Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroferroptosis in health and diseases

Abstract

Ferroptosis is a type of cell death process defined by iron-dependent peroxidation of phospholipids leading to the destruction of cellular membranes and death of the cell. Ferroptosis occurs throughout the body, but a considerable research focus on ferroptosis in the brain — neuroferroptosis — has been driven by the rich lipid and iron content of the brain as well as its high oxygen consumption. Neurons also have an exceptionally large surface area and metabolic demand, which necessitates specific mechanisms (such as lipid antioxidants) to engage constantly to protect the plasma membrane against lipid peroxidation. Ferroptosis has been extensively linked to neurodegeneration and ischaemia and is increasingly implicated in physiological processes such as neuronal reprogramming. Astrocytes provide metabolic support to neurons, enabling them to defend against ferroptosis, yet ferroptotic signals in microglia can propagate damage to astrocytes and neurons, highlighting the complex intercellular (patho)physiology of neuroferroptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical biology of ferroptosis.
Fig. 2: Metabo-ferroptosis coupling in brain cells.
Fig. 3: Neuroferroptosis processes are unique to Alzheimer disease, Parkinson disease and amyotrophic lateral sclerosis.

Similar content being viewed by others

References

  1. Wong, F. K. & Marin, O. Developmental cell death in the cerebral cortex. Annu. Rev. Cell Dev. Biol. 35, 523–542 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Kole, A. J., Annis, R. P. & Deshmukh, M. Mature neurons: equipped for survival. Cell Death Dis. 4, e689 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ostrom, Q. T., Francis, S. S. & Barnholtz-Sloan, J. S. Epidemiology of brain and other CNS tumors. Curr. Neurol. Neurosci. Rep. 21, 68 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Herdy, J. R., Mertens, J. & Gage, F. H. Neuronal senescence may drive brain aging. Science 384, 1404–1406 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wong, F. K. et al. Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature 557, 668–673 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alves, F., Lane, D., Nguyen, T. P. M., Bush, A. I. & Ayton, S. In defence of ferroptosis. Signal. Transduct. Target. Ther. 10, 2 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012). This paper coins ferroptosis as a unique cell death pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008). This early paper identifies loss of GPX4 as causing a unique cell death pathway.

    Article  CAS  PubMed  Google Scholar 

  10. Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Do, Q. & Xu, L. How do different lipid peroxidation mechanisms contribute to ferroptosis? Cell Rep. Phys. Sci. 4, 101683 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramos, P. et al. Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J. Trace Elem. Med. Biol. 28, 13–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Levi, S. & Rovida, E. The role of iron in mitochondrial function. Biochim Biophys Acta 1790, 629–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Masini, A. et al. Dietary iron deficiency in the rat. II. Recovery from energy metabolism derangement of the hepatic tissue by iron therapy. Biochim Biophys Acta 1188, 53–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97, 1634–1658 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Zucca, F. A. et al. Neuromelanin and iron in human locus coeruleus and substantia nigra during aging: consequences for neuronal vulnerability. J. Neural Transm. 113, 757–767 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Devos, D. et al. Trial of deferiprone in Parkinson’s disease. N. Engl. J. Med. 387, 2045–2055 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reinert, A., Morawski, M., Seeger, J., Arendt, T. & Reinert, T. Iron concentrations in neurons and glial cells with estimates on ferritin concentrations. BMC Neurosci. 20, 25 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liddell, J. R. et al. Microglial ferroptotic stress causes non-cell autonomous neuronal death. Mol. Neurodegener. 19, 14 (2024). This study demonstrates how ferroptosis in microglia can impact on astrocytes and neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Faux, N. G. et al. An anemia of Alzheimer’s disease. Mol. Psychiatry 19, 1227–1234 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Hogarth, P. Neurodegeneration with brain iron accumulation: diagnosis and management. J. Mov. Disord. 8, 1–13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. O’Brien, J. S. & Sampson, E. L. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J. Lipid Res. 6, 545–551 (1965).

    Article  PubMed  Google Scholar 

  24. Osetrova, M. et al. Lipidome atlas of the adult human brain. Nat. Commun. 15, 4455 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bazinet, R. P. & Laye, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 15, 771–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Liang, D. et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186, 2748–2764.e22 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reed, A. et al. LPCAT3 inhibitors remodel the polyunsaturated phospholipid content of human cells and protect from ferroptosis. ACS Chem. Biol. 17, 1607–1618 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2018.11.016 (2018).

  29. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Jakaria, M., Belaidi, A. A., Bush, A. I. & Ayton, S. Vitamin A metabolites inhibit ferroptosis. Biomed. Pharmacother. 164, 114930 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Kraft, V. A. N. et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Seibt, T. M., Proneth, B. & Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free. Radic. Biol. Med. 133, 144–152 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Smith, A. C. et al. Mutations in the enzyme glutathione peroxidase 4 cause sedaghatian-type spondylometaphyseal dysplasia. J. Med. Genet. 51, 470–474 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell https://doi.org/10.1016/j.cell.2017.11.048 (2017). This study demonstrates how efficient GPX4 activity is required to prevent neuronal death by ferroptosis.

  38. Chiu-Ugalde, J. et al. Mutation of megalin leads to urinary loss of selenoprotein P and selenium deficiency in serum, liver, kidneys and brain. Biochem. J. 431, 103–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Solovyev, N., Drobyshev, E., Blume, B. & Michalke, B. Selenium at the neural barriers: a review. Front. Neurosci. 15, 630016 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Burk, R. F. et al. Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed. J. Neurosci. 27, 6207–6211 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Valentine, W. M., Abel, T. W., Hill, K. E., Austin, L. M. & Burk, R. F. Neurodegeneration in mice resulting from loss of functional selenoprotein P or its receptor apolipoprotein E receptor 2. J. Neuropathol. Exp. Neurol. 67, 68–77 (2008).

    Article  PubMed  Google Scholar 

  42. Leiter, O. et al. Lrp8 knockout mice fed a selenium-replete diet display subtle deficits in their spatial learning and memory function. Behav. Neurosci. 138, 125–141 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Hill, K. E., Zhou, J., McMahan, W. J., Motley, A. K. & Burk, R. F. Neurological dysfunction occurs in mice with targeted deletion of the selenoprotein P gene. J. Nutr. 134, 157–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Peters, M. M., Hill, K. E., Burk, R. F. & Weeber, E. J. Altered hippocampus synaptic function in selenoprotein P deficient mice. Mol. Neurodegener. 1, 12 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Leiter, O. et al. Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metab. 34, 408–423.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. De Miguel, Z. et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 600, 494–499 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Biglari, S. et al. Ataxia with vitamin E deficiency: case series, vitamin E therapy response, founder effect, and in silico analysis. Clin Genet. https://doi.org/10.1111/cge.14658 (2024).

  48. Ulatowski, L. et al. Vitamin E is essential for Purkinje neuron integrity. Neuroscience 260, 120–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Hambright, W. S., Fonseca, R. S., Chen, L., Na, R. & Ran, Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 12, 8–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Olson, C. R. & Mello, C. V. Significance of vitamin A to brain function, behavior and learning. Mol. Nutr. Food Res. 54, 489–495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tschuck, J. et al. Suppression of ferroptosis by vitamin A or radical-trapping antioxidants is essential for neuronal development. Nat. Commun. 15, 7611 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Couto, N., Wood, J. & Barber, J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free. Radic. Biol. Med. 95, 27–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Barclay, L. R. The cooperative antioxidant role of glutathione with a lipid-soluble and a water-soluble antioxidant during peroxidation of liposomes initiated in the aqueous phase and in the lipid phase. J. Biol. Chem. 263, 16138–16142 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Crabtree, M. J., Tatham, A. L., Hale, A. B., Alp, N. J. & Channon, K. M. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways. J. Biol. Chem. 284, 28128–28136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shimada, K., Hayano, M., Pagano, N. C. & Stockwell, B. R. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem. Biol. 23, 225–235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. TeSlaa, T., Ralser, M., Fan, J. & Rabinowitz, J. D. The pentose phosphate pathway in health and disease. Nat. Metab. 5, 1275–1289 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Herrero-Mendez, A. et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat. Cell Biol. 11, 747–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Jimenez-Blasco, D. et al. Weak neuronal glycolysis sustains cognition and organismal fitness. Nat. Metab. 6, 1253–1267 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suzuki, A. et al. Astrocyte–neuron lactate transport is required for long-term memory formation. Cell 144, 810–823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morgello, S., Uson, R. R., Schwartz, E. J. & Haber, R. S. The human blood–brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia 14, 43–54 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Pierre, K. & Pellerin, L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J. Neurochem. 94, 1–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Sagara, J. I., Miura, K. & Bannai, S. Maintenance of neuronal glutathione by glial cells. J. Neurochem. 61, 1672–1676 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Kobayashi, S. et al. Carnosine dipeptidase II (CNDP2) protects cells under cysteine insufficiency by hydrolyzing glutathione-related peptides. Free. Radic. Biol. Med. 174, 12–27 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Ryan, S. K. et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat. Neurosci. 26, 12–26 (2023). This study demonstrates how ferroptosis in microglia can impact neurodegeneration in Parkinson disease.

    Article  CAS  PubMed  Google Scholar 

  65. Southwell, D. G. et al. Intrinsically determined cell death of developing cortical interneurons. Nature 491, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Burek, M. J. & Oppenheim, R. W. Programmed cell death in the developing nervous system. Brain Pathol. 6, 427–446 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Tafti, M. & Ghyselinck, N. B. Functional implication of the vitamin A signaling pathway in the brain. Arch. Neurol. 64, 1706–1711 (2007).

    Article  PubMed  Google Scholar 

  68. Sierra, A. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7, 483–495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu, S. W. et al. Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. Stem Cell 26, 2602–2610 (2008).

    Article  CAS  Google Scholar 

  70. Gascon, S. et al. Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18, 396–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Tang, C. F. et al. Gastrodin attenuates high fructose-induced sweet taste preference decrease by inhibiting hippocampal neural stem cell ferroptosis. J. Adv. Res. https://doi.org/10.1016/j.jare.2024.09.025 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jiang, P. et al. Puerarin attenuates valproate-induced features of ASD in male mice via regulating Slc7a11-dependent ferroptosis. Neuropsychopharma 49, 497–507 (2024).

    Article  CAS  Google Scholar 

  73. Song, R., Wang, R., Shen, Z. & Chu, H. Sevoflurane diminishes neurogenesis and promotes ferroptosis in embryonic prefrontal cortex via inhibiting nuclear factor-erythroid 2-related factor 2 expression. Neuroreport 33, 252–258 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Nobuta, H. et al. Oligodendrocyte death in Pelizaeus–Merzbacher disease is rescued by iron chelation. Cell Stem Cell 25, 531–541.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoshino, T., Yamakado, H., Takahashi, R. & Matsuzawa, S. I. Susceptibility to erastin-induced ferroptosis decreases during maturation in a human oligodendrocyte cell line. FEBS Open. Bio 10, 1758–1764 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fan, B. Y. et al. Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regen. Res. 16, 561–566 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Shen, D. et al. Ferroptosis in oligodendrocyte progenitor cells mediates white matter injury after hemorrhagic stroke. Cell Death Dis. 13, 259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jhelum, P. et al. Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J. Neurosci. 40, 9327–9341 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, J. et al. Perilipin-2 mediates ferroptosis in oligodendrocyte progenitor cells and myelin injury after ischemic stroke. Neural Regen. Res. 20, 2015–2028 (2025).

    Article  CAS  PubMed  Google Scholar 

  80. Shen, W. et al. Celastrol inhibits oligodendrocyte and neuron ferroptosis to promote spinal cord injury recovery. Phytomedicine 128, 155380 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Zhao, J., Zang, F., Huo, X. & Zheng, S. Novel approaches targeting ferroptosis in treatment of glioma. Front. Neurol. 14, 1292160 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yant, L. J. et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free. Radic. Biol. Med. 34, 496–502 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Ran, Q. et al. Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J. Gerontol. Ser. A, Biol. Sci. Med. Sci. 62, 932–942 (2007).

    Article  Google Scholar 

  84. Berus, E. I., Gabuda, S. P., Ershov Iu, A. & Artamonov, V. B. Molecular mobility of soluble collagen [Russian]. Biofizika 32, 226–228 (1987).

    CAS  PubMed  Google Scholar 

  85. Lei, G. et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30, 146–162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Upadhyayula, P. S. et al. Dietary restriction of cysteine and methionine sensitizes gliomas to ferroptosis and induces alterations in energetic metabolism. Nat. Commun. 14, 1187 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, S. et al. RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma. Oxid. Med. Cell. Longev. 2021, 2915019 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Patel, D. et al. Novel analogs of sulfasalazine as system \({{\rm{x}}}_{{\rm{c}}}^{-}\) antiporter inhibitors: insights from the molecular modeling studies. Drug. Dev. Res. 80, 758–777 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, T. C. et al. AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-mediated redox homeostasis. Redox Biol. 30, 101413 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Chen, H. & Wen, J. Iron oxide nanoparticles loaded with paclitaxel inhibits glioblastoma by enhancing autophagy-dependent ferroptosis pathway. Eur. J. Pharmacol. 921, 174860 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Luo, Y. et al. Ferroptosis and its potential role in glioma: from molecular mechanisms to therapeutic opportunities. Antioxidants 11, 2123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Masaldan, S. et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol. 14, 100–115 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Feng, Y. et al. Iron retardation in lysosomes protects senescent cells from ferroptosis. Aging 16, 7683–7703 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Go, S. et al. The senolytic drug JQ1 removes senescent cells via ferroptosis. Tissue Eng. Regen. Med. 18, 841–850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kordower, J. H. et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136, 2419–2431 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fearnley, J. M. & Lees, A. J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).

    Article  PubMed  Google Scholar 

  99. Rossler, M., Zarski, R., Bohl, J. & Ohm, T. G. Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer’s disease. Acta Neuropathol. 103, 363–369 (2002).

    Article  PubMed  Google Scholar 

  100. Price, J. L. et al. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch. Neurol. 58, 1395–1402 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Gabitto, M. I. et al. Integrated multimodal cell atlas of Alzheimer’s disease. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01774-5 (2024).

  102. Belaidi, A. A. et al. Marked age-related changes in brain iron homeostasis in amyloid protein precursor knockout mice. Neurotherapeutics 15, 1055–1062 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fazlollahi, A. et al. Restricted effect of cerebral microbleeds on regional magnetic susceptibility. J. Alzheimers Dis. 76, 571–577 (2020).

    Article  PubMed  Google Scholar 

  104. Chen, X. et al. The molecular mechanisms of ferroptosis and its role in blood–brain barrier dysfunction. Front. Cell. Neurosci. 16, 889765 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ayton, S. et al. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann. Neurol. 73, 554–559 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Agarwal, P. et al. Brain copper may protect from cognitive decline and Alzheimer’s disease pathology: a community-based study. Mol. Psychiatry 27, 4307–4313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ayton, S. et al. Deferiprone in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 82, 11–18 (2025).

    Article  PubMed  Google Scholar 

  108. Ayton, S. et al. Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol. Psychiatry 25, 2932–2941 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Ayton, S. et al. Regional brain iron associated with deterioration in Alzheimer’s disease: a large cohort study and theoretical significance. Alzheimers Dement. 17, 1244–1256 (2021). This study demonstrates the clear relationship between iron and disease progression in a large post-mortem study of Alzheimer disease.

    Article  PubMed  Google Scholar 

  110. Majernikova, N. et al. The link between amyloid β and ferroptosis pathway in Alzheimer’s disease progression. Cell Death Dis. 15, 782 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ansari, M. A. & Scheff, S. W. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J. Neuropathol. Exp. Neurol. 69, 155–167 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Ashraf, A., Jeandriens, J., Parkes, H. G. & So, P. W. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: evidence of ferroptosis. Redox Biol. 32, 101494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ayton, S., Faux, N. G., Bush, A. I. & Alzheimer’s Disease Neuroimaging Iniitiative. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat. Commun. 6, 6760 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Ayton, S., Faux, N. G. & Bush, A. I. Association of cerebrospinal fluid ferritin level with preclinical cognitive decline in APOE-ε4 carriers. JAMA Neurol. 74, 122–125 (2017).

    Article  PubMed  Google Scholar 

  115. Duce, J. A. et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142, 857–867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lei, P. et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat. Med. 18, 291–295 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Lei, P. et al. Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol. Psychiatry 22, 396–406 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Bao, W. D. et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. 28, 1548–1562 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Greenough, M. A. et al. Selective ferroptosis vulnerability due to familial Alzheimer’s disease presenilin mutations. Cell Death Differ. 29, 2123–2136 (2022). This study demonstrates how presenilin, a major gene involved in Alzheimer disease, is important for GPX4 in neurons and the defence against ferroptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Belaidi, A. A. et al. Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy. Mol. Psychiatry 29, 211–220 (2024). This study demonstrates how APOE, a major gene implicated in Alzheimer disease, impacts on ferroptosis signalling.

    Article  CAS  PubMed  Google Scholar 

  121. Ayton, S. & Lei, P. Nigral iron elevation is an invariable feature of Parkinson’s disease and is a sufficient cause of neurodegeneration. BioMed. Res. Int. 2014, 581256 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ayton, S. et al. Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson’s disease. Mol. Neurodegener. 9, 27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hare, D. J. et al. An iron–dopamine index predicts risk of parkinsonian neurodegeneration in the substantia nigra pars compacta. Chem. Sci. 5, 2160–2169 (2014).

    Article  CAS  Google Scholar 

  124. Tang, F. et al. Inhibition of ACSL4 alleviates parkinsonism phenotypes by reduction of lipid reactive oxygen species. Neurotherapeutics 20, 1154–1166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Do Van, B. et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol. Dis. 94, 169–178 (2016).

    Article  PubMed  Google Scholar 

  126. Brauer, R. et al. Glitazone treatment and incidence of Parkinson’s disease among people with diabetes: a retrospective cohort study. PLoS Med. 12, e1001854 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sun, J. et al. Midbrain dopamine oxidation links ubiquitination of glutathione peroxidase 4 to ferroptosis of dopaminergic neurons. J. Clin. Investig. 133, e165228 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schriever, S. C. et al. Alterations in neuronal control of body weight and anxiety behavior by glutathione peroxidase 4 deficiency. Neuroscience 357, 241–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Vallerga, C. L. et al. Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinson’s disease. Nat. Commun. 11, 1238 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cao, J. et al. DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase. Nat. Commun. 11, 1251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Guiney, S. J., Adlard, P. A., Bush, A. I., Finkelstein, D. I. & Ayton, S. Ferroptosis and cell death mechanisms in Parkinson’s disease. Neurochem. Int. 104, 34–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Angelova, P. R. et al. α-Synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ. 27, 2781–2796 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mahoney-Sanchez, L. et al. α-Synuclein determines ferroptosis sensitivity in dopaminergic neurons via modulation of ether–phospholipid membrane composition. Cell Rep. 40, 111231 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Sun, W. Y. et al. Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nat. Chem. Biol. 17, 465–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Devos, D. et al. A ferroptosis-based panel of prognostic biomarkers for amyotrophic lateral sclerosis. Sci. Rep. 9, 2918 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang, T. et al. Ferroptosis mediates selective motor neuron death in amyotrophic lateral sclerosis. Cell Death Differ. 29, 1187–1198 (2022). This study demonstrates how GPX4 protects against a mouse model of ALS.

    Article  CAS  PubMed  Google Scholar 

  137. Wang, L. Q. et al. Amyloid fibril structures and ferroptosis activation induced by ALS-causing SOD1 mutations. Sci. Adv. 10, eado8499 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Southon, A. et al. CuII (atsm) inhibits ferroptosis: Implications for treatment of neurodegenerative disease. Br. J. Pharmacol. 177, 656–667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, D. et al. SPY1 inhibits neuronal ferroptosis in amyotrophic lateral sclerosis by reducing lipid peroxidation through regulation of GCH1 and TFR1. Cell Death Differ. 30, 369–382 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Ceron-Codorniu, M. et al. TDP-43 dysfunction leads to bioenergetic failure and lipid metabolic rewiring in human cells. Redox Biol. 75, 103301 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ismail, M., Grossmann, D. & Hermann, A. Increased vulnerability to ferroptosis in FUS-ALS. Biology 13, 215 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Davalos, A. et al. Body iron stores and early neurologic deterioration in acute cerebral infarction. Neurology 54, 1568–1574 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Tuo, Q. Z. et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatry 22, 1520–1530 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Tuo, Q. Z. et al. Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal. Transduct. Target. Ther. 7, 59 (2022). This study demonstrates how thrombin signalling in ferroptosis contributes to ferroptosis in stroke.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nakamura, A. et al. PLA2G2E-mediated lipid metabolism triggers brain-autonomous neural repair after ischemic stroke. Neuron 111, 2995–3010.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Alim, I. et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177, 1262–1279.e25 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Tuo, Q. Z. et al. Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia–reperfusion injury. Neurotherapeutics 18, 2682–2691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Qin, C. et al. The foam cell-derived exosomal miRNA Novel-3 drives neuroinflammation and ferroptosis during ischemic stroke. Nat Aging https://doi.org/10.1038/s43587-024-00727-8 (2024).

  149. Hu, C. L. et al. Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neurochem. 148, 426–439 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Luoqian, J. et al. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell Mol. Immunol. 19, 913–924 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Woo, M. S. et al. STING orchestrates the neuronal inflammatory stress response in multiple sclerosis. Cell 187, 4043–4060.e30 (2024). This study demonstrates how neuroinflammation can contribute to ferroptosis in multiple sclerosis.

    Article  CAS  PubMed  Google Scholar 

  152. Rothammer, N. et al. G9a dictates neuronal vulnerability to inflammatory stress via transcriptional control of ferroptosis. Sci. Adv. 8, eabm5500 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Van San, E. et al. Ferroptosis contributes to multiple sclerosis and its pharmacological targeting suppresses experimental disease progression. Cell Death Differ. 30, 2092–2103 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Tan, S., Schubert, D. & Maher, P. Oxytosis: a novel form of programmed cell death. Curr. Top. Med. Chem. 1, 497–506 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. & Coyle, J. T. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547–1558 (1989).

    Article  CAS  PubMed  Google Scholar 

  156. Guo, S. et al. Sulfiredoxin-1 accelerates erastin-induced ferroptosis in HT-22 hippocampal neurons by driving heme oxygenase-1 activation. Free. Radic. Biol. Med. 223, 430–442 (2024).

    Article  CAS  PubMed  Google Scholar 

  157. Song, S. et al. ALOX5-mediated ferroptosis acts as a distinct cell death pathway upon oxidative stress in Huntington’s disease. Genes. Dev. 37, 204–217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Li, K. et al. ALOX5 inhibition protects against dopaminergic neurons undergoing ferroptosis. Pharmacol. Res. 193, 106779 (2023).

    Article  CAS  PubMed  Google Scholar 

  159. Lu, R. et al. A Shortage of FTH induces ROS and sensitizes RAS-proficient neuroblastoma N2A cells to ferroptosis. Int. J. Mol. Sci. 22, 8898 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tang, S., Fuss, A., Fattahi, Z. & Culmsee, C. Drp1 depletion protects against ferroptotic cell death by preserving mitochondrial integrity and redox homeostasis. Cell Death Dis. 15, 626 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jiao, L. et al. Iron metabolism mediates microglia susceptibility in ferroptosis. Front. Cell. Neurosci. 16, 995084 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Martinez, A. M., Kim, A., Flores, C. A., Rahman, D. F. & Yang, W. S. Mouse embryonic stem cell-derived motor neurons are susceptible to ferroptosis. FEBS Open. Bio 13, 419–433 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Renner, N. et al. Modeling ferroptosis in human dopaminergic neurons: pitfalls and opportunities for neurodegeneration research. Redox Biol. 73, 103165 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Alborzinia, H. et al. LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol. Med. 15, e18014 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen, L., Hambright, W. S., Na, R. & Ran, Q. Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J. Biol. Chem. 290, 28097–28106 (2015). This study demonstrates how loss of GPX4 in neurons causes marked ferroptotic cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wirth, E. K. et al. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J. 24, 844–852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cui, S. et al. Identification of hyperoxidized PRDX3 as a ferroptosis marker reveals ferroptotic damage in chronic liver diseases. Mol. Cell 83, 3931–3939.e5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Iwashita, H., Tokunaga, R. & Shioji, K. Visualization of ferroptosis-induced lipid peroxidation using plasma membrane-specific fluorescent probe LipoxPM. Chemistry 31, e202404323 (2025).

    Article  CAS  PubMed  Google Scholar 

  169. Ayton, S. et al. Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline. Brain 140, 2112–2119 (2017).

    Article  PubMed  Google Scholar 

  170. Witzel, S. et al. Safety and effectiveness of long-term intravenous administration of edaravone for treatment of patients with amyotrophic lateral sclerosis. JAMA Neurol. 79, 121–130 (2022).

    Article  PubMed  Google Scholar 

  171. Dysken, M. W. et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA 311, 33–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Graf, M. et al. High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: results of a placebo-controlled double-blind study. J. Neural Transm. 112, 649–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Parkinson Study Group, Q. E. I. et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol. 71, 543–552 (2014).

    Article  Google Scholar 

  174. Kaufmann, P. et al. Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann. Neurol. 66, 235–244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Crapper McLachlan, D. R. et al. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337, 1304–1308 (1991).

    Article  CAS  PubMed  Google Scholar 

  176. Devos, D. et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid. Redox Signal. 21, 195–210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pereira, M. E. et al. Effects of selenium supplementation in patients with mild cognitive impairment or Alzheimer’s disease: a systematic review and meta-analysis. Nutrients 14, 3205 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Deepmala et al. Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci. Biobehav. Rev. 55, 294–321 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded in whole or part by the Noncommunicable Chronic Diseases — National Science and Technology Major Project (2023ZD0507200) and the National Health and Medical Research Council (GNT2008359). The Florey Institute of Neuroscience and Mental Health acknowledges support from the Victorian Government, in particular funding from the Operational Infrastructure Support Grant. For the purposes of open access, the authors have applied a CC BY public copyright licence to any author accepted manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript.

Corresponding authors

Correspondence to Peng Lei or Scott Ayton.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Peer review

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, P., Walker, T. & Ayton, S. Neuroferroptosis in health and diseases. Nat. Rev. Neurosci. 26, 497–511 (2025). https://doi.org/10.1038/s41583-025-00930-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00930-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing