Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploring the complexity of MECP2 function in Rett syndrome

Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder that is mainly caused by mutations in the methyl-DNA-binding protein MECP2. MECP2 is an important epigenetic regulator that plays a pivotal role in neuronal gene regulation, where it has been reported to function as both a repressor and an activator. Despite extensive efforts in mechanistic studies over the past two decades, a clear consensus on how MECP2 dysfunction impacts molecular mechanisms and contributes to disease progression has not been reached. Here, we review recent insights from epigenomic, transcriptomic and proteomic studies that advance our understanding of MECP2 as an interacting hub for DNA, RNA and transcription factors, orchestrating diverse processes that are crucial for neuronal function. By discussing findings from different model systems, we identify crucial epigenetic details and cofactor interactions, enriching our understanding of the multifaceted roles of MECP2 in transcriptional regulation and chromatin structure. These mechanistic insights offer potential avenues for rational therapeutic design for RTT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional diversity of MECP2 in gene regulation.
Fig. 2: Molecular characteristics of MECP2–DNA interactions.
Fig. 3: Molecular mechanisms of MECP2 that are altered in Rett syndrome.

Similar content being viewed by others

References

  1. Chahrour, M. & Zoghbi, H. Y. The story of Rett syndrome: from clinic to neurobiology. Neuron 56, 422–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Ip, J. P. K., Mellios, N. & Sur, M. Rett syndrome: insights into genetic, molecular and circuit mechanisms. Nat. Rev. Neurosci. 19, 368–382 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leonard, H., Cobb, S. & Downs, J. Clinical and biological progress over 50 years in Rett syndrome. Nat. Rev. Neurol. 13, 37–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Lyst, M. J. & Bird, A. Rett syndrome: a complex disorder with simple roots. Nat. Rev. Genet. 16, 261–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Trappe, R. et al. MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin. Am. J. Hum. Genet. 68, 1093–1101 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, R. Z., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 27, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Vashi, N. & Justice, M. J. Treating Rett syndrome: from mouse models to human therapies. Mamm. Genome 30, 90–110 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giacometti, E., Luikenhuis, S., Beard, C. & Jaenisch, R. Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc. Natl Acad. Sci. USA 104, 1931–1936 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Esch, H. MECP2 duplication syndrome. Mol. Syndromol. 2, 128–136 (2012).

    Article  PubMed  Google Scholar 

  13. Anguera, M. C. et al. Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. Cell Stem Cell 11, 75–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharifi, O. & Yasui, D. H. The molecular functions of MeCP2 in Rett syndrome pathology. Front. Genet. 12, 624290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tillotson, R. & Bird, A. The molecular basis of MeCP2 function in the brain. J. Mol. Biol. 432, 1602–1623 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Horvath, P. M. & Monteggia, L. M. MeCP2 as an activator of gene expression. Trends Neurosci. 41, 72–74 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meehan, R. R., Lewis, J. D. & Bird, A. P. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 20, 5085–5092 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lewis, J. D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Free, A. et al. DNA recognition by the methyl-CpG binding domain of MeCP2. J. Biol. Chem. 276, 3353–3360 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Skene, P. J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010). This study shows the global distribution of MECP2 and its correlation with mCpG density across the neuronal genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo, J. U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17, 215–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Xie, W. et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 148, 816–831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen, L. et al. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. Proc. Natl Acad. Sci. USA 112, 5509–5514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gabel, H. W. et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522, 89–93 (2015). The study shows association of gene length and non-CG DNA methylation with gene regulation by MECP2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lagger, S. et al. MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genet. 13, e1006793 (2017). This study shows a significant correlation of MECP2 binding to mCAC with transcriptional misregulation in mouse models of Rett syndrome.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Boxer, L. D. et al. MeCP2 represses the rate of transcriptional initiation of highly methylated long genes. Mol. Cell 77, 294–309.e299 (2020). This study describes a model of MECP2 acting at transcription start sites of highly methylated long genes to attenuate transcriptional initiation.

    Article  CAS  PubMed  Google Scholar 

  28. Kinde, B., Wu, D. Y., Greenberg, M. E. & Gabel, H. W. DNA methylation in the gene body influences MeCP2-mediated gene repression. Proc. Natl Acad. Sci. USA 113, 15114–15119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raman, A. T. et al. Apparent bias toward long gene misregulation in MeCP2 syndromes disappears after controlling for baseline variations. Nat. Commun. 9, 3225 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Clemens, A. W. et al. MeCP2 represses enhancers through chromosome topology-associated DNA methylation. Mol. Cell 77, 279–293.e278 (2020). Repressor model for MECP2 with binding to mCA domains to suppress intragenic enhancer activity and gene expression.

    Article  CAS  PubMed  Google Scholar 

  31. Nettles, S. A. et al. MeCP2 represses the activity of topoisomerase IIβ in long neuronal genes. Cell Rep. 42, 113538 (2023). This study describes a new mechanism by which MECP2 represses TOP2β activity to modulate the expression of neuronal long genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tillotson, R. et al. Neuronal non-CG methylation is an essential target for MeCP2 function. Mol. Cell 81, 1260–1275 e1212 (2021). This research identifies MECP2 binding to mCAC as an essential contributor to gene dysregulation and neuronal phenotypes in Rett syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen, S., Meletis, K., Fu, D., Jhaveri, S. & Jaenisch, R. Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev. Dynam. 236, 1663–1676 (2007).

    Article  CAS  Google Scholar 

  34. Lavery, L. A. et al. Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. eLife 9, e52981 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stroud, H. et al. Early-life gene expression in neurons modulates lasting epigenetic states. Cell 171, 1151–1164.e1116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghosh, R. P. et al. Unique physical properties and interactions of the domains of methylated DNA binding protein 2. Biochemistry 49, 4395–4410 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Klose, R. J. et al. DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol. Cell 19, 667–678 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Piccolo, F. M. et al. MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions. eLife 8, e51449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mellén, M., Ayata, P., Dewell, S., Kriaucionis, S. & Heintz, N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 1417–1430 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Valinluck, V. et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32, 4100–4108 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Globisch, D. et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5, e15367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Song, C. X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Münzel, M. et al. Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew. Chem. 49, 5375–5377 (2010).

    Article  Google Scholar 

  47. Khare, T. et al. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat. Struct. Mol. Biol. 19, 1037–1043 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fasolino, M. & Zhou, Z. The crucial role of DNA methylation and MeCP2 in neuronal function. Genes 8, 141 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hashimoto, H. et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40, 4841–4849 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khrapunov, S. et al. Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry 53, 3379–3391 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Mellén, M., Ayata, P. & Heintz, N. 5-hydroxymethylcytosine accumulation in postmitotic neurons results in functional demethylation of expressed genes. Proc. Natl Acad. Sci. USA 114, E7812–e7821 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ibrahim, A. et al. MeCP2 is a microsatellite binding protein that protects CA repeats from nucleosome invasion. Science 372, eabd5581 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Chhatbar, K., Connelly, J., Webb, S., Kriaucionis, S. & Bird, A. A critique of the hypothesis that CA repeats are primary targets of neuronal MeCP2. Life Sci. Alliance 5, e202201522 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lentini, A. et al. A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat. Methods 15, 499–504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yasui, D. H. et al. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc. Natl Acad. Sci. USA 104, 19416–19421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weitzel, J. M., Buhrmester, H. & Strätling, W. H. Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Mol. Cell. Biol. 17, 5656–5666 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. von Kries, J. P., Buhrmester, H. & Strätling, W. H. A matrix/scaffold attachment region binding protein: identification, purification, and mode of binding. Cell 64, 123–135 (1991).

    Article  Google Scholar 

  59. Buhrmester, H., von Kries, J. P. & Strätling, W. H. Nuclear matrix protein ARBP recognizes a novel DNA sequence motif with high affinity. Biochemistry 34, 4108–4117 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Lei, M., Tempel, W., Chen, S., Liu, K. & Min, J. Plasticity at the DNA recognition site of the MeCP2 mCG-binding domain. Biochim. biophys. Acta Gene Regul. Mech. 1862, 194409 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Weirauch, M. T. et al. Evaluation of methods for modeling transcription factor sequence specificity. Nat. Biotechnol. 31, 126–134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Connelly, J. C. et al. Absence of MeCP2 binding to non-methylated GT-rich sequences in vivo. Nucleic Acids Res. 48, 3542–3552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rube, H. T. et al. Sequence features accurately predict genome-wide MeCP2 binding in vivo. Nat. Commun. 7, 11025 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baubec, T., Ivánek, R., Lienert, F. & Schübeler, D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, K. et al. Structural basis for the ability of MBD domains to bind methyl-CG and TG sites in DNA. J. Biol. Chem. 293, 7344–7354 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, W., Kim, J., Yun, J. M., Ohn, T. & Gong, Q. MeCP2 regulates gene expression through recognition of H3K27me3. Nat. Commun. 11, 3140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ortega-Alarcon, D. et al. Extending MeCP2 interactome: canonical nucleosomal histones interact with MeCP2. Nucleic Acids Res. 52, 3636–3653 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nan, X., Campoy, F. J. & Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88, 471–481 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Nikitina, T. et al. MeCP2-chromatin interactions include the formation of chromatosome-like structures and are altered in mutations causing Rett syndrome. J. Biol. Chem. 282, 28237–28245 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Ghosh, R. P., Horowitz-Scherer, R. A., Nikitina, T., Shlyakhtenko, L. S. & Woodcock, C. L. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol. Cell. Biol. 30, 4656–4670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ito-Ishida, A. et al. Genome-wide distribution of linker histone H1.0 is independent of MeCP2. Nat. Neurosci. 21, 794–798 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chua, G. N. L. et al. Differential dynamics specify MeCP2 function at nucleosomes and methylated DNA. Nat. Struct. Mol. Biol. 31, 1789–1797 (2024). This work presents direct observation of the in vitro molecular behaviour of MECP2 on chromatin using a single-molecule approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang, C., van der Woerd, M. J., Muthurajan, U. M., Hansen, J. C. & Luger, K. Biophysical analysis and small-angle X-ray scattering-derived structures of MeCP2–nucleosome complexes. Nucleic Acids Res. 39, 4122–4135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bartke, T. et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Georgel, P. T. et al. Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J. Biol. Chem. 278, 32181–32188 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Nikitina, T. et al. Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Mol. Cell. Biol. 27, 864–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Thambirajah, A. A. et al. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain. Nucleic Acids Res. 40, 2884–2897 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  79. ENCODE Project Consortium. A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

    Article  Google Scholar 

  80. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  81. Cholewa-Waclaw, J. et al. Quantitative modelling predicts the impact of DNA methylation on RNA polymerase II traffic. Proc. Natl Acad. Sci. USA 116, 14995–15000 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kaya-Okur, H. S., Janssens, D. H., Henikoff, J. G., Ahmad, K. & Henikoff, S. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15, 3264–3283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Henikoff, S., Henikoff, J. G., Kaya-Okur, H. S. & Ahmad, K. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation. eLife 9, e63274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, Y. et al. MECP2 directly interacts with RNA polymerase II to modulate transcription in human neurons. Neuron 112, 1943–1958.e1910 (2024). This study describes a new class of MECP2 binding to unmethylated promoter regions as a cofactor for RNA Pol II transcription in human neurons.

    Article  CAS  PubMed  Google Scholar 

  88. Mishra, G. P. et al. Interaction of methyl-CpG-binding protein 2 (MeCP2) with distinct enhancers in the mouse cortex. Nat. Neurosci. 28, 62–71 (2025). This research describes a methylation-independent mechanism by which MECP2 binds and modulates enhancer activity to repress gene expression.

    Article  CAS  PubMed  Google Scholar 

  89. Martin, S. et al. Embryonic stem cell-derived neurons as a model system for epigenome maturation during development. Genes 14, 957 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, S. et al. Cell type-specific 3D-genome organization and transcription regulation in the brain. Sci. Adv. 11, eadv2067 (2025). This study presents an advanced spatial imaging technique to reveal cell-type-dependent regulation by MECP2 of chromatin organization in mouse brains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Luo, C. et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357, 600–604 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. He, Y. et al. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752–759 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Johnson, B. S. et al. Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nat. Med. 23, 1203–1214 (2017). An engineered Rett syndrome mouse model that selectively tags MECP2 to enable the cell-type-specific analysis of Rett-causing mutations on gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bartosovic, M. & Castelo-Branco, G. Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag. Nat. Biotechnol. 41, 794–805 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Carter, B. et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat. Commun. 10, 3747 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Xie, Y. et al. Droplet-based single-cell joint profiling of histone modifications and transcriptomes. Nat. Struct. Mol. Biol. 30, 1428–1433 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Kudo, S. et al. Heterogeneity in residual function of MeCP2 carrying missense mutations in the methyl CpG binding domain. J. Med. Genet. 40, 487–493 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yusufzai, T. M. & Wolffe, A. P. Functional consequences of Rett syndrome mutations on human MeCP2. Nucleic Acids Res. 28, 4172–4179 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lyst, M. J. et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat. Neurosci. 16, 898–902 (2013). This study reveals the mechanism of MECP2 as a repressor through its interaction with the NCoR/SMRT co-repressor complex.

    Article  CAS  PubMed  Google Scholar 

  104. Kruusvee, V. et al. Structure of the MeCP2–TBLR1 complex reveals a molecular basis for Rett syndrome and related disorders. Proc. Natl Acad. Sci. USA 114, E3243–e3250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sugino, K. et al. Cell-type-specific repression by methyl-CpG-binding protein 2 is biased toward long genes. J. Neurosci. 34, 12877–12883 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Renthal, W. et al. Characterization of human mosaic Rett syndrome brain tissue by single-nucleus RNA sequencing. Nat. Neurosci. 21, 1670–1679 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Donati, B., Lorenzini, E. & Ciarrocchi, A. BRD4 and cancer: going beyond transcriptional regulation. Mol. Cancer 17, 164 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xiang, Y. et al. Dysregulation of BRD4 function underlies the functional abnormalities of MeCP2 mutant neurons. Mol. Cell 79, 84–98.e89 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sharifi, O. et al. Sex-specific single cell-level transcriptomic signatures of Rett syndrome disease progression. Commun. Biol. 7, 1292 (2024). This work describes longitudinal study of sex-specific, cell-type-dependent and disease stage-associated transcriptional dysregulation in mouse models of Rett syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Neul, J. L. et al. Developmental delay in Rett syndrome: data from the natural history study. J. Neurodev. Disord. 6, 20 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bu, Q. et al. CREB signaling is involved in Rett syndrome pathogenesis. J. Neurosci. 37, 3671–3685 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, C. H. et al. MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature 586, 440–444 (2020). This study proposes a model of MECP2-driven phase separation that facilitates heterochromatin formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, Y. et al. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 13, 446–458 (2013). This study presents an application of RNA spike-in normalization for gene expression analysis to uncover global transcriptional downregulation in MECP2 knockout human neurons.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhou, J. et al. Disruption of MeCP2-TCF20 complex underlies distinct neurodevelopmental disorders. Proc. Natl Acad. Sci. USA 119, e2119078119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sonn, J. Y. et al. MeCP2 interacts with the super elongation complex to regulate transcription. Preprint at BioRxiv https://doi.org/10.1101/2024.06.30.601446 (2024).

  116. Seczynska, M., Bloor, S., Cuesta, S. M. & Lehner, P. J. Genome surveillance by HUSH-mediated silencing of intronless mobile elements. Nature 601, 440–445 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Castello, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Soto, L. F. et al. Compendium of human transcription factor effector domains. Mol. Cell 82, 514–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. DelRosso, N. et al. Large-scale mapping and mutagenesis of human transcriptional effector domains. Nature 616, 365–372 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bajikar, S. S. et al. Acute MeCP2 loss in adult mice reveals transcriptional and chromatin changes that precede neurological dysfunction and inform pathogenesis. Neuron 113, 380–395.e8 (2024). In this study, a controlled perturbation system in adult mice is used to assess the immediate effects of MECP2 loss and the subsequent pathogenic cascade.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Dillies, M. A. et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinforma. 14, 671–683 (2013).

    Article  CAS  Google Scholar 

  124. Evans, C., Hardin, J. & Stoebel, D. M. Selecting between-sample RNA-seq normalization methods from the perspective of their assumptions. Brief. Bioinforma. 19, 776–792 (2018).

    Article  CAS  Google Scholar 

  125. Chen, K. et al. The overlooked fact: fundamental need for spike-in control for virtually all genome-wide analyses. Mol. Cell. Biol. 36, 662–667 (2015).

    Article  PubMed  Google Scholar 

  126. Yazdani, M. et al. Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons. Stem Cell 30, 2128–2139 (2012).

    Article  CAS  Google Scholar 

  127. Lovén, J. et al. Revisiting global gene expression analysis. Cell 151, 476–482 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. SEQC/MAQC-III Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the sequencing quality control consortium. Nat. Biotechnol. 32, 903–914 (2014).

    Article  Google Scholar 

  131. Agarwal, N. et al. MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation. Nucleic Acids Res. 35, 5402–5408 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nan, X. et al. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc. Natl Acad. Sci. USA 104, 2709–2714 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ito-Ishida, A. et al. MeCP2 levels regulate the 3D structure of heterochromatic foci in mouse neurons. J. Neurosci. 40, 8746–8766 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, L. et al. Rett syndrome-causing mutations compromise MeCP2-mediated liquid–liquid phase separation of chromatin. Cell Res. 30, 393–407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lesire, S. et al. LEDGF interacts with the NID domain of MeCP2 and modulates MeCP2 condensates. Structure 33, 78–90.e6 (2024).

    Article  PubMed  Google Scholar 

  136. Pantier, R. et al. MeCP2 binds to methylated DNA independently of phase separation and heterochromatin organisation. Nat. Commun. 15, 3880 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Horike, S., Cai, S., Miyano, M., Cheng, J. F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet. 37, 31–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Kernohan, K. D., Vernimmen, D., Gloor, G. B. & Bérubé, N. G. Analysis of neonatal brain lacking ATRX or MeCP2 reveals changes in nucleosome density, CTCF binding and chromatin looping. Nucleic Acids Res. 42, 8356–8368 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kernohan, K. D. et al. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev. Cell 18, 191–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Brito, D. V. C., Gulmez Karaca, K., Kupke, J., Frank, L. & Oliveira, A. M. M. MeCP2 gates spatial learning-induced alternative splicing events in the mouse hippocampus. Mol. Brain 13, 156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jiang, Y. et al. Rett syndrome linked to defects in forming the MeCP2/Rbfox/LASR complex in mouse models. Nat. Commun. 12, 5767 (2021). This study presents mechanistic insights into how MECP2 regulates RNA splicing via the RBFOX/LASR complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chhatbar, K., Cholewa-Waclaw, J., Shah, R., Bird, A. & Sanguinetti, G. Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing. PLoS Genet. 16, e1009087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Enikanolaiye, A. et al. Suppressor mutations in Mecp2-null mice implicate the DNA damage response in Rett syndrome pathology. Genome Res. 30, 540–552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Aguilera, P. & López-Contreras, A. J. ATRX, a guardian of chromatin. Trends Genet. 39, 505–519 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Marchena-Cruz, E. et al. DDX47, MeCP2, and other functionally heterogeneous factors protect cells from harmful R loops. Cell Rep. 42, 112148 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rodrigues, D. C. et al. Buffering of transcription rate by mRNA half-life is a conserved feature of Rett syndrome models. Nat. Commun. 14, 1896 (2023). This study describes a conserved transcriptional buffering characteristic in humans with Rett syndrome and mouse Rett syndrome models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Albizzati, E. et al. Mecp2 knock-out astrocytes affect synaptogenesis by interleukin 6 dependent mechanisms. iScience 27, 109296 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sun, J. et al. Mutations in the transcriptional regulator MeCP2 severely impact key cellular and molecular signatures of human astrocytes during maturation. Cell Rep. 42, 111942 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dong, Q., Kim, J., Nguyen, L., Bu, Q. & Chang, Q. An astrocytic influence on impaired tonic inhibition in hippocampal CA1 pyramidal neurons in a mouse model of Rett syndrome. J. Neurosci. 40, 6250–6261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tomasello, D. L. et al. Mitochondrial dysfunction and increased reactive oxygen species production in MECP2 mutant astrocytes and their impact on neurons. Sci. Rep. 14, 20565 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cao, Z. et al. RIPK1 activation in Mecp2-deficient microglia promotes inflammation and glutamate release in RTT. Proc. Natl Acad. Sci. USA 121, e2320383121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mifflin, L., Ofengeim, D. & Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug. Discov. 19, 553–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Khoury, E. S. et al. Dendrimer-conjugated glutaminase inhibitor selectively targets microglial glutaminase in a mouse model of Rett syndrome. Theranostics 10, 5736–5748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mesci, P. et al. Human microglial cells as a therapeutic target in a neurodevelopmental disease model. Stem Cell Rep. 19, 1074–1091 (2024).

    Article  CAS  Google Scholar 

  155. Osaki, T. et al. miR126-mediated impaired vascular integrity in Rett syndrome. Preprint at BioRxiv https://doi.org/10.1101/2024.10.11.617929 (2024).

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05740761 (2023).

  157. Sinnamon, J. R. et al. Targeted RNA editing in brainstem alleviates respiratory dysfunction in a mouse model of Rett syndrome. Proc. Natl Acad. Sci. USA 119, e2206053119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Reautschnig, P. et al. Precise in vivo RNA base editing with a wobble-enhanced circular CLUSTER guide RNA. Nat. Biotechnol. 43, 545–557 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Manjunath, A. et al. Nucleoside analogs in ADAR guide strands enable editing at 5′-GA sites. Biomolecules 14, 1229 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jacobsen, C. S. et al. Library screening reveals sequence motifs that enable ADAR2 editing at recalcitrant sites. ACS Chem. Biol. 18, 2188–2199 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Doherty, E. E. et al. ADAR activation by inducing a syn conformation at guanosine adjacent to an editing site. Nucleic Acids Res. 50, 10857–10868 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sinnamon, J. R. et al. In vivo repair of a protein underlying a neurological disorder by programmable RNA editing. Cell Rep. 32, 107878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Qian, J. et al. Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. Sci. Transl. Med. 15, eadd46666 (2023).

    Article  Google Scholar 

  164. Aguilar, R. et al. Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature 604, 160–166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Przanowski, P. et al. Pharmacological reactivation of inactive X-linked Mecp2 in cerebral cortical neurons of living mice. Proc. Natl Acad. Sci. 115, 7991–7996 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee, H. M. et al. A small-molecule screen reveals novel modulators of MeCP2 and X-chromosome inactivation maintenance. J. Neurodev. Disord. 12, 29 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Sripathy, S. et al. Screen for reactivation of MeCP2 on the inactive X chromosome identifies the BMP/TGF-β superfamily as a regulator of XIST expression. Proc. Natl Acad. Sci. USA 114, 1619–1624 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Palmieri, M., Pozzer, D. & Landsberger, N. Advanced genetic therapies for the treatment of Rett syndrome: state of the art and future perspectives. Front. Neurosci. 17, 1172805 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sadhu, C. et al. The efficacy of a human-ready miniMECP2 gene therapy in a pre-clinical model of Rett syndrome. Genes 15, 31 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Yang, L., Kirby, J. E., Sunwoo, H. & Lee, J. T. Female mice lacking Xist RNA show partial dosage compensation and survive to term. Genes Dev. 30, 1747–1760 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bhatnagar, S. et al. Genetic and pharmacological reactivation of the mammalian inactive X chromosome. Proc. Natl Acad. Sci. USA 111, 12591–12598 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Merritt, J. K., Collins, B. E., Erickson, K. R., Dong, H. & Neul, J. L. Pharmacological read-through of R294X Mecp2 in a novel mouse model of Rett syndrome. Hum. Mol. Genet. 29, 2461–2470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wong, K. M. et al. Evaluation of novel enhancer compounds in gentamicin-mediated readthrough of nonsense mutations in Rett syndrome. Int. J. Mol. Sci. 24, 11665 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. May, D. et al. Characterizing the journey of Rett syndrome among females in the United States: a real-world evidence study using the Rett syndrome natural history study database. J. Neurodev. Disord. 16, 42 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Krajnc, N. Management of epilepsy in patients with Rett syndrome: perspectives and considerations. Ther. Clin. Risk Manag. 11, 925–932 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kennedy, M. et al. Development of trofinetide for the treatment of Rett syndrome: from bench to bedside. Front. Pharmacol. 14, 1341746 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Arjunan, A., Sah, D. K., Woo, M. & Song, J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci. 13, 16 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Conti, V. et al. MeCP2 affects skeletal muscle growth and morphology through non cell-autonomous mechanisms. PLoS One 10, e0130183 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Singh, A., Balasundaram, M. K. & Gupta, D. Trofinetide in Rett syndrome: a brief review of safety and efficacy. Intractable Rare Dis. Res. 12, 262–266 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Baker, A. M. et al. Central penetration and stability of N-terminal tripeptide of insulin-like growth factor-I, glycine-proline-glutamate in adult rat. Neuropeptides 39, 81–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Guan, J. et al. Neuroprotective effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate (GPE) following intravenous infusion in hypoxic-ischemic adult rats. Neuropharmacology 47, 892–903 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Bickerdike, M. J. et al. NNZ-2566: a Gly–Pro–Glu analogue with neuroprotective efficacy in a rat model of acute focal stroke. J. Neurol. Sci. 278, 85–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Neul, J. L. et al. Trofinetide for the treatment of Rett syndrome: a randomized phase 3 study. Nat. Med. 29, 1468–1475 (2023). This research outlines the clinical importance of trofinetide in treating Rett syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lopes, A. G., Loganathan, S. K. & Caliaperumal, J. Rett syndrome and the role of MECP2: signaling to clinical trials. Brain Sci. 14, 120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sun, X. et al. Deep single-cell-type proteome profiling of mouse brain by nonsurgical AAV-mediated proximity labeling. Anal. Chem. 94, 5325–5334 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhou, J. et al. A novel pathogenic mutation of MeCP2 impairs chromatin association independent of protein levels. Genes Dev. 37, 883–900 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Young, J. I. et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc. Natl Acad. Sci. USA 102, 17551–17558 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Oksuz, O. et al. Transcription factors interact with RNA to regulate genes. Mol. Cell 83, 2449–2463.e2413 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lee, Y., Okita, T. W. & Szymanski, D. B. A co-fractionation mass spectrometry-based prediction of protein complex assemblies in the developing rice aleurone-subaleurone. Plant. Cell 33, 2965–2980 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Dumrongprechachan, V. et al. Cell-type and subcellular compartment-specific APEX2 proximity labeling reveals activity-dependent nuclear proteome dynamics in the striatum. Nat. Commun. 12, 4855 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Brown, K. et al. The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome. Hum. Mol. Genet. 25, 558–570 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Fabio, R. A. et al. Recent insights into genotype-phenotype relationships in patients with Rett syndrome using a fine grain scale. Res. Dev. Disabil. 35, 2976–2986 (2014).

    Article  PubMed  Google Scholar 

  195. Gonzales, M. L. & LaSalle, J. M. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr. Psychiatry Rep. 12, 127–134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Achilly, N. P., Wang, W. & Zoghbi, H. Y. Presymptomatic training mitigates functional deficits in a mouse model of Rett syndrome. Nature 592, 596–600 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Downs, J. et al. Environmental enrichment intervention for Rett syndrome: an individually randomised stepped wedge trial. Orphanet J. Rare Dis. 13, 3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Schmidt, A., Zhang, H. & Cardoso, M. C. MeCP2 and chromatin compartmentalization. Cells 9, 878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Good, K., Kalani, L., Vincent, J. & Ausió, J. Multifaceted roles of MeCP2 in cellular regulation and phase separation: implications for neurodevelopmental disorders, depression, and oxidative stress. Biochem. Cell Biol. 103, 1–12 (2025).

    Article  PubMed  Google Scholar 

  200. Good, K. V., Vincent, J. B. & Ausió, J. MeCP2: the genetic driver of Rett syndrome epigenetics. Front. Genet. 12, 620859 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lavery, L. A. & Zoghbi, H. Y. The distinct methylation landscape of maturing neurons and its role in Rett syndrome pathogenesis. Curr. Opin. Neurobiol. 59, 180–188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sonn, J. Y. & Zoghbi, H. Y. MeCP2 goes into unmethylated territories. Nat. Neurosci. 28, 4–5 (2025).

    Article  CAS  PubMed  Google Scholar 

  203. Baker, S. A. et al. An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell 152, 984–996 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  PubMed  Google Scholar 

  205. Dominguez, G., Wu, Y. & Zhou, J. Epigenetic regulation and neurodevelopmental disorders: from MeCP2 to the TCF20/PHF14 complex. Genes 15, 1653 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wu, H. et al. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc. Natl Acad. Sci. USA 107, 18161–18166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Nomura, T. et al. MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum. Mol. Genet. 17, 1192–1199 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Gao, Y. et al. Inhibition of miR-15a promotes BDNF expression and rescues dendritic maturation deficits in MeCP2-deficient neurons. Stem Cell 33, 1618–1629 (2015).

    Article  CAS  Google Scholar 

  209. Szulwach, K. E. et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J. Cell Biol. 189, 127–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chen, Y., Shin, B. C., Thamotharan, S. & Devaskar, S. U. Differential methylation of the micro-RNA 7b gene targets postnatal maturation of murine neuronal Mecp2 gene expression. Dev. Neurobiol. 74, 407–425 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Mellios, N. et al. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol. Psychiatry 23, 1051–1065 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Cheng, T. L. et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev. Cell 28, 547–560 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Mnatzakanian, G. N. et al. A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat. Genet. 36, 339–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  214. Kriaucionis, S. & Bird, A. The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res. 32, 1818–1823 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Olson, C. O., Zachariah, R. M., Ezeonwuka, C. D., Liyanage, V. R. & Rastegar, M. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements. PLoS One 9, e90645 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Zachariah, R. M., Olson, C. O., Ezeonwuka, C. & Rastegar, M. Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PLoS One 7, e49763 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Liyanage, V. R., Zachariah, R. M. & Rastegar, M. Decitabine alters the expression of Mecp2 isoforms via dynamic DNA methylation at the Mecp2 regulatory elements in neural stem cells. Mol. Autism 4, 46 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Nagarajan, R. P., Hogart, A. R., Gwye, Y., Martin, M. R. & LaSalle, J. M. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 1, e1–e11 (2006).

    Article  PubMed  Google Scholar 

  219. Franklin, T. B. et al. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415 (2010).

    Article  PubMed  Google Scholar 

  220. Lockman, S. et al. Transcriptional inhibition of the Mecp2 promoter by MeCP2E1 and MeCP2E2 isoforms suggests negative auto-regulatory feedback that can be moderated by metformin. J. Mol. Neurosci. 74, 14 (2024).

    Article  CAS  PubMed  Google Scholar 

  221. Buist, M. et al. Differential sensitivity of the protein translation initiation machinery and mTOR signaling to MECP2 gain- and loss-of-function involves MeCP2 isoform-specific homeostasis in the brain. Cells 11, 1442 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Fichou, Y. et al. The first missense mutation causing Rett syndrome specifically affecting the MeCP2_e1 isoform. Neurogenetics 10, 127–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Saunders, C. J., Minassian, B. E., Chow, E. W., Zhao, W. & Vincent, J. B. Novel exon 1 mutations in MECP2 implicate isoform MeCP2_e1 in classical Rett syndrome. Am. J. Med. Genet. A 149A, 1019–1023 (2009).

    Article  CAS  PubMed  Google Scholar 

  224. Gianakopoulos, P. J. et al. Mutations in MECP2 exon 1 in classical Rett patients disrupt MECP2_e1 transcription, but not transcription of MECP2_e2. Am. J. Med. Genet. B Neuropsychiatr. Genet. 159B, 210–216 (2012).

    Article  PubMed  Google Scholar 

  225. Yasui, D. H. et al. Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome. Hum. Mol. Genet. 23, 2447–2458 (2014).

    Article  CAS  PubMed  Google Scholar 

  226. Vogel Ciernia, A. et al. MeCP2 isoform e1 mutant mice recapitulate motor and metabolic phenotypes of Rett syndrome. Hum. Mol. Genet. 27, 4077–4093 (2018).

    PubMed  PubMed Central  Google Scholar 

  227. Djuric, U. et al. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells. Neurobiol. Dis. 76, 37–45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Itoh, M. et al. Methyl CpG-binding protein isoform MeCP2_e2 is dispensable for Rett syndrome phenotypes but essential for embryo viability and placenta development. J. Biol. Chem. 287, 13859–13867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kerr, B. et al. Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. Eur. J. Hum. Genet. 20, 69–76 (2012).

    Article  CAS  PubMed  Google Scholar 

  230. Martinez de Paz, A. et al. MeCP2-E1 isoform is a dynamically expressed, weakly DNA-bound protein with different protein and DNA interactions compared to MeCP2-E2. Epigenetics Chromatin 12, 63 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Ariani, F. et al. FOXG1 is responsible for the congenital variant of Rett syndrome. Am. J. Hum. Genet. 83, 89–93 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Dastidar, S. G. et al. Isoform-specific toxicity of Mecp2 in postmitotic neurons: suppression of neurotoxicity by FoxG1. J. Neurosci. 32, 2846–2855 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Li, R. et al. Misregulation of alternative splicing in a mouse model of Rett syndrome. PLoS Genet. 12, e1006129 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Maxwell, S. S., Pelka, G. J., Tam, P. P. & El-Osta, A. Chromatin context and ncRNA highlight targets of MeCP2 in brain. RNA Biol. 10, 1741–1757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Long, S. W., Ooi, J. Y., Yau, P. M. & Jones, P. L. A brain-derived MeCP2 complex supports a role for MeCP2 in RNA processing. Biosci. Rep. 31, 333–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  236. Khan, A. W. et al. MeCP2 interacts with chromosomal microRNAs in brain. Epigenetics 12, 1028–1037 (2017).

    Article  PubMed  Google Scholar 

  237. Fioriniello, S. et al. MeCP2 and major satellite forward RNA cooperate for Pericentric heterochromatin organization. Stem Cell Rep. 15, 1317–1332 (2020).

    Article  CAS  Google Scholar 

  238. Dyson, H. J. Roles of intrinsic disorder in protein-nucleic acid interactions. Mol. Biosyst. 8, 97–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  239. Cermakova, K. & Hodges, H. C. Interaction modules that impart specificity to disordered protein. Trends Biochem. Sci. 48, 477–490 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Ahmed, R. & Forman-Kay, J. D. NMR insights into dynamic, multivalent interactions of intrinsically disordered regions: from discrete complexes to condensates. Essays Biochem. 66, 863–873 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Yugandhar, K., Gupta, S. & Yu, H. Inferring protein–protein interaction networks from mass spectrometry-based proteomic approaches: a mini-review. Comput. Struct. Biotechnol. J. 17, 805–811 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Pfeiffer, C. T., Paulo, J. A., Gygi, S. P. & Rockman, H. A. Proximity labeling for investigating protein-protein interactions. Methods Cell Biol. 169, 237–266 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Kido, K. et al. AirID, a novel proximity biotinylation enzyme, for analysis of protein–protein interactions. eLife 9, e54983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  246. Qiu, Z. Deciphering MECP2-associated disorders: disrupted circuits and the hope for repair. Curr. Opin. Neurobiol. 48, 30–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  247. Samaco, R. C. et al. Female Mecp2+/− mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Hum. Mol. Genet. 22, 96–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  248. Lau, B. Y. B., Krishnan, K., Huang, Z. J. & Shea, S. D. Maternal experience-dependent cortical plasticity in mice is circuit- and stimulus-specific and requires MECP2. J. Neurosci. 40, 1514–1526 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Lau, B. Y. B. et al. Lateralized expression of cortical perineuronal nets during maternal experience is dependent on MECP2. eNeuro 7, eneuro.0500-19.2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Xu, P. et al. Pattern decorrelation in the mouse medial prefrontal cortex enables social preference and requires MeCP2. Nat. Commun. 13, 3899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Boyle, N. et al. MeCP2 deficiency alters the response selectivity of prefrontal cortical neurons to different social stimuli. eNeuro 11, eneuro.0003-24.2024 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Yue, Y. et al. MeCP2 deficiency impairs motor cortical circuit flexibility associated with motor learning. Mol. Brain 15, 76 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Yue, Y. et al. Motor training improves coordination and anxiety in symptomatic Mecp2-null mice despite impaired functional connectivity within the motor circuit. Sci. Adv. 7, eabf7467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Ward, C. S. et al. Loss of MeCP2 function across several neuronal populations impairs breathing response to acute hypoxia. Front. Neurol. 11, 593554 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Chao, H. T. et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. He, L. J. et al. Conditional deletion of Mecp2 in parvalbumin-expressing GABAergic cells results in the absence of critical period plasticity. Nat. Commun. 5, 5036 (2014).

    Article  CAS  PubMed  Google Scholar 

  257. Goffin, D., Brodkin, E. S., Blendy, J. A., Siegel, S. J. & Zhou, Z. Cellular origins of auditory event-related potential deficits in Rett syndrome. Nat. Neurosci. 17, 804–806 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Krishnan, K. et al. MeCP2 regulates the timing of critical period plasticity that shapes functional connectivity in primary visual cortex. Proc. Natl Acad. Sci. USA 112, E4782–E4791 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Durand, S. et al. NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2. Neuron 76, 1078–1090 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Patrizi, A. et al. Accelerated hyper-maturation of parvalbumin circuits in the absence of MeCP2. Cereb. Cortex 30, 256–268 (2020).

    Article  PubMed  Google Scholar 

  261. Li, J., Kells, P. A., Osgood, A. C., Gautam, S. H. & Shew, W. L. Collapse of complexity of brain and body activity due to excessive inhibition and MeCP2 disruption. Proc. Natl Acad. Sci. USA 118, e2106378118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Ballinger, E. C. et al. Mecp2 deletion from cholinergic neurons selectively impairs recognition memory and disrupts cholinergic modulation of the perirhinal cortex. eNeuro 6, eneuro.0134-19.2019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Rakela, B., Brehm, P. & Mandel, G. Astrocytic modulation of excitatory synaptic signaling in a mouse model of Rett syndrome. eLife 7, e31629 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Trujillo, C. A. et al. Pharmacological reversal of synaptic and network pathology in human MECP2-KO neurons and cortical organoids. EMBO Mol. Med. 13, e12523 (2021).

    Article  CAS  PubMed  Google Scholar 

  265. Chen, X. et al. Graded and pan-neural disease phenotypes of Rett syndrome linked with dosage of functional MeCP2. Protein Cell 12, 639–652 (2021).

    Article  CAS  PubMed  Google Scholar 

  266. Mok, R. S. F. et al. Wide spectrum of neuronal and network phenotypes in human stem cell-derived excitatory neurons with Rett syndrome-associated MECP2 mutations. Transl. Psychiatry 12, 450 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Osaki, T. et al. Early differential impact of MeCP2 mutations on functional networks in Rett syndrome patient-derived human cerebral organoids. Preprint at BioRxiv https://doi.org/10.1101/2024.08.10.607464 (2024).

  268. Gomes, A. R., Fernandes, T. G., Cabral, J. M. S. & Diogo, M. M. Modeling Rett syndrome with human pluripotent stem cells: mechanistic outcomes and future clinical perspectives. Int. J. Mol. Sci. 22, 3751 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Haase, F. D. et al. Pre-clinical investigation of Rett syndrome using human stem cell-based disease models. Front. Neurosci. 15, 698812 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Pejhan, S. & Rastegar, M. Role of DNA methyl-CpG-binding protein MeCP2 in Rett syndrome pathobiology and mechanism of disease. Biomolecules 11, 75 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Zhou, Z. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52, 255–269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Li, W. & Pozzo-Miller, L. BDNF deregulation in Rett syndrome. Neuropharmacology 76 Pt C, 737–746 (2014).

    Article  PubMed  Google Scholar 

  273. Chen, W. G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  274. Vo, N. et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl Acad. Sci. USA 102, 16426–16431 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Klein, M. E. et al. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat. Neurosci. 10, 1513–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  276. Remenyi, J. et al. Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem. J. 428, 281–291 (2010).

    Article  CAS  PubMed  Google Scholar 

  277. Hansen, K. F., Sakamoto, K., Wayman, G. A., Impey, S. & Obrietan, K. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One 5, e154977 (2010).

    Article  Google Scholar 

  278. Han, K. et al. Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. Genes Dev. 27, 485–490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Su, M., Hong, J., Zhao, Y., Liu, S. & Xue, X. MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA-132 in rats with depression. Mol. Med. Rep. 12, 5399–5406 (2015).

    Article  CAS  PubMed  Google Scholar 

  280. Kawashima, H. et al. Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165, 1301–1311 (2010).

    Article  CAS  PubMed  Google Scholar 

  281. Pejhan, S., Del Bigio, M. R. & Rastegar, M. The MeCP2E1/E2-BDNF-miR132 homeostasis regulatory network is region-dependent in the human brain and is impaired in Rett syndrome patients. Front. Cell Dev. Biol. 8, 763 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Zhang, J., Li, H. & Niswander, L. A. m5C methylated lncRncr3-MeCP2 interaction restricts miR124a-initiated neurogenesis. Nat. Commun. 15, 5136 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Im, H. I., Hollander, J. A., Bali, P. & Kenny, P. J. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat. Neurosci. 13, 1120–1127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Yan, B. et al. MiR-218 targets MeCP2 and inhibits heroin seeking behavior. Sci. Rep. 7, 40413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Xu, W. et al. Role of nucleus accumbens microRNA-181a and MeCP2 in incubation of heroin craving in male rats. Psychopharmacology 238, 2313–2324 (2021).

    Article  CAS  PubMed  Google Scholar 

  286. Rodrigues, D. C. et al. MECP2 is post-transcriptionally regulated during human neurodevelopment by combinatorial action of RNA-binding proteins and miRNAs. Cell Rep. 17, 720–734 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Laurent and M. Oulmou for their valuable insights into the role of MECP2 in non-neuronal cells, DNA damage, RNA splicing and post-transcriptional regulation. All figures were created using BioRender. This work was supported by NIH grant 5R01MH104610 (R.J.) and International Rett Syndrome Foundation Research Independence Award (Y.L.). This research was supported by a generous gift from The Owens Family Foundation (Y.L. and R.J.).

Author information

Authors and Affiliations

Authors

Contributions

Y.L., R.G., T.W.W. and G.W.B. researched data for the article. Y.L., R.G., R.A.Y. and R.J. contributed substantially to discussion of the content. Y.L., T.W.W., G.W.B., R.G. and A.F. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Rudolf Jaenisch.

Ethics declarations

Competing interests

R.J. is an adviser and co-founder of Fate Therapeutics and Fulcrum Therapeutics. A.F. is a co-founder and shareholder of StemAxon. R.A.Y. is a founder and shareholder of Syros Pharmaceuticals, Camp4 Therapeutics, Omega Therapeutics, Dewpoint Therapeutics and Paratus Sciences. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Janine LaSalle, Mojgan Rastegar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

AT hooks

DNA-binding motifs targeting the minor groove of AT-rich DNA.

Chromatin

A mixture of DNA and proteins, primarily histones, that forms the chromosomes within the nucleus of a eukaryotic cell.

Chromatin loops

Structures formed by the folding of chromatin fibres and anchored by specific proteins such as CTCF and cohesin complexes, these bring distinct regions on the same chromosome closer to each other.

Condensates

Membraneless compartments formed by phase separation of biomolecules including proteins and nucleic acids.

DNA damage repair

A process by which cells identify and correct damages to DNA molecules, thereby restoring genomic integrity.

Enhancer

A short regulatory DNA sequence that is in close spatial proximity to its target genes and can be bound by transcription factors to increase the transcription of its targets.

Gene body

The region of the gene that starts at the transcription start site and extends to the transcription termination site, including both exons and introns.

Heterochromatin

A type of chromatin that is densely packed and transcriptionally inactive.

Long genes

Genes that are longer than 100 kb. These genes are crucial for the development and function of neurons, which contain longer transcripts in the transcriptome than non-neuronal cells.

MicroRNAs

Non-coding RNAs that regulate gene expression by binding to and influencing mRNA targets in diverse biological processes.

Microsatellites

Short, repetitive DNA sequences consisting of 1–6  bp motifs, which are scattered throughout the genome.

Microtubule

A hollow polymeric tube composed of tubulin that helps support the shape of a cell.

Nucleosome

The basic repeating subunit of chromatin consisting of a section of DNA wrapping around a histone octamer.

Post-transcriptional regulation

Processes that control gene expression at the RNA level, between transcription and translation, primarily including capping, splicing, polyadenylation and nuclear export.

Promoter

A regulatory DNA sequence that is located upstream of its target gene and can be bound by RNA polymerase II and transcription factors to initiate the transcription of its targets.

RNA splicing

A biological process in which a newly transcribed precursor mRNA is modified by removing introns and rejoining exons to produce a mature mRNA that can be translated into a protein.

Topologically associating domains

Fundamental units of 3D nuclear DNA organization in which cis-regulatory elements and their targets can frequently interact.

Transcription start sites

Locations on a DNA molecule at which the first nucleotide is transcribed into RNA.

X chromosome inactivation

A dosage compensation mechanism in female mammals, where one of the two X chromosomes in each cell is randomly silenced to equalize the expression of X-linked genes between males and females.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Whitfield, T.W., Bell, G.W. et al. Exploring the complexity of MECP2 function in Rett syndrome. Nat. Rev. Neurosci. 26, 379–398 (2025). https://doi.org/10.1038/s41583-025-00926-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00926-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing