, M. & Obleser, J. Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time. J. Neurosci. 33, 15799–15809 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nozaradan, S., Peretz, I. & Mouraux, A. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J. Neurosci. 32, 17572–17581 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tal, I. et al. Neural entrainment to the beat: the ‘missing-pulse’ phenomenon. J. Neurosci. 37, 6331–6341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nozaradan, S., Peretz, I., Missal, M. & Mouraux, A. Tagging the neuronal entrainment to beat and meter. J. Neurosci. 31, 10234–10240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Snyder, J. S. & Large, E. W. Gamma-band activity reflects the metric structure of rhythmic tone sequences. Cogn. Brain Res. 24, 117–126 (2005).

    Article  Google Scholar 

  54. Giehl, J., Noury, N. & Siegel, M. Dissociating harmonic and non-harmonic phase-amplitude coupling in the human brain. Neuroimage 227, 117648 (2021).

    Article  PubMed  Google Scholar 

  55. Beek, P. J., Peper, C. E. & Daffertshofer, A. Modeling rhythmic interlimb coordination: beyond the Haken–Kelso–Bunz model. Brain Cogn. 48, 149–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Large, E. W. et al. Dynamic models for musical rhythm perception and coordination. Front. Comput. Neurosci. 17, 1151895 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen, J. L., Penhune, V. B. & Zatorre, R. J. Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex 18, 2844–2854 (2008).

    Article  PubMed  Google Scholar 

  58. Grahn, J. A. & Brett, M. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19, 893–906 (2007).

    Article  PubMed  Google Scholar 

  59. Zalta, A., Petkoski, S. & Morillon, B. Natural rhythms of periodic temporal attention. Nat. Commun. 11, 1051 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morillon, B., Schroeder, C. E. & Wyart, V. Motor contributions to the temporal precision of auditory attention. Nat. Commun. 5, 5255 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Nozaradan, S., Peretz, I. & Keller, P. E. Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Sci. Rep. 6, 20612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Repp, B. H. Rate limits of sensorimotor synchronization. Adv. Cogn. Psychol. 2, 163–181 (2006).

    Article  Google Scholar 

  63. Treffner, P. J. & Turvey, M. T. Resonance constraints on rhythmic movement. J. Exp. Psychol. Hum. Percept. Perform. 19, 1221–1237 (1993).

    Article  Google Scholar 

  64. Peper, C. L. E., Beek, P. J. & van Wieringen, P. C. W. Multifrequency coordination in bimanual tapping: asymmetrical coupling and signs of supercriticality. J. Exp. Psychol. Hum. Percept. Perform. 21, 1117–1138 (1995).

    Article  Google Scholar 

  65. Aschersleben, G., Gehrke, J. & Prinz, W. Tapping with peripheral nerve block. Exp. Brain Res. 136, 331–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Lerdahl, F. & Jackendoff, R. S. A Generative Theory of Tonal Music (MIT Press, 1983).

  67. Fraisse, P. in The Psychology of Music (ed. Deutsch, D.) 149–180 (Academic, 1982).

  68. Povel, D.-J. & Essens, P. Perception of temporal patterns. Music Percept. 2, 411–440 (1985).

    Article  Google Scholar 

  69. Jacoby, N. & McDermott, J. H. Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Curr. Biol. 27, 359–370 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M. & Miller, N. S. The time of our lives: life span development of timing and event tracking. J. Exp. Psychol. Gen. 135, 348–367 (2006).

    Article  PubMed  Google Scholar 

  71. Palmer, C., Lidji, P. & Peretz, I. Losing the beat: deficits in temporal coordination. Philos. Trans. R. Soc. B 369, 20130405 (2014).

    Article  Google Scholar 

  72. Naveda, L., Gouyon, F., Guedes, C. & Leman, M. Microtiming patterns and interactions with musical properties in Samba music. J. N. Music Res. 40, 225–238 (2011).

    Article  Google Scholar 

  73. Large, E. W., Herrera, J. A. & Velasco, M. J. Neural networks for beat perception in musical rhythm. Front. Syst. Neurosci. 9, 1–14 (2015).

    Article  Google Scholar 

  74. Janata, P., Tomic, S. T. & Haberman, J. M. Sensorimotor coupling in music and the psychology of the groove. J. Exp. Psychol. Gen. 141, 54–75 (2012).

    Article  PubMed  Google Scholar 

  75. Todd, N. P. & Lee, C. S. The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives. Front. Hum. Neurosci. 9, 444 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Haegens, S. & Zion Golumbic, E. Rhythmic facilitation of sensory processing: a critical review. Neurosci. Biobehav. Rev. 86, 150–165 (2018).

    Article  PubMed  Google Scholar 

  77. Ross, J. M., Iversen, J. R. & Balasubramaniam, R. The role of posterior parietal cortex in beat-based timing perception: a continuous theta burst stimulation study. J. Cogn. Neurosci. 30, 634–643 (2018).

    Article  PubMed  Google Scholar 

  78. Vuust, P., Dietz, M. J., Witek, M. & Kringelbach, M. L. Now you hear it: a predictive coding model for understanding rhythmic incongruity. Ann. N. Y. Acad. Sci. 1423, 19–29 (2018).

    Article  Google Scholar 

  79. Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L. & Vuust, P. Syncopation, body-movement and pleasure in groove music. PLoS ONE 9, e94446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Matthews, T. E., Stupacher, J. & Vuust, P. The pleasurable urge to move to music through the lens of learning progress. J. Cogn. 6, 55 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zalta, A., Large, E. W., Schön, D. & Morillon, B. Neural dynamics of predictive timing and motor engagement in music listening. Sci. Adv. 10, eadi2525 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Spiech, C. et al. Sensorimotor synchronization increases groove. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/fw7mh (2022).

  83. Spiech, C., Danielsen, A., Laeng, B. & Endestad, T. Oscillatory attention in groove. Cortex 174, 137–148 (2024).

    Article  PubMed  Google Scholar 

  84. Matthews, T. E., Witek, M. A. G., Thibodeau, J. L. N., Vuust, P. & Penhune, V. B. Perceived motor synchrony with the beat is more strongly related to groove than measured synchrony. Music Percept. 39, 423–442 (2022).

    Article  Google Scholar 

  85. Senn, O. et al. Null effect of perceived drum pattern complexity on the experience of groove. PLoS ONE 19, e0311877 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. London, J., Polak, R. & Jacoby, N. Rhythm histograms and musical meter: a corpus study of Malian percussion music. Psychon. Bull. Rev. 24, 474–480 (2017).

    Article  PubMed  Google Scholar 

  87. London, J. Hearing in Time (Oxford Univ. Press, 2012).

  88. Hannon, E. E. & Trehub, S. E. Metrical categories in infancy and adulthood. Psychol. Sci. 16, 48–55 (2005).

    Article  PubMed  Google Scholar 

  89. Nave-Blodgett, J. E., Snyder, J. S. & Hannon, E. E. Hierarchical beat perception develops throughout childhood and adolescence and is enhanced in those with musical training. J. Exp. Psychol. Gen. 150, 314–339 (2021).

    Article  PubMed  Google Scholar 

  90. Goldberg, D. What’s the meter of Elenino Horo? Rhythm and timing in drumming for a Bulgarian folk dance. Anal. Approaches World Music 7, 69–107 (2020).

    Google Scholar 

  91. Tichko, P., Kim, J. C. & Large, E. W. A dynamical, radically embodied, and ecological theory of rhythm development. Front. Psychol. 13, 653696 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ullal-Gupta, S., Vanden Bosch der Nederlanden, C. M., Tichko, P., Lahav, A. & Hannon, E. E. Linking prenatal experience to the emerging musical mind. Front. Syst. Neurosci. 7, 48 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Doelling, K. B. & Poeppel, D. Cortical entrainment to music and its modulation by expertise. Proc. Natl Acad. Sci. USA. 112, E6233–E6242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Trainor, L. J., Gao, X., Lei, J., Lehtovaara, K. & Harris, L. R. The primal role of the vestibular system in determining musical rhythm. Cortex 45, 35–43 (2009).

    Article  PubMed  Google Scholar 

  95. Phillips-Silver, J. & Trainor, L. J. Psychology: feeling the beat: movement influences infant rhythm perception. Science 308, 1430 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Phillips-Silver, J. & Trainor, L. J. Vestibular influence on auditory metrical interpretation. Brain Cogn. 67, 94–102 (2008).

    Article  PubMed  Google Scholar 

  97. Zamm, A., Wellman, C. & Palmer, C. Endogenous rhythms influence interpersonal synchrony. J. Exp. Psychol. Hum. Percept. Perform. 42, 611–616 (2016).

    Article  PubMed  Google Scholar 

  98. Palmer, C., Spidle, F., Koopmans, E. & Schubert, P. Ears, heads, and eyes: when singers synchronise. Q. J. Exp. Psychol. 72, 2272–2287 (2019).

    Article  Google Scholar 

  99. Scheurich, R., Zamm, A. & Palmer, C. Tapping into rate flexibility: musical training facilitates synchronization around spontaneous production rates. Front. Psychol. 9, 458 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zamm, A., Wang, Y. & Palmer, C. Musicians’ natural frequencies of performance display optimal temporal stability. J. Biol. Rhythms 33, 432–440 (2018).

    Article  PubMed  Google Scholar 

  101. Zamm, A. et al. Synchronizing MIDI and wireless EEG measurements during natural piano performance. Brain Res. 1716, 27–38 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Zamm, A. et al. Behavioral and neural dynamics of interpersonal synchrony between performing musicians: a wireless EEG hyperscanning study. Front. Hum. Neurosci. 15, 717810 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Palmer, C. & Demos, A. P. Are we in time? How predictive coding and dynamical systems explain musical synchrony. Curr. Dir. Psychol. Sci. 31, 147–153 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Fredrickson-Hemsing, L., Ji, S., Bruinsma, R. & Bozovic, D. Mode-locking dynamics of hair cells of the inner ear. Phys. Rev. E 86, 021915 (2012).

    Article  Google Scholar 

  105. Camalet, S., Duke, T., Jülicher, F. & Prost, J. Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc. Natl Acad. Sci. USA 97, 3183–3188 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jülicher, F., Andor, D. & Duke, T. Physical basis of two-tone interference in hearing. Proc. Natl Acad. Sci. USA 98, 9080–9085 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lerud, K. D., Kim, J. C., Almonte, F. V., Carney, L. H. & Large, E. W. A canonical oscillator model of cochlear dynamics. Hear. Res. 380, 100–107 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Langner, G. Periodicity coding in the auditory system. Hear. Res. 60, 115–142 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Lerud, K. D., Almonte, F. V., Kim, J. C. & Large, E. W. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals. Hear. Res. 308, 41–49 (2014).

    Article  PubMed  Google Scholar 

  110. Shamma, S. A. Speech processing in the auditory system I: the representation of speech sounds in the responses of the auditory nerve. J. Acoust. Soc. Am. 78, 1612–1621 (1985).

    Article  CAS  PubMed  Google Scholar 

  111. Licklider, J. C. R. A duplex theory of pitch perception. Experientia 7, 128–134 (1951).

    Article  CAS  PubMed  Google Scholar 

  112. de Cheveigné, A. & Pressnitzer, D. The case of the missing delay lines: synthetic delays obtained by cross-channel phase interaction. J. Acoust. Soc. Am. 119, 3908–3918 (2006).

    Article  PubMed  Google Scholar 

  113. Cartwright, J. H. E., González, D. L. & Piro, O. Nonlinear dynamics of the perceived pitch of complex sounds. Phys. Rev. Lett. 82, 5389–5392 (1999).

    Article  CAS  Google Scholar 

  114. Schouten, J. F., Ritsma, R. J. & Cardozo, B. L. Pitch of the residue. J. Acoust. Soc. Am. 34, 1418–1424 (1962).

    Article  Google Scholar 

  115. Huang, C. & Rinzel, J. A neuronal network model for pitch selectivity and representation. Front. Comput. Neurosci. 10, 57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Meddis, R. & O’Mard, L. P. Virtual pitch in a computational physiological model. J. Acoust. Soc. Am. 120, 3861–3869 (2006).

    Article  PubMed  Google Scholar 

  117. Bigand, E., Parncutt, R. & Lerdahl, F. Perception of musical tension in short chord sequences: the influence of harmonic function, sensory dissonance, horizontal motion, and musical training. Percept. Psychophys. 58, 125–141 (1996).

    Article  Google Scholar 

  118. von Helmholtz, H. L. F. On the Sensations of Tone as a Physiological Basis for the Theory of Music (Dover, 1954).

  119. McDermott, J. H., Lehr, A. J. & Oxenham, A. J. Individual differences reveal the basis of consonance. Curr. Biol. 20, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tramo, M. J., Cariani, P. A., Delgutte, B. & Braida, L. D. Neurobiological foundations for the theory of harmony in Western tonal music. Ann. N. Y. Acad. Sci. 930, 92–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Shapira Lots, I. & Stone, L. Perception of musical consonance and dissonance: an outcome of neural synchronization. J. R. Soc. Interface 5, 1429–1434 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lee, K. M., Skoe, E., Kraus, N. & Ashley, R. Selective subcortical enhancement of musical intervals in musicians. J. Neurosci. 29, 5832–5840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ronconi, L., Oosterhof, N. N., Bonmassar, C. & Melcher, D. Multiple oscillatory rhythms determine the temporal organization of perception. Proc. Natl Acad. Sci. USA 114, 13435–13440 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. McDermott, J. H., Schultz, A. F., Undurraga, E. A. & Godoy, R. A. Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature 535, 547–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Lahdelma, I. & Eerola, T. Cultural familiarity and musical expertise impact the pleasantness of consonance/dissonance but not its perceived tension. Sci. Rep. 10, 8693 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Burns, E. M. in The Psychology of Music 2nd edn (ed. Deutsch, D.) 215–264 (Academic, 1999).

  128. Kathios, N., Sachs, M. E., Zhang, E., Ou, Y. & Loui, P. Generating new musical preferences from multilevel mapping of predictions to reward. Psychol. Sci. 35, 34–54 (2024).

    Article  PubMed  Google Scholar 

  129. McPherson, M. J. et al. Perceptual fusion of musical notes by native Amazonians suggests universal representations of musical intervals. Nat. Commun. 11, 2786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Burns, E. M. & Ward, W. D. Categorical perception — phenomenon or epiphenomenon: evidence from experiments in the perception of melodic musical intervals. J. Acoust. Soc. Am. 63, 456–468 (1978).

    Article  CAS  PubMed  Google Scholar 

  131. Rakowski, A. Intonation variants of musical intervals in isolation and in musical contexts. Psychol. Music 18, 60–72 (1990).

    Article  Google Scholar 

  132. Siegel, J. A. & Siegel, W. Categorical perception of tonal intervais: musicians can’t tellsharp fromflat. Percept. Psychophys. 21, 399–407 (1977).

    Article  Google Scholar 

  133. Schellenberg, E. G. & Trehub, S. E. Children’s discrimination of melodic intervals. Dev. Psychol. 32, 1039–1050 (1996).

    Article  Google Scholar 

  134. Large, E. W. in Nonlinear Dynamics in Human Behavior (eds Huys, R. & Jirsa, V. K.) 193–211 (Springer, 2010).

  135. Schellenberg, E. G. & Trehub, S. E. Natural musical intervals: evidence from infant listeners. Psychol. Sci. 7, 272–277 (1996).

    Article  Google Scholar 

  136. Goldstein, J. L. An optimum processor theory for the central formation of the pitch of complex tones. J. Acoust. Soc. Am. 54, 1496–1516 (1973).

    Article  CAS  PubMed  Google Scholar 

  137. Larson, S. The problem of prolongation in tonal music: terminology, perception, and expressive meaning. J. Music Theory 41, 101–136 (1997).

    Article  Google Scholar 

  138. Kim, J. C. A dynamical model of pitch memory provides an improved basis for implied harmony estimation. Front. Psychol. 8, 666 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lerdahl, F. Tonal Pitch Space (Oxford Univ. Press, 2001).

  140. Krumhansl, C. L. Cognitive Foundations of Musical Pitch (Oxford Univ. Press, 1990).

  141. de Clercq, T. & Temperley, D. A corpus analysis of rock harmony. Pop. Music 30, 47–70 (2011).

    Article  Google Scholar 

  142. Krumhansl, C. L., Louhivuori, J., Toiviainen, P., Järvinen, T. & Eerola, T. Melodic expectation in Finnish spiritual folk hymns: convergence of statistical, behavioral, and computational approaches. Music Percept. 17, 151–195 (1999).

    Article  Google Scholar 

  143. Temperley, D. Music and Probability (MIT Press, 2007).

  144. Leman, M. An auditory model of the role of short-term memory in probe-tone ratings. Music Percept. 17, 481–509 (2000).

    Article  Google Scholar 

  145. Bigand, E., Delbé, C., Poulin-Charronnat, B., Leman, M. & Tillmann, B. Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory. Front. Syst. Neurosci. 8, 94 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Krumhansl, C. L. & Kessler, E. J. Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89, 334–368 (1982).

    Article  CAS  PubMed  Google Scholar 

  147. Castellano, M. A., Krumhansl, C. L. & Bharucha, J. J. Tonal hierarchies in the music of North India. J. Exp. Psychol. Gen. 113, 394–412 (1984).

    Article  CAS  PubMed  Google Scholar 

  148. Large, E. W., Kim, J. C., Flaig, N. K., Bharucha, J. J. & Krumhansl, C. L. A neurodynamic account of musical tonality. Music Percept. 33, 319–331 (2016).

    Article  Google Scholar 

  149. Loui, P., Wessel, D. L. & Kam, C. L. H. Humans rapidly learn grammatical structure in a new musical scale. Music Percept. 27, 377–388 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Nieminen, S., Istók, E., Brattico, E. & Tervaniemi, M. The development of the aesthetic experience of music: preference, emotions, and beauty. Music Sci. 16, 372–391 (2012).

    Article  Google Scholar 

  151. Hunter, P. G., Glenn Schellenberg, E. & Stalinski, S. M. Liking and identifying emotionally expressive music: age and gender differences. J. Exp. Child Psychol. 110, 80–93 (2011).

    Article  PubMed  Google Scholar 

  152. Fritz, T. et al. Universal recognition of three basic emotions in music. Curr. Biol. 19, 573–576 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Balkwill, L.-L. & Thompson, W. F. A cross-cultural investigation of the perception of emotion in music: psychophysical and cultural cues. Music Percept. 17, 43–64 (1999).

    Article  Google Scholar 

  154. Chordia, P. & Rae, A. in Computer Music Modeling and Retrieval. Sense of Sounds (eds Kronland-Martinet, R. et al.) 110–124 (Springer, 2008).

  155. Large, E. W., Lerud, K., Kim, J. C., & Harrell, D. GrFNN Toolbox. GitHub https://github.com/MusicDynamicsLab/GrFNNToolbox (2024).

  156. Razdan, A. S. & Patel, A. D. Rhythmic consonance and dissonance: perceptual ratings of rhythmic analogs of musical pitch intervals and chords. In Proc. 14th International Conference on Music Perception and Cognition 807–812 (Causal Productions, 2016).

  157. Lerousseau, J. P., Trébuchon, A., Morillon, B. & Schön, D. Frequency selectivity of persistent cortical oscillatory responses to auditory rhythmic stimulation. J. Neurosci. 41, 7991–8006 (2021).

    Article  CAS  Google Scholar 

  158. Snyder, J. S., Gordon, R. L. & Hannon, E. E. Theoretical and empirical advances in understanding musical rhythm, beat and metre. Nat. Rev. Psychol. 3, 449–462 (2024).

    Article  Google Scholar 

  159. Nave-Blodgett, J. E., Snyder, J. S. & Hannon, E. E. Auditory superiority for perceiving the beat level but not measure level in music. J. Exp. Psychol. Hum. Percept. Perform. 47, 1516–1542 (2021).

    Article  PubMed  Google Scholar 

  160. Kotz, S. A., Ravignani, A. & Fitch, W. T. The evolution of rhythm processing. Trends Cogn. Sci. 22, 896–910 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Ravignani, A., Delgado, T. & Kirby, S. Musical evolution in the lab exhibits rhythmic universals. Nat. Hum. Behav. 1, 0007 (2016).

    Article  Google Scholar 

  162. Schubert, E. Modeling perceived emotion with continuous musical features. Music Percept. 21, 561–585 (2004).

    Article  Google Scholar 

  163. Pliego, A., Vega, R., Gómez, R., Reyes-Lagos, J. J. & Soto, E. A transient decrease in heart rate with unilateral and bilateral galvanic vestibular stimulation in healthy humans. Eur. J. Neurosci. 54, 4670–4681 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Rajagopalan, A. et al. Understanding the links between vestibular and limbic systems regulating emotions. J. Nat. Sci. Biol. Med. 8, 11–15 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Harding, E. E. et al. Musical emotion categorization with vocoders of varying temporal and spectral content. Trends Hear. 27, 1–19 (2023).

    Google Scholar 

  166. Harding, E. E. et al. Vocal and musical emotion perception, voice cue discrimination, and quality of life in cochlear implant users with and without acoustic hearing. Q. J. Exp. Psychol.https://doi.org/10.1177/17470218251316499 (2025).

  167. Cannon, J. & Kaplan, T. Inferred representations behave like oscillators in dynamic Bayesian models of beat perception. J. Math. Psychol. 122, 102869 (2024).

    Article  Google Scholar 

  168. Zemlianova, K., Bose, A. & Rinzel, J. Dynamical mechanisms of how an RNN keeps a beat, uncovered with a low-dimensional reduced model. Sci. Rep. 14, 26388 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gámez, J., Mendoza, G., Prado, L., Betancourt, A. & Merchant, H. The amplitude in periodic neural state trajectories underlies the tempo of rhythmic tapping. PLoS Biol. 17, e3000054 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Cook, P., Rouse, A., Wilson, M. & Reichmuth, C. A California sea lion (Zalophus californianus) can keep the beat: motor entrainment to rhythmic auditory stimuli in a non vocal mimic. J. Comp. Psychol. https://doi.org/10.1037/a0032345 (2013).

  171. Rajendran, V. G., Marquez, J. P., Prado, L. & Merchant, H. Monkeys have rhythm. Preprint at bioRxiv https://doi.org/10.1101/2024.03.11.584468 (2024).

  172. Kerrebroeck, B. V., Wanderley, M. M., Demos, A. P. & Palmer, C. Human-machine trios show different tempo changes in musical tasks. In Proc. Annual Meeting of the Cognitive Science Society Vol. 46 (eds Samuelson, L. K. et al.) 650–656 (Cognitive Science Society, 2024).

  173. Butler, B. E. & Lomber, S. G. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration. Front. Syst. Neurosci. 7, 92 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors all researched data for the article, provided substantial contributions to discussion of its content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Edward W. Large.

Ethics declarations

Competing interests

E.W.L. is founder of, and owns stock in, Oscilloscape, Inc. (dba Oscillo Biosciences). J.C.K. is currently a paid employee of, and owns stock in, Oscilloscape, Inc. E.W.L. and J.C.K. are authors of patents owned by Oscilloscape, Inc. The subject matter of the current paper is not directly related to the business interests of Oscilloscape, and no products of Oscilloscape are discussed in this paper.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Joel Snyder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anticipation

The process by which a system responds to an expected event before the event occurs.

Attraction

The evolving state of a dynamical system towards a more stable state, such as an orbit.

Attunement

The adaptation of neural circuits to the environment, enhancing response stability and flexibility.

Beat

In Western music theory, a simple (often periodic) rhythm that can be perceived within another rhythm.

Bistable systems

Systems with two stable states.

Consonance

The perceived pleasantness of a musical interval.

Critical oscillation

An oscillation poised at a bifurcation point, the transition between damped and self-sustained oscillation.

Dissonance

The perceived unpleasantness of a musical interval.

Dynamic attending

Entrainment of attentional processes with external temporal signals to focus on specific events in time.

Embodiment

A state of the brain and/or body that has a lawful, physical relationship to external events (for example, sounds) determined by physical principles. This embodied representation contrasts with the notion of a symbolic representation, in which symbols have arbitrary relationships to external events.

Enculturation

The process by which individuals learn, adopt and maintain their cultural traditions. Musical enculturation occurs through exposure to the structure of music of one’s native culture, including tuning, scale and metre.

Expectation

The prediction of events and event timing based on context and prior experience. Musical expectations are violated when unexpected events occur or when (expected) events occur at unexpected times.

Groove

Embodied sense of rhythmic movement or the desire to move in response to a patterned sequence of sounds such as music.

Harmonic intervals

The pitch difference between simultaneous musical tones.

Harmony

Two or more complementary notes played or sung at the same time. The chords that accompany a melody.

Hebbian learning

An increase in synaptic efficacy that arises from a presynaptic cell’s repeated and persistent stimulation of a postsynaptic cell. Hebbian learning in oscillatory neural networks occurs only when the neural oscillators resonate to each other (phase- or mode-lock).

Implied harmony

The (simultaneous) harmony implied by a (sequential) melody, without being explicitly present.

Just intonation

A tuning system in which intervals are tuned to whole number frequency ratios (such as 3:2 and 4:3).

Limit cycle

A closed orbit (self-sustained oscillation) on which a dynamical system remains.

Melodic interval

The pitch difference between two tones that are sounded one after another (as in a melody).

Metre

In Western music theory, nested patterns of strong and weak beats perceived in a rhythm.

Missing fundamental

The pitch perceived as the first harmonic, when the first harmonic is absent from the waveform.

Mode-locking

Synchronization in an integer (non-1:1) ratio.

Natural frequency

The inherent rate at which a system oscillates when not subjected to external forces, which is determined by its physical characteristics.

Nonlinear oscillator

An oscillator for which nonlinear processes determine the internal states and the response to external signals.

Nonlinear resonance

Phase and amplitude response of a nonlinear oscillator to stimulation.

Oscillation

A motion characterized by a stable frequency and amplitude that repeat over time, such as a sinusoidal pattern.

Pattern forming

The orderly outcome of self-organization as observed in biology, chemistry and physics.

Phase-locking

Synchronization in 1:1 frequency ratio where the phase difference between two systems (or a system and an external stimulus) is maintained constant.

Pitch

That aspect of auditory sensation that allows us to order tones on a musical scale.

Predictive coding of music

Theory that states the brain deploys a predictive model based on prior experience to minimize prediction errors, through a recursive Bayesian process, when listening to music.

Pulse

The most perceptually salient beat; that is, the beat to which a listener would tap when synchronizing with a rhythm.

Rhythm

The complex pattern of timing and accentuation.

Stability

A state or an orbit of a dynamical system is stable if the system is attracted to it.

Strong anticipation

Anticipatory behaviour in interactions with the environment that emerges owing to transmission delays (delay coupling).

Synchronization

Phase and/or frequency locking of coupled oscillators to one another or to external stimulation. Used interchangeably with entrainment.

Syncopation

The displacement of a musical accent from strong beats to weak beats.

Tonal hierarchy

The structured organization of tones in which specific tones are perceived as more stable than others, and less stable tones are attracted towards more stable ones.

Tonality

The perception of stability and attraction relationships among the pitches in musical work.

Transmission delays

A time delay in communication between neural areas, biophysically explained by long-range axonal transmission of information.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harding, E.E., Kim, J.C., Demos, A.P. et al. Musical neurodynamics. Nat. Rev. Neurosci. 26, 293–307 (2025). https://doi.org/10.1038/s41583-025-00915-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00915-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing