Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interictal network dysfunction and cognitive impairment in epilepsy

Subjects

Abstract

Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain’s intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Network-level dysfunction contributing to cognitive impairment in epilepsy.
Fig. 2: Dysregulation of physiological communication in epileptic networks.
Fig. 3: Potential derangements of plasticity processes in epileptic networks.
Fig. 4: Approaches to network-level interventions aimed at ameliorating cognitive dysfunction in epilepsy.

Similar content being viewed by others

References

  1. Silberberg, G., Grillner, S., LeBeau, F. E. N., Maex, R. & Markram, H. Synaptic pathways in neural microcircuits. Trends Neurosci. 28, 541–551 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Iturria-Medina, Y. et al. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. NeuroImage 36, 645–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Song, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Salvador, R. et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–2342 (2005).

    Article  PubMed  Google Scholar 

  5. Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T. & Bullmore, E. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl Acad. Sci. USA 103, 19518–19523 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu, S., Huang, D., Singer, W. & Nikolić, D. A small world of neuronal synchrony. Cereb. Cortex 18, 2891–2901 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015). This paper outlines the theory and evidence supporting oscillatory synchronization as a mechanism for effective neuronal communication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Farrell, J. S., Nguyen, Q. A. & Soltesz, I. Resolving the micro–macro disconnect to address core features of seizure networks. Neuron 101, 1016–1028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spencer, S. S. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43, 219–227 (2002).

    Article  PubMed  Google Scholar 

  10. Engel, J. et al. Connectomics and epilepsy. Curr. Opin. Neurol. 26, 186–194 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gil, F. et al. Beyond the epileptic focus: functional epileptic networks in focal epilepsy. Cereb. Cortex 30, 2338–2357 (2020).

    Article  PubMed  Google Scholar 

  12. Lehnertz, K., Bröhl, T. & von Wrede, R. Epileptic-network-based prediction and control of seizures in humans. Neurobiol. Dis. 181, 106098 (2023).

    Article  PubMed  Google Scholar 

  13. Jaggard, J. B., Wang, G. X. & Mourrain, P. Non-REM and REM/paradoxical sleep dynamics across phylogeny. Curr. Opin. Neurobiol. 71, 44–51 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thompson, E. & Varela, F. J. Radical embodiment: neural dynamics and consciousness. Trends Cogn. Sci. 5, 418–425 (2001).

    Article  PubMed  Google Scholar 

  15. Von Stein, A., Chiang, C. & König, P. Top-down processing mediated by interareal synchronization. Proc. Natl Acad. Sci. USA 97, 14748–14753 (2000).

    Article  Google Scholar 

  16. Gyorgy, B. & Andreas, D. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  Google Scholar 

  17. Fernández-Ruiz, A. & Herreras, O. Identifying the synaptic origin of ongoing neuronal oscillations through spatial discrimination of electric fields. Front. Comput. Neurosci. 7, 41565 (2013).

    Article  Google Scholar 

  18. Buzsáki, G. Rhythms of the Brain https://doi.org/10.1093/ACPROF:OSO/9780195301069.001.0001 (Oxford Univ. Press, 2006).

  19. Buzsáki, G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15, 827–840 (2005).

    Article  PubMed  Google Scholar 

  20. Colgin, L. L. et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Jirsa, V. & Müller, V. Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci. https://doi.org/10.3389/fncom.2013.00078 (2013).

  22. Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015). This paper describes mechanisms and function of a key population transient involved in cognition, the hippocampal sharp wave-ripple, and its epileptic counterpart, the pathological high-frequency oscillation.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cossart, R. & Khazipov, R. How development sculpts hippocampal circuits and function. Physiol. Rev. 102, 343–378 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Seelke, A. M. H. & Blumberg, M. S. Developmental appearance and disappearance of cortical events and oscillations in infant rats. Brain Res. 1324, 34–42 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khazipov, R. et al. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432, 758–761 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Domínguez, S. et al. A transient postnatal quiescent period precedes emergence of mature cortical dynamics. eLife 10, e69011 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kay, K. et al. Constant sub-second cycling between representations of possible futures in the hippocampus. Cell 180, 552–567.e25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dragoi, G., Harris, K. D. & Buzsáki, G. Place representation within hippocampal networks is modified by long-term potentiation. Neuron 39, 843–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Gupta, A. S., Van Der Meer, M. A. A., Touretzky, D. S. & Redish, A. D. Segmentation of spatial experience by hippocampal θ sequences. Nat. Neurosci. 15, 1032–1039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Montgomery, S. M., Betancur, M. I. & Buzsáki, G. Behavior-dependent coordination of multiple theta dipoles in the hippocampus. J. Neurosci. 29, 1381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Winson, J. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201, 160–163 (1978).

    Article  CAS  PubMed  Google Scholar 

  34. Lega, B. C., Jacobs, J. & Kahana, M. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus 22, 748–761 (2012).

    Article  PubMed  Google Scholar 

  35. Herweg, N. A., Solomon, E. A. & Kahana, M. J. Theta oscillations in human memory. Trends Cogn. Sci. 24, 208–227 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dugladze, T. et al. Impaired hippocampal rhythmogenesis in a mouse model of mesial temporal lobe epilepsy. Proc. Natl Acad. Sci. USA 104, 17530–17535 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chauvière, L. et al. Early deficits in spatial memory and theta rhythm in experimental temporal lobe epilepsy. J. Neurosci. 29, 5402–5410 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Inostroza, M., Brotons-Mas, J. R., Laurent, F., Cid, E. & de la Prida, L. M. Specific impairment of ‘what–where–when’ episodic-like memory in experimental models of temporal lobe epilepsy. J. Neurosci. 33, 17749–17762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lenck-Santini, P. P. & Holmes, G. L. Altered phase precession and compression of temporal sequences by place cells in epileptic rats. J. Neurosci. 28, 5053–5062 (2008). This study demonstrates derangement of oscillatory activity, spatial coding and concomitant memory impairment in an animal model of epilepsy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arski, O. N. et al. Epilepsy disrupts hippocampal phase precision and impairs working memory. Epilepsia 63, 2583–2596 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Shuman, T. et al. Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nat. Neurosci. 23, 229–238 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lopez-Pigozzi, D. et al. Altered oscillatory dynamics of CA1 parvalbumin basket cells during theta–gamma rhythmopathies of temporal lobe epilepsy. eNeuro 3, 1–20 (2016).

    Article  Google Scholar 

  43. Laurent, F. et al. Proximodistal structure of theta coordination in the dorsal hippocampus of epileptic rats. J. Neurosci. 35, 4760–4775 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garrido Sanabria, E. R. et al. Septal GABAergic neurons are selectively vulnerable to pilocarpine-induced status epilepticus and chronic spontaneous seizures. Neuroscience 142, 871–883 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Barry, J. M. et al. Temporal coordination of hippocampal neurons reflects cognitive outcome post-febrile status epilepticus. eBioMedicine 7, 175–190 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Richard, G. R. et al. Speed modulation of hippocampal theta frequency correlates with spatial memory performance. Hippocampus 23, 1269–1279 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Solomon, E. A. et al. Dynamic theta networks in the human medial temporal lobe support episodic memory. Curr. Biol. 29, 1100–1111.e4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen, D. et al. Theta oscillations coordinate grid-like representations between ventromedial prefrontal and entorhinal cortex. Sci. Adv. 7, eabj0200 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M. B. & Moser, E. I. Coordination of entorhinal–hippocampal ensemble activity during associative learning. Nature 510, 143–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Fujisawa, S. & Buzsáki, G. A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72, 153–165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benchenane, K. et al. Coherent theta oscillations and reorganization of spike timing in the hippocampal– prefrontal network upon learning. Neuron 66, 921–936 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Malkov, A., Shevkova, L., Latyshkova, A. & Kitchigina, V. Theta and gamma hippocampal–neocortical oscillations during the episodic-like memory test: impairment in epileptogenic rats. Exp. Neurol. 354, 114110 (2022).

    Article  PubMed  Google Scholar 

  53. Froriep, U. P. et al. Altered θ coupling between medial entorhinal cortex and dentate gyrus in temporal lobe epilepsy. Epilepsia 53, 1937–1947 (2012).

    Article  PubMed  Google Scholar 

  54. Lee, D. J. et al. Stimulation of the medial septum improves performance in spatial learning following pilocarpine-induced status epilepticus. Epilepsy Res. 130, 53–63 (2017).

    Article  PubMed  Google Scholar 

  55. Cantero, J. L. et al. Sleep-dependent θ oscillations in the human hippocampus and neocortex. J. Neurosci. 23, 10897–10903 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boyce, R., Glasgow, S. D., Williams, S. & Adamantidis, A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 352, 812–816 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Popa, D., Duvarci, S., Popescu, A. T., Léna, C. & Paré, D. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc. Natl Acad. Sci. USA 107, 6516–6519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, W., Ma, L., Yang, G. & Gan, W. B. REM sleep selectively prunes and maintains new synapses in development and learning. Nat. Neurosci. 20, 427–437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ruggiero, R. N. et al. Dysfunctional hippocampal–prefrontal network underlies a multidimensional neuropsychiatric phenotype following early-life seizure. eLife 12, RP90997 (2024).

    Google Scholar 

  60. Mendes, R. A. V. et al. Hijacking of hippocampal–cortical oscillatory coupling during sleep in temporal lobe epilepsy. Epilepsy Behav. 121, 106608 (2021).

    Article  PubMed  Google Scholar 

  61. Bieri, K. W., Bobbitt, K. N. & Colgin, L. L. Slow and fast γ rhythms coordinate different spatial coding modes in hippocampal place cells. Neuron 82, 670–681 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsáki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Gray, C. M. & Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci. USA 86, 1698–1702 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Buzsáki, G. & Wang, X.-J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lasztóczi, B. & Klausberger, T. Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron 81, 1126–1139 (2014).

    Article  PubMed  Google Scholar 

  67. Fernández-Ruiz, A. et al. Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. Science 372, eabf3119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Colgin, L. L. Theta–gamma coupling in the entorhinal–hippocampal system. Curr. Opin. Neurobiol. 31, 45–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Hermes, D., Kasteleijn-Nolst Trenité, D. G. A. & Winawer, J. Gamma oscillations and photosensitive epilepsy. Curr. Biol. 27, R336–R338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sanchez-Carpintero, R. et al. Abnormal brain gamma oscillations in response to auditory stimulation in Dravet syndrome. Eur. J. Paediatr. Neurol. 24, 134–141 (2020).

    Article  PubMed  Google Scholar 

  71. Lega, B., Dionisio, S., Bingaman, W., Najm, I. & Gonzalez-Martinez, J. The gamma band effect for episodic memory encoding is absent in epileptogenic hippocampi. Clin. Neurophysiol. 126, 866–872 (2015).

    Article  PubMed  Google Scholar 

  72. Den Bakker, H. et al. Abnormal coherence and sleep composition in children with Angelman syndrome: a retrospective EEG study. Mol. Autism 9, 32 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Doesburg, S. M. et al. Altered Rolandic gamma-band activation associated with motor impairment and ictal network desynchronization in childhood epilepsy. PLoS ONE 8, e54943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kleen, J. K., Wu, E. X., Holmes, G. L., Scott, R. C. & Lenck-Santini, P. P. Enhanced oscillatory activity in the hippocampal–prefrontal network is related to short-term memory function after early-life seizures. J. Neurosci. 31, 15397–15406 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thut, G., Nietzel, A., Brandt, S. A. & Pascual-Leone, A. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 26, 9494–9502 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Klimesch, W. α-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 16, 606–617 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sauseng, P. et al. EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum. Brain Mapp. 26, 148–155 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  78. VanRullen, R., Reddy, L. & Koch, C. Attention-driven discrete sampling of motion perception. Proc. Natl Acad. Sci. USA 102, 5291–5296 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chapeton, J. I., Haque, R., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Large-scale communication in the human brain is rhythmically modulated through alpha coherence. Curr. Biol. 29, 2801–2811.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Palva, S. & Palva, J. M. New vistas for alpha-frequency band oscillations. Trends Neurosci. 30, 150–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Sadaghiani, S. et al. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J. Neurosci. 30, 10243–10250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Qin, Y. et al. How alpha rhythm spatiotemporally acts upon the thalamus-default mode circuit in idiopathic generalized epilepsy. IEEE Trans. Biomed. Eng. 68, 1282–1292 (2021).

    Article  PubMed  Google Scholar 

  83. Vaudano, A. E. et al. Photosensitive epilepsy is associated with reduced inhibition of alpha rhythm generating networks. Brain 140, 981–997 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rotondi, F., Franceschetti, S., Avanzini, G. & Panzica, F. Altered EEG resting-state effective connectivity in drug-naïve childhood absence epilepsy. Clin. Neurophysiol. 127, 1130–1137 (2016).

    Article  PubMed  Google Scholar 

  85. Wessel, J. R. β-bursts reveal the trial-to-trial dynamics of movement initiation and cancellation. J. Neurosci. 40, 411–423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lundqvist, M. et al. Gamma and beta bursts underlie working memory. Neuron 90, 152–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jayachandran, M. et al. Nucleus reuniens transiently synchronizes memory networks at beta frequencies. Nat. Commun. 14, 4326 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cagnan, H. et al. Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia network. Proc. Natl Acad. Sci. USA 116, 16095–16104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Song, D. Y. et al. Beta oscillations in the sensorimotor cortex correlate with disease and remission in benign epilepsy with centrotemporal spikes. Brain Behav. 9, e01237 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Varotto, G. et al. Enhanced frontocentral EEG connectivity in photosensitive generalized epilepsies: a partial directed coherence study. Epilepsia 53, 359–367 (2012).

    Article  PubMed  Google Scholar 

  91. Fernandez, L. M. J. & Lüthi, A. Sleep spindles: mechanisms and functions. Physiol. Rev. 100, 805–868 (2020).

    Article  PubMed  Google Scholar 

  92. Klinzing, J. G., Niethard, N. & Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 22, 1598–1610 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Hennies, N., Ralph, M. A. L., Kempkes, M., Cousins, J. N. & Lewis, P. A. Sleep spindle density predicts the effect of prior knowledge on memory consolidation. J. Neurosci. 36, 3799–3810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Boutin, A. & Doyon, J. A sleep spindle framework for motor memory consolidation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Johnson, L. A., Euston, D. R., Tatsuno, M. & McNaughton, B. L. Stored-trace reactivation in rat prefrontal cortex is correlated with down-to-up state fluctuation density. J. Neurosci. 30, 2650–2651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Latchoumane, C. F. V., Ngo, H. V. V., Born, J. & Shin, H. S. Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron 95, 424–435.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Nir, Y. et al. Regional slow waves and spindles in human sleep. Neuron 70, 153–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mofrad, M. H. et al. Waveform detection by deep learning reveals multi-area spindles that are selectively modulated by memory load. eLife 11, e75769 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Muller, L. et al. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night. eLife 5, e17267 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bender, A. C. et al. Altered sleep microarchitecture and cognitive impairment in patients with temporal lobe epilepsy. Neurology 101, E2376–E2387 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, W., Xin, M., Song, G. & Liang, J. Childhood absence epilepsy patients with cognitive impairment have decreased sleep spindle density. Sleep Med. 103, 89–97 (2023).

    Article  PubMed  Google Scholar 

  102. Huang, Y. et al. Differences in the topographical distribution of sleep spindles among adult epilepsy with cognitive impairment. Epilepsia Open 8, 980–990 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kramer, M. A. et al. Focal sleep spindle deficits reveal focal thalamocortical dysfunction and predict cognitive deficits in sleep activated developmental epilepsy. J. Neurosci. 41, 1816–1829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schiller, K. et al. Focal epilepsy disrupts spindle structure and function. Sci. Rep. 12, 11137 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dahal, P. et al. Interictal epileptiform discharges shape large-scale intercortical communication. Brain 142, 3502–3513 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kwon, H. et al. Association of sleep spindle rate with memory consolidation in children with rolandic epilepsy. Neurology 104, e210232 (2025). This study demonstrates the correlation of decreased occurrence of a key memory-related oscillation (sleep spindle) with impaired memory consolidation in a paediatric epilepsy syndrome.

    Article  PubMed  Google Scholar 

  107. Staresina, B. P., Niediek, J., Borger, V., Surges, R. & Mormann, F. How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nat. Neurosci. 26, 1429–1437 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Frauscher, B. et al. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves. Brain 138, 1629–1641 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sheybani, L. et al. Asymmetry of sleep electrophysiological markers in patients with focal epilepsy. Brain Commun. 5, fcad161 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Panet-Raymond, D. & Gotman, J. Asymmetry in delta activity in patients with focal epilepsy. Electroencephalogr. Clin. Neurophysiol. 75, 474–481 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Boly, M. et al. Altered sleep homeostasis correlates with cognitive impairment in patients with focal epilepsy. Brain 140, 1026–1040 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Henin, S. et al. Closed-loop acoustic stimulation enhances sleep oscillations but not memory performance. eNeuro 6, ENEURO.0306-19.2019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Marshall, L., Helgadóttir, H., Mölle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Ngo, H. V. V., Martinetz, T., Born, J. & Mölle, M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 78, 545–553 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Weigenand, A., Mölle, M., Werner, F., Martinetz, T. & Marshall, L. Timing matters: open-loop stimulation does not improve overnight consolidation of word pairs in humans. Eur. J. Neurosci. 44, 2357–2368 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rector, D. M., Schei, J. L., Van Dongen, H. P. A., Belenky, G. & Krueger, J. M. Physiological markers of local sleep. Eur. J. Neurosci. 29, 1771–1778 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sachdev, R. N. S. et al. Delta rhythm in wakefulness: evidence from intracranial recordings in human beings. J. Neurophysiol. 114, 1248–1254 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Crochet, S. & Petersen, C. C. H. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9, 608–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Vyazovskiy, V. V. et al. Local sleep in awake rats. Nature 472, 443–447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tao, J. X. et al. Interictal regional delta slowing is an EEG marker of epileptic network in temporal lobe epilepsy. Epilepsia 52, 467–476 (2011).

    Article  PubMed  Google Scholar 

  121. Englot, D. J. et al. The sensitivity and significance of lateralized interictal slow activity on magnetoencephalography in focal epilepsy. Epilepsy Res. 121, 21–28 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Nita, D. A., Cissé, Y., Timofeev, I. & Steriade, M. Waking–sleep modulation of paroxysmal activities induced by partial cortical deafferentation. Cereb. Cortex 17, 272–283 (2007).

    Article  PubMed  Google Scholar 

  123. Avramescu, S. & Timofeev, I. Synaptic strength modulation after cortical trauma: a role in epileptogenesis. J. Neurosci. 28, 6760–6772 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pasquetti, M. V. et al. Hippocampal CA1 and cortical interictal oscillations in the pilocarpine model of epilepsy. Brain Res. 1722, 146351 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Sheybani, L. et al. Wake slow waves in focal human epilepsy impact network activity and cognition. Nat. Commun. 14, 7397 (2023). This study characterizes pathological slow waves in epileptic networks and outlines a hypothesis that these oscillations may prevent epileptiform activity at the expense of impaired information processing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ranasinghe, K. G. et al. Neuronal synchrony abnormalities associated with subclinical epileptiform activity in early-onset Alzheimer’s disease. Brain 145, 744–753 (2022).

    Article  PubMed  Google Scholar 

  127. Annika Melissa, S. et al. Lateralization of delta band power in magnetoencephalography (MEG) in patients with unilateral focal epilepsy and its relation to verbal fluency. Brain Behav. 13, e3257 (2023).

    Article  Google Scholar 

  128. Fristen, K. J., Frith, C. D., Fletcher, P., Liddle, P. F. & Frackowiak, R. S. J. Functional topography: multidimensional scaling and functional connectivity in the brain. Cereb. Cortex 6, 156–164 (1996).

    Article  Google Scholar 

  129. Büchel, C. & Friston, K. Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw. 13, 871–882 (2000).

    Article  PubMed  Google Scholar 

  130. Wendling, F., Ansari-Asl, K., Bartolomei, F. & Senhadji, L. From EEG signals to brain connectivity: a model-based evaluation of interdependence measures. J. Neurosci. Methods 183, 9–18 (2009).

    Article  PubMed  Google Scholar 

  131. Kam, J. W. Y. et al. Default network and frontoparietal control network theta connectivity supports internal attention. Nat. Hum. Behav. 3, 1263–1270 (2019).

    Article  PubMed  Google Scholar 

  132. Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G. L. & Von Stein, A. Synchronization between prefrontal and posterior association cortex during human working memory. Proc. Natl Acad. Sci. USA 95, 7092–7096 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, X., Pan, W. J. & Keilholz, S. D. The relationship between BOLD and neural activity arises from temporally sparse events. NeuroImage 207, 116390 (2020).

    Article  PubMed  Google Scholar 

  134. Liu, X. & Duyn, J. H. Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc. Natl Acad. Sci. USA 110, 4392–4397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nunez-Elizalde, A. O. et al. Neural correlates of blood flow measured by ultrasound. Neuron 110, 1631–1640.e4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bergel, A. et al. Adaptive modulation of brain hemodynamics across stereotyped running episodes. Nat. Commun. 11, 6193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee, K. et al. Disruption, emergence and lateralization of brain network hubs in mesial temporal lobe epilepsy. NeuroImage Clin. 20, 71–84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Bettus, G. et al. Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res. 81, 58–68 (2008).

    Article  PubMed  Google Scholar 

  139. Warren, C. P. et al. Synchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnected. J. Neurophysiol. 104, 3530 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Braakman, H. M. H. et al. Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy. Epilepsia 54, 446–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Doucet, G., Osipowicz, K., Sharan, A., Sperling, M. R. & Tracy, J. I. Extratemporal functional connectivity impairments at rest are related to memory performance in mesial temporal epilepsy. Hum. Brain Mapp. 34, 2202–2216 (2013).

    Article  PubMed  Google Scholar 

  142. Ren, Y. et al. Theta oscillation and functional connectivity alterations related to executive control in temporal lobe epilepsy with comorbid depression. Clin. Neurophysiol. 131, 1599–1609 (2020).

    Article  PubMed  Google Scholar 

  143. McCormick, C., Quraan, M., Cohn, M., Valiante, T. A. & McAndrews, M. P. Default mode network connectivity indicates episodic memory capacity in mesial temporal lobe epilepsy. Epilepsia 54, 809–818 (2013).

    Article  PubMed  Google Scholar 

  144. Zhang, Z. et al. Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res. 1323, 152–160 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Van Kerkoerle, T. et al. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc. Natl Acad. Sci. USA 111, 14332–14341 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Bastos, A. M., Lundqvist, M., Waite, A. S., Kopell, N. & Miller, E. K. Layer and rhythm specificity for predictive routing. Proc. Natl Acad. Sci. USA 117, 31459–31469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lundqvist, M. et al. Working memory control dynamics follow principles of spatial computing. Nat. Commun. 14, 1429 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Llinás, R. R., Ribary, U., Jeanmonod, D., Kronberg, E. & Mitra, P. P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl Acad. Sci. USA 96, 15222 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Martire, D. J. et al. Thalamocortical dysrhythmia in intraoperative recordings of focal epilepsy. J. Neurophysiol. 121, 2020–2027 (2019).

    Article  PubMed  Google Scholar 

  150. van Ede, F., Quinn, A. J., Woolrich, M. W. & Nobre, A. C. Neural oscillations: sustained rhythms or transient burst-events? Trends Neurosci. 41, 415–417 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Buzsáki, G., Horváth, Z., Urioste, R., Hetke, J. & Wise, K. High-frequency network oscillation in the hippocampus. Science 256, 1025–1027 (1992).

    Article  PubMed  Google Scholar 

  152. Stark, E. et al. Pyramidal cell–interneuron interactions underlie hippocampal ripple oscillations. Neuron 83, 467–480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J. & Buzsáki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Skaggs, W. E. & McNaughton, B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873 (1996).

    Article  CAS  PubMed  Google Scholar 

  155. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  156. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Buzsáki, G. Two-stage model of memory trace formation: a role for ‘noisy’ brain states. Neuroscience 31, 551–570 (1989).

    Article  PubMed  Google Scholar 

  159. Gelinas, J. N., Khodagholy, D., Thesen, T., Devinsky, O. & Buzsáki, G. Interictal epileptiform discharges induce hippocampal–cortical coupling in temporal lobe epilepsy. Nat. Med. 22, 641–648 (2016). This study demonstrates that hippocampal interictal epileptiform discharges temporally couple with cortical sleep spindles in a rodent model of epilepsy and in patients with epilepsy, hijacking physiological modes of network communication and disrupting memory consolidation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Henin, S. et al. Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing. Brain 144, 1590–1602 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Cheah, C. S., Lundstrom, B. N., Catteral, W. A. & Oakley, J. C. Impairment of sharp-wave ripples in a murine model of Dravet syndrome. J. Neurosci. 39, 9251–9260 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Karlócai, M. R. et al. Physiological sharp wave-ripples and interictal events in vitro: what’s the difference? Brain 137, 463–485 (2014).

    Article  PubMed  Google Scholar 

  163. Foffani, G., Uzcategui, Y. G., Gal, B. & Menendez de la Prida, L. Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus. Neuron 55, 930–941 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Valero, M. et al. Mechanisms for selective single-cell reactivation during offline sharp-wave ripples and their distortion by fast ripples. Neuron 94, 1234–1247.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Ewell, L. A., Fischer, K. B., Leibold, C., Leutgeb, S. & Leutgeb, J. K. The impact of pathological high-frequency oscillations on hippocampal network activity in rats with chronic epilepsy. eLife 8, e42148 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Fink, C. G., Gliske, S., Catoni, N. & Stacey, W. C. Network mechanisms generating abnormal and normal hippocampal high-frequency oscillations: a computational analysis. eNeuro https://doi.org/10.1523/ENEURO.0024-15.2015 (2015).

  167. Buzsáki, G., Ponomareff, G. L., Bayardo, F., Ruiz, R. & Gage, F. H. Neuronal activity in the subcortically denervated hippocampus: a chronic model for epilepsy. Neuroscience 28, 527–538 (1989).

    Article  PubMed  Google Scholar 

  168. Buzsáki, G., Bayardo, F., Miles, R., Wong, R. K. S. & Gage, F. H. The grafted hippocampus: an epileptic focus. Exp. Neurol. 105, 10–22 (1989).

    Article  PubMed  Google Scholar 

  169. Suzuki, S. S. & Smith, G. K. Spontaneous EEG spikes in the normal hippocampus. V. Effects of ether, urethane, pentobarbital, atropine, diazepam and bicuculline. Electroencephalogr. Clin. Neurophysiol. 70, 84–95 (1988).

    Article  CAS  PubMed  Google Scholar 

  170. Liotta, A. et al. Partial disinhibition is required for transition of stimulus-induced sharp wave-ripple complexes into recurrent epileptiform discharges in rat hippocampal slices. J. Neurophysiol. 105, 172–187 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 365, eaax1030 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Vaz, A. P., Inati, S. K., Brunel, N. & Zaghloul, K. A. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science 363, 975–978 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Khodagholy, D., Gelinas, J. N. & Buzsáki, G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358, 369–372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hu, H., Hostetler, R. E. & Agmon, A. Ultrafast (400 Hz) network oscillations induced in mouse barrel cortex by optogenetic activation of thalamocortical axons. eLife 12, e82412 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jones, M. S., MacDonald, K. D., Choi, B., Dudek, F. E. & Barth, D. S. Intracellular correlates of fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J. Neurophysiol. 84, 1505–1518 (2000).

    Article  CAS  PubMed  Google Scholar 

  176. Nitzan, N. et al. Propagation of hippocampal ripples to the neocortex by way of a subiculum–retrosplenial pathway. Nat. Commun. 11, 1947 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wilber, A. A., Skelin, I., Wu, W. & McNaughton, B. L. Laminar organization of encoding and memory reactivation in the parietal cortex. Neuron 95, 1406–1419.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zijlmans, M. et al. High-frequency oscillations as a new biomarker in epilepsy. Ann. Neurol. 71, 169–178 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Waldman, Z. J. et al. Ripple oscillations in the left temporal neocortex are associated with impaired verbal episodic memory encoding. Epilepsy Behav. 88, 33–40 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Prince, D. A. The depolarization shift in ‘epileptic’ neurons. Exp. Neurol. 21, 467–485 (1968).

    Article  CAS  PubMed  Google Scholar 

  181. Prince, D. A. Cortical cellular activities during cyclically occurring inter-ictal epileptiform discharges. Electroencephalogr. Clin. Neurophysiol. 31, 469–484 (1971).

    Article  CAS  PubMed  Google Scholar 

  182. Wadman, W. J., Lopes Da Silva, F. H. & Leung, L. W. S. Two types of interictal transients of reversed polarity in rat hippocampus during kindling. Electroencephalogr. Clin. Neurophysiol. 55, 314–319 (1983).

    Article  CAS  PubMed  Google Scholar 

  183. Fabó, D. et al. Properties of in vivo interictal spike generation in the human subiculum. Brain 131, 485–499 (2008).

    Article  PubMed  Google Scholar 

  184. Keller, C. J. et al. Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex. Brain 133, 1668–1681 (2010). This study characterizes the heterogeneous single-unit activity underpinning interictal epileptiform discharges in patients with epilepsy and highlights the interplay of diverse cell types within complex networks in generation of these activity patterns.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Neumann, A. R. et al. Involvement of fast-spiking cells in ictal sequences during spontaneous seizures in rats with chronic temporal lobe epilepsy. Brain 140, 2355–2369 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Despouy, E. et al. Neuronal spiking activity highlights a gradient of epileptogenicity in human tuberous sclerosis lesions. Clin. Neurophysiol. 130, 537–547 (2019).

    Article  PubMed  Google Scholar 

  187. Alvarado-Rojas, C. et al. Single-unit activities during epileptic discharges in the human hippocampal formation. Front. Comput. Neurosci. 7, 140 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Schevon, C. A., Goodman, R. R., McKhann, G. & Emerson, R. G. Propagation of epileptiform activity on a submillimeter scale. J. Clin. Neurophysiol. 27, 406–411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Altafullah, I., Halgren, E., Stapleton, J. M. & Crandall, P. H. Interictal spike-wave complexes in the human medial temporal lobe: typical topography and comparisons with cognitive potentials. Electroencephalogr. Clin. Neurophysiol. 63, 503–516 (1986).

    Article  CAS  PubMed  Google Scholar 

  190. Muldoon, S. F. et al. GABAergic inhibition shapes interictal dynamics in awake epileptic mice. Brain 138, 2875–2890 (2015).

    Article  PubMed  Google Scholar 

  191. Dranias, M. R., Westover, M. B., Cash, S. & Vandongen, A. M. J. Stimulus information stored in lasting active and hidden network states is destroyed by network bursts. Front. Integr. Neurosci. 9, 1–17 (2015).

    Article  Google Scholar 

  192. Binnie, C. D. Cognitive impairment during epileptiform discharges: is it ever justifiable to treat the EEG? Lancet Neurol. 2, 725–730 (2003).

    Article  PubMed  Google Scholar 

  193. Kleen, J. K. et al. Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology 81, 18–24 (2013). This study demonstrates the disruptive effects of hippocampal interictal epileptiform discharges on human memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kleen, J. K., Scott, R. C., Holmes, G. L. & Lenck-Santini, P. P. Hippocampal interictal spikes disrupt cognition in rats. Ann. Neurol. 67, 250–257 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Krauss, G. L., Summerfield, M., Brandt, J., Breiter, S. & Ruchkin, D. Mesial temporal spikes interfere with working memory. Neurology 49, 975–980 (1997).

    Article  CAS  PubMed  Google Scholar 

  196. Quon, R. J. et al. Features of intracranial interictal epileptiform discharges associated with memory encoding. Epilepsia 62, 2615–2626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ung, H. et al. Interictal epileptiform activity outside the seizure onset zone impacts cognition. Brain 140, 2157–2168 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Devulder, A. et al. Epileptic activity on foramen ovale electrodes is associated with sleep and tau pathology in Alzheimer’s disease. Brain 148, 506–520 (2025).

    Article  PubMed  Google Scholar 

  199. Silvestri, R. et al. Ictal and interictal EEG abnormalities in ADHD children recorded over night by video-polysomnography. Epilepsy Res. 75, 130–137 (2007).

    Article  PubMed  Google Scholar 

  200. Soula, M. et al. Interictal epileptiform discharges affect memory in an Alzheimer’s disease mouse model. Proc. Natl Acad. Sci. USA 120, e2302676120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wierzynski, C. M., Lubenov, E. V., Gu, M. & Siapas, A. G. State-dependent spike–timing relationships between hippocampal and prefrontal circuits during sleep. Neuron 61, 587–596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Logothetis, N. K. et al. Hippocampal–cortical interaction during periods of subcortical silence. Nature 491, 547–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Chrobak, J. J. & Buzsáki, G. Selective activation of deep layer (V–VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat. J. Neurosci. 14, 6160–6170 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Siapas, A. G. & Wilson, M. A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).

    Article  CAS  PubMed  Google Scholar 

  205. Isomura, Y. et al. Integration and segregation of activity in entorhinal–hippocampal subregions by neocortical slow oscillations. Neuron 52, 871–882 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Sirota, A., Csicsvari, J., Buhl, D. & Buzsáki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad. Sci. USA 100, 2065–2069 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mölle, M., Yeshenko, O., Marshall, L., Sara, S. J. & Born, J. Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep. J. Neurophysiol. 96, 62–70 (2006).

    Article  PubMed  Google Scholar 

  208. Ibrahim, G. M. et al. Resilience of developing brain networks to interictal epileptiform discharges is associated with cognitive outcome. Brain 137, 2690–2702 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Weiss, S. A. et al. Delta oscillation coupled propagating fast ripples precede epileptiform discharges in patients with focal epilepsy. Neurobiol. Dis. 175, 105928 (2022).

    Article  PubMed  Google Scholar 

  210. Curot, J. et al. Local neuronal excitation and global inhibition during epileptic fast ripples in humans. Brain 146, 561–575 (2023).

    Article  PubMed  Google Scholar 

  211. Yu, H. et al. Interaction of interictal epileptiform activity with sleep spindles is associated with cognitive deficits and adverse surgical outcome in pediatric focal epilepsy. Epilepsia 65, 190–203 (2024).

    Article  PubMed  Google Scholar 

  212. Sákovics, A. et al. Prolongation of cortical sleep spindles during hippocampal interictal epileptiform discharges in epilepsy patients. Epilepsia 63, 2256–2268 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Ferrero, J. J. et al. Closed-loop electrical stimulation to prevent focal epilepsy progression and long-term memory impairment. Preprint at bioRxiv https://doi.org/10.1101/2024.02.09.579660 (2024).

  214. Madar, A. D. et al. Deficits in behavioral and neuronal pattern separation in temporal lobe epilepsy. J. Neurosci. 41, 9669–9686 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Bui, A. D. et al. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science 359, 787–790 (2018). This study demonstrates that induction of a cell-type-specific impairment can recapitulate cognitive deficits observed in a rodent model of epilepsy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Cid, E. et al. Sublayer- and cell-type-specific neurodegenerative transcriptional trajectories in hippocampal sclerosis. Cell Rep. 35, 109229 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Douw, L. et al. Cellular substrates of functional network integration and memory in temporal lobe epilepsy. Cereb. Cortex 32, 2424–2436 (2022).

    Article  PubMed  Google Scholar 

  218. Pfisterer, U. et al. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat. Commun. 11, 5038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chen, L., Li, X., Tjia, M. & Thapliyal, S. Homeostatic plasticity and excitation–inhibition balance: the good, the bad, and the ugly. Curr. Opin. Neurobiol. 75, 102553 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  221. Martin, S. J., Grimwood, P. D. & Morris, R. G. M. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  222. Kolb, B., Harker, A. & Gibb, R. Principles of plasticity in the developing brain. Dev. Med. Child Neurol. 59, 1218–1223 (2017).

    Article  PubMed  Google Scholar 

  223. Malenka, R. C. The long-term potential of LTP. Nat. Rev. Neurosci. 4, 923–926 (2003).

    Article  CAS  PubMed  Google Scholar 

  224. Stasheff, S. F., Anderson, W. W., Clark, S. & Wilson, W. A. NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model. Science 245, 648–651 (1989).

    Article  CAS  PubMed  Google Scholar 

  225. Abegg, M. H., Savic, N., Ehrengruber, M. U., McKinney, R. A. & Gähwiler, B. H. Epileptiform activity in rat hippocampus strengthens excitatory synapses. J. Physiol. 554, 439–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  226. Loup, F., Picard, F., Yonekawa, Y., Wieser, H. G. & Fritschy, J. M. Selective changes in GABAA receptor subtypes in white matter neurons of patients with focal epilepsy. Brain 132, 2449–2463 (2009).

    Article  PubMed  Google Scholar 

  227. Katona, I. & Freund, T. F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat. Med. 14, 923–930 (2008).

    Article  CAS  PubMed  Google Scholar 

  228. Wetherington, J., Serrano, G. & Dingledine, R. Astrocytes in the epileptic brain. Neuron 58, 168–178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Nasarudeen, R., Singh, A., Rana, Z. S. & Punnakkal, P. Epileptiform activity induced metaplasticity impairs bidirectional plasticity in the hippocampal CA1 synapses via GluN2B NMDA receptors. Exp. Brain Res. 240, 3339–3349 (2022).

    Article  CAS  PubMed  Google Scholar 

  230. Schubert, M., Siegmund, H., Pape, H. C. & Albrecht, D. Kindling-induced changes in plasticity of the rat amygdala and hippocampus. Learn. Mem. 12, 520–526 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Rehberg, M. et al. Functional metaplasticity of hippocampal Schaffer collateral-CA1 synapses is reversed in chronically epileptic rats. Neural Plast. 2017, 8087401 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Swann, J. W., Al-Noori, S., Jiang, M. & Lee, C. L. Spine loss and other dendritic abnormalities in epilepsy. Hippocampus 10, 617–625 (2000).

    Article  CAS  PubMed  Google Scholar 

  233. Sheehan, J. J., Benedetti, B. L. & Barth, A. L. Anticonvulsant effects of the BK-channel antagonist paxilline. Epilepsia 50, 711–720 (2009).

    Article  CAS  PubMed  Google Scholar 

  234. Brewster, A. L. et al. Rapamycin reverses status epilepticus-induced memory deficits and dendritic damage. PLoS ONE 8, e57808 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Houser, C. et al. in Jasper’s Basic Mechanisms of the Epilepsies (National Center for Biotechnology Information, 2012).

  236. Kloc, M. L. et al. Spatial learning impairments and discoordination of entorhinal–hippocampal circuit coding following prolonged febrile seizures. Hippocampus 33, 970–992 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Hernan, A. E. et al. Focal epileptiform activity in the prefrontal cortex is associated with long-term attention and sociability deficits. Neurobiol. Dis. 63, 25–34 (2014).

    Article  PubMed  Google Scholar 

  238. Karnam, H. B. et al. Early life seizures cause long-standing impairment of the hippocampal map. Exp. Neurol. 217, 378–387 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Jiang, M., Lee, C. L., Smith, K. L. & Swann, J. W. Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy. J. Neurosci. 18, 8356–8368 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Nishimura, M., Gu, X. & Swann, J. W. Seizures in early life suppress hippocampal dendrite growth while impairing spatial learning. Neurobiol. Dis. 44, 205–214 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Sun, H. et al. Early seizures prematurely unsilence auditory synapses to disrupt thalamocortical critical period plasticity. Cell Rep. 23, 2533–2540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Tuchman, R., Cuccaro, M. & Alessandri, M. Autism and epilepsy: historical perspective. Brain Dev. 32, 709–718 (2010).

    Article  PubMed  Google Scholar 

  243. Swann, J. W. & Rho, J. M. How is homeostatic plasticity important in epilepsy? Adv. Exp. Med. Biol. 813, 123–131 (2014).

    Article  PubMed  Google Scholar 

  244. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  245. Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014).

    Article  CAS  PubMed  Google Scholar 

  246. Muldoon, S. F., Soltesz, I. & Cossart, R. Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks. Proc. Natl Acad. Sci. USA 110, 3567–3572 (2013).

    Article  CAS  Google Scholar 

  247. Bui, A., Kim, H. K., Maroso, M. & Soltesz, I. Microcircuits in epilepsy: heterogeneity and hub cells in network synchronization. Cold Spring Harb. Perspect. Med. 5, a022855 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Royer, J. et al. Epilepsy and brain network hubs. Epilepsia 63, 537–550 (2022).

    Article  PubMed  Google Scholar 

  249. Mula, M., Coleman, H. & Wilson, S. J. Neuropsychiatric and cognitive comorbidities in epilepsy. Continuum 28, 457–482 (2022).

    PubMed  Google Scholar 

  250. Hill, S. F. & Meisler, M. H. Antisense oligonucleotide therapy for neurodevelopmental disorders. Dev. Neurosci. 43, 247–252 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Shore, A. N. et al. Reduced GABAergic neuron excitability, altered synaptic connectivity, and seizures in a KCNT1 gain-of-function mouse model of childhood epilepsy. Cell Rep. 33, 108303 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Xu, D. et al. Precision therapy with quinidine of KCNT1-related epileptic disorders: a systematic review. Br. J. Clin. Pharmacol. 88, 5096–5112 (2022).

    Article  CAS  PubMed  Google Scholar 

  253. Soh, H. et al. Deletion of KCNQ2/3 potassium channels from PV+ interneurons leads to homeostatic potentiation of excitatory transmission. eLife 7, e38617 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Warsi, N. M. et al. Which is more deleterious to cognitive performance? Interictal epileptiform discharges vs anti-seizure medication. Epilepsia 64, e75–e81 (2023).

    Article  PubMed  Google Scholar 

  255. Ortinski, P. & Meador, K. J. Cognitive side effects of antiepileptic drugs. Epilepsy Behav. 5, 60–65 (2004).

    Article  Google Scholar 

  256. Park, S. P. & Kwon, S. H. Cognitive effects of antiepileptic drugs. J. Clin. Neurol. 4, 99–106 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Chapman, K. E. et al. Unmet needs in epileptic encephalopathy with spike-and-wave activation in sleep: a systematic review. Epilepsy Res. 199, 107278 (2024).

    Article  PubMed  Google Scholar 

  258. Wang, Z. et al. Prognostic value of complete resection of the high-frequency oscillation area in intracranial EEG: a systematic review and meta-analysis. Neurology 102, e209216 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Gong, R. et al. Quantifying hubness to predict surgical outcomes in epilepsy: assessing resection-hub alignment in interictal intracranial EEG networks. Epilepsia 65, 3362–3375 (2024).

    Article  PubMed  Google Scholar 

  260. Habibabadi, J. M., Zare, M. & Tabrizi, N. The role of interictal epileptiform discharges in epilepsy surgery outcome. Int. J. Prev. Med. 10, 101 (2019).

    Article  Google Scholar 

  261. Benifla, M. et al. Neurosurgical management of intractable rolandic epilepsy in children: role of resection in eloquent cortex. Clinical article. J. Neurosurg. Pediatr. 4, 199–216 (2009).

    Article  PubMed  Google Scholar 

  262. Maingret, N., Girardeau, G., Todorova, R., Goutierre, M. & Zugaro, M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat. Neurosci. 19, 959–964 (2016).

    Article  CAS  PubMed  Google Scholar 

  263. Fernández-Ruiz, A. et al. Long-duration hippocampal sharp wave ripples improve memory. Science 364, 1082–1086 (2019). This study demonstrates that artificial prolongation of an oscillatory pattern using optogenetic stimulation can enhance naturally initiated spike sequences and improve memory.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Sierra, R. O. et al. Closed-loop brain stimulation augments fear extinction in male rats. Nat. Commun. 14, 3972 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Quirk, C. R. et al. Precisely timed theta oscillations are selectively required during the encoding phase of memory. Nat. Neurosci. 24, 1614–1627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Mouchati, P. R., Kloc, M. L., Holmes, G. L., White, S. L. & Barry, J. M. Optogenetic ‘low-theta’ pacing of the septohippocampal circuit is sufficient for spatial goal finding and is influenced by behavioral state and cognitive demand. Hippocampus 30, 1167–1193 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Scangos, K. W. et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27, 1696–1700 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Geva-Sagiv, M. et al. Augmenting hippocampal-prefrontal neuronal synchrony during sleep enhances memory consolidation in humans. Nat. Neurosci. 26, 1100–1110 (2023). This study demonstrates that closed-loop deep brain stimulation in human subjects that enhances physiological network communication can improve memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Suthana, N. et al. Memory enhancement and deep-brain stimulation of the entorhinal area. N. Engl. J. Med. 366, 502–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Mankin, E. A. et al. Stimulation of the right entorhinal white matter enhances visual memory encoding in humans. Brain Stimul. 14, 131–140 (2021).

    Article  PubMed  Google Scholar 

  271. Jacobs, J. et al. Direct electrical stimulation of the human entorhinal region and hippocampus impairs memory. Neuron 92, 983–990 (2016).

    Article  CAS  PubMed  Google Scholar 

  272. Basu, I. et al. Closed-loop enhancement and neural decoding of cognitive control in humans. Nat. Biomed. Eng. 4, 576–588 (2023).

    Google Scholar 

  273. Ledri, M., Madsen, M. G., Nikitidou, L., Kirik, D. & Kokaia, M. Global optogenetic activation of inhibitory interneurons during epileptiform activity. J. Neurosci. 34, 3364–3377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Călin, A., Ilie, A. S. & Akerman, C. J. Disrupting epileptiform activity by preventing parvalbumin interneuron depolarization block. J. Neurosci. 41, 9452–9465 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376 (2013).

    Article  PubMed  Google Scholar 

  276. Sorokin, J. M. et al. Bidirectional control of generalized epilepsy networks via rapid real-time switching of firing mode. Neuron 93, 194–210 (2017).

    Article  CAS  PubMed  Google Scholar 

  277. Vlachos, I., Kugiumtzis, D., Tsalikakis, D. G. & Kimiskidis, V. K. TMS-induced brain connectivity modulation in genetic generalized epilepsy. Clin. Neurophysiol. 133, 83–93 (2022).

    Article  PubMed  Google Scholar 

  278. Klinzing, J. G. et al. Auditory stimulation during sleep suppresses spike activity in benign epilepsy with centrotemporal spikes. Cell Rep. Med. 2, 100432 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Vyazovskiy, V. V., Faraguna, U., Cirelli, C. & Tononi, G. Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J. Neurophysiol. 101, 1921–1931 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Zhao, Z., Cea, C., Gelinas, J. N. & Khodagholy, D. Responsive manipulation of neural circuit pathology by fully implantable, front-end multiplexed embedded neuroelectronics. Proc. Natl Acad. Sci. USA 118, e2022659118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Babu, H. et al. First-in-human trial of NRTX-1001 GABAergic interneuron cell therapy for treatment of focal epilepsy — emerging clinical trial results (S19.002). Neurology https://doi.org/10.1212/WNL.0000000000206002 (2024).

  282. Anderson, D. N. et al. Closed-loop stimulation in periods with less epileptiform activity drives improved epilepsy outcomes. Brain 147, 521–531 (2024).

    Article  PubMed  Google Scholar 

  283. Kloc, M. L., Daglian, J. M., Holmes, G. L., Baram, T. Z. & Barry, J. M. Recurrent febrile seizures alter intrahippocampal temporal coordination but do not cause spatial learning impairments. Epilepsia 62, 3117–3130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Takeuchi, Y. & Berényi, A. Oscillotherapeutics — time-targeted interventions in epilepsy and beyond. Neurosci. Res. 152, 87–107 (2020). This paper reviews theory and experimental evidence for modulation of oscillatory patterns to address symptoms of neuropsychiatric disorders.

    Article  CAS  PubMed  Google Scholar 

  285. Cea, C. et al. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020).

    Article  CAS  PubMed  Google Scholar 

  286. Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  287. Formento, E., D’Anna, E., Gribi, S., Lacour, S. P. & Micera, S. A biomimetic electrical stimulation strategy to induce asynchronous stochastic neural activity. J. Neural Eng. 17, 046019 (2020).

    Article  PubMed  Google Scholar 

  288. Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019).

    Article  CAS  PubMed  Google Scholar 

  289. Park, J., Kim, G. & Jung, S. D. A 128-channel FPGA-based real-time spike-sorting bidirectional closed-loop neural interface system. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 2227–2238 (2017).

    Article  PubMed  Google Scholar 

  290. Khodagholy, D., Ferrero, J. J., Park, J., Zhao, Z. & Gelinas, J. N. Large-scale, closed-loop interrogation of neural circuits underlying cognition. Trends Neurosci. 45, 968–983 (2022). This study details conceptual and technical advances required to implement spatiotemporally targeted manipulation of neural networks involved in cognitive processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grant no. R01NS118091 (J.N.G.). The authors thank all Khodagholy and Gelinas laboratory members for their support.

Author information

Authors and Affiliations

Authors

Contributions

J.N.G. and D.K. performed the literature review, discussed article content, and wrote and revised the manuscript.

Corresponding authors

Correspondence to Jennifer N. Gelinas or Dion Khodagholy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Jeremy M. Barry, George Ibrahim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelinas, J.N., Khodagholy, D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat. Rev. Neurosci. 26, 399–414 (2025). https://doi.org/10.1038/s41583-025-00924-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00924-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing