Abstract
Despite the large evolutionary distance between vertebrates and insects, the visual systems of these two taxa bear remarkable similarities that have been noted repeatedly, including by pioneering neuroanatomists such as Ramón y Cajal. Fuelled by the advent of transgenic approaches in neuroscience, studies of visual system anatomy and function in both vertebrates and insects have made dramatic progress during the past two decades, revealing even deeper analogies between their visual systems than were noted by earlier observers. Such across-taxa comparisons have tended to focus on either elementary motion detection or relatively peripheral layers of the visual systems. By contrast, the aims of this Review are to expand the scope of this comparison to pathways outside visual motion detection, as well as to deeper visual structures. To achieve these aims, we primarily discuss examples from recent work in larval zebrafish (Danio rerio) and the fruitfly (Drosophila melanogaster), a pair of genetically tractable model organisms with comparatively sized, small brains. In particular, we argue that the brains of both vertebrates and insects are equipped with third-order visual structures that specialize in shared behavioural tasks, including postural and course stabilization, approach and avoidance, and some other behaviours. These wider analogies between the two distant taxa highlight shared behavioural goals and associated evolutionary constraints and suggest that studies on vertebrate and insect vision have a lot to inspire each other.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Rádl, E. Untersuchungen über den bau des tractus opticus von squilla mantis und von aderen Arthropoden. Sitzungsberichte der königlichen Böhmischen Gesellschaft der Wissenschaften. Math.-naturwissenschaftliche Classe. 551–598 (1899).
Cajal, S. R. Y. & Sánchez, D. Contribución al Conocimiento de los Centros Nerviosos de los Insectos (Imprenta de Hijos de Nicolás Moya, 1915).
Randel, N. & Jékely, G. Phototaxis and the origin of visual eyes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150042 (2016).
Joly, J.-S., Recher, G., Brombin, A., Ngo, K. & Hartenstein, V. A conserved developmental mechanism builds complex visual systems in insects and vertebrates. Curr. Biol. 26, R1001–R1009 (2016).
Zipursky, S. L. & Sanes, J. R. Chemoaffinity revisited: Dscams, protocadherins, and neural circuit assembly. Cell 143, 343–353 (2010).
Borst, A. & Helmstaedter, M. Common circuit design in fly and mammalian motion vision. Nat. Neurosci. 18, 1067–1076 (2015).
Clark, D. A. & Demb, J. B. Parallel computations in insect and mammalian visual motion processing. Curr. Biol. 26, R1062–R1072 (2016).
Sanes, J. R. & Zipursky, S. L. Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010).
Naumann, E. A., Kampff, A. R., Prober, D. A., Schier, A. F. & Engert, F. Monitoring neural activity with bioluminescence during natural behavior. Nat. Neurosci. 13, 513–520 (2010).
Raji, J. I. & Potter, C. J. The number of neurons in Drosophila and mosquito brains. PLoS ONE 16, 1–11 (2021).
Baden, T., Euler, T. & Berens, P. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 21, 5–20 (2020).
Kerschensteiner, D. Feature detection by retinal ganglion cells. Annu. Rev. Vis. Sci. 8, 135–169 (2022).
Masland, R. H. The neuronal organization of the retina. Neuron 76, 266–280 (2012).
Behnia, R. & Desplan, C. Visual circuits in flies: beginning to see the whole picture. Curr. Opin. Neurobiol. 34, 125–132 (2015).
Currier, T. A., Pang, M. M. & Clandinin, T. R. Visual processing in the fly, from photoreceptors to behavior. Genetics 224, iyad064 (2023).
Ryu, L., Kim, S. Y. & Kim, A. J. From photons to behaviors: neural implementations of visual behaviors in Drosophila. Front. Neurosci. 16, 883640 (2022).
Schnaitmann, C., Pagni, M. & Reiff, D. F. Color vision in insects: insights from Drosophila. J. Comp. Physiol. A 206, 183–198 (2020).
Yang, H. H. & Clandinin, T. R. Elementary motion detection in Drosophila: algorithms and mechanisms. Annu. Rev. Vis. Sci. 4, 143–163 (2018).
Baden, T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol. Evol. https://doi.org/10.1038/s41559-023-02291-7 (2024).
van der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G. & Kelber, A. Evolution of insect color vision: from spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 435–461 (2021).
Morshedian, A. & Fain, G. L. The evolution of rod photoreceptors. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160074 (2017).
Friedrich, M., Wood, E. J. & Wu, M. Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. J. Exp. Zool. B Mol. Dev. Evol. 316B, 484–499 (2011).
Zimmermann, M. J. Y. et al. Zebrafish differentially process color across visual space to match natural scenes. Curr. Biol. 28, 2018–2032.e5 (2018).
Baden, T. et al. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80, 1206–1217 (2013).
Wernet, M. F., Perry, M. W. & Desplan, C. The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic. Trends Genet. 31, 316–328 (2015).
Meinertzhagen, I. A. & O’Neil, S. D. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J. Comp. Neurol. 305, 232–263 (1991).
Takemura, S., Lu, Z. & Meinertzhagen, I. A. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509, 493–513 (2008).
Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323.e30 (2016).
Hellevik, A. M. et al. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. Nat. Ecol. Evol. 8, 1165–1179 (2024).
Li, Y. N., Tsujimura, T., Kawamura, S. & Dowling, J. E. Bipolar cell–photoreceptor connectivity in the zebrafish (Danio rerio) retina. J. Comp. Neurol. 520, 3786–3802 (2012).
Fischbach, K. F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989).
Hamanaka, Y., Shibasaki, H., Kinoshita, M. & Arikawa, K. Neurons innervating the lamina in the butterfly, Papilio xuthus. J. Comp. Physiol. A 199, 341–351 (2013).
Chapot, C. A., Euler, T. & Schubert, T. How do horizontal cells ‘talk’ to cone photoreceptors? Different levels of complexity at the cone–horizontal cell synapse. J. Physiol. 595, 5495–5506 (2017).
Clark, D. A., Bursztyn, L., Horowitz, M. A., Schnitzer, M. J. & Clandinin, T. R. Defining the computational structure of the motion detector in Drosophila. Neuron 70, 1165–1177 (2011).
Franke, K. et al. Inhibition decorrelates visual feature representations in the inner retina. Nature 542, 439–444 (2017).
Silies, M. et al. Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79, 111–127 (2013).
Freifeld, L., Clark, D. A., Schnitzer, M. J., Horowitz, M. A. & Clandinin, T. R. GABAergic lateral interactions tune the early stages of visual processing in Drosophila. Neuron 78, 1075–1089 (2013).
Strauss, S. et al. Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina. Nat. Commun. 13, 5574 (2022).
Baylor, D. A., Fuortes, M. G. F. & O’Bryan, P. M. Receptive fields of cones in the retina of the turtle. J. Physiol. 214, 265–294 (1971).
Hirasawa, H. & Kaneko, A. pH changes in the invaginating synaptic cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. J. Gen. Physiol. 122, 657–671 (2003).
Seung, H. S. Interneuron diversity and normalization specificity in a visual system. Preprint at bioRxiv https://doi.org/10.1101/2024.04.03.587837 (2024).
Tachibana, M. & Kaneko, A. γ-Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. Proc. Natl Acad. Sci. USA 84, 3501–3505 (1987).
Tuthill, J. C., Nern, A., Holtz, S. L., Rubin, G. M. & Reiser, M. B. Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79, 128–140 (2013).
Pang, M. M. et al. A recurrent neural circuit in Drosophila temporally sharpens visual inputs. Curr. Biol. 35, 333–346.e6 (2025).
Matsumoto, A. et al. Direction selectivity in retinal bipolar cell axon terminals. Neuron 109, 2928–2942.e8 (2021).
Antinucci, P., Suleyman, O., Monfries, C. & Hindges, R. Neural mechanisms generating orientation selectivity in the retina. Curr. Biol. 26, 1802–1815 (2016).
Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).
Gjorgjieva, J., Sompolinsky, H. & Meister, M. Benefits of pathway splitting in sensory coding. J. Neurosci. 34, 12127–12144 (2014).
Wang, J. et al. Molecular characterization of the sea lamprey retina illuminates the evolutionary origin of retinal cell types. Nat. Commun. 15, 10761 (2024).
Davis, F. P. et al. A genetic, genomic, and computational resource for exploring neural circuit function. eLife 9, e50901 (2020).
Yoshimatsu, T. et al. Ancestral circuits for vertebrate color vision emerge at the first retinal synapse. Sci. Adv. 7, eabj6815 (2021).
Packer, O. S., Verweij, J., Li, P. H., Schnapf, J. L. & Dacey, D. M. Blue-yellow opponency in primate S cone photoreceptors. J. Neurosci. 30, 568–572 (2010).
Joesch, M. & Meister, M. A neuronal circuit for colour vision based on rod–cone opponency. Nature 532, 236–239 (2016).
Schnaitmann, C. et al. Color processing in the early visual system of Drosophila. Cell 172, 318–330.e18 (2018).
Heath, S. L. et al. Circuit mechanisms underlying chromatic encoding in Drosophila photoreceptors. Curr. Biol. 30, 264–275.e8 (2020).
Matsushita, A. et al. Connectome of the lamina reveals the circuit for early color processing in the visual pathway of a butterfly. Curr. Biol. 32, 2291–2299.e3 (2022).
Connaughton, V. P., Graham, D. & Nelson, R. Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina. J. Comp. Neurol. 477, 371–385 (2004).
Ghosh, K. K., Bujan, S., Haverkamp, S., Feigenspan, A. & Wässle, H. Types of bipolar cells in the mouse retina. J. Comp. Neurol. 469, 70–82 (2004).
Kölsch, Y. et al. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron 109, 645–662.e9 (2021).
Rheaume, B. A. et al. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat. Commun. 9, 2759 (2018).
Sanes, J. R. & Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015).
Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168–174 (2013).
Yan, W. et al. Mouse retinal cell atlas: molecular identification of over sixty amacrine cell types. J. Neurosci. 40, 5177–5195 (2020).
Garner, D. et al. Connectomic reconstruction predicts visual features used for navigation. Nature 634, 181–190 (2024).
Matsliah, A. et al. Neuronal parts list and wiring diagram for a visual system. Nature 634, 166–180 (2024).
Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl Acad. Sci. USA 112, E2967–E2976 (2015).
Fried, S. I., Münch, T. A. & Werblin, F. S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411–414 (2002).
Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002).
Haverkamp, S., Albert, L., Balaji, V., Němec, P. & Dedek, K. Expression of cell markers and transcription factors in the avian retina compared with that in the marmoset retina. J. Comp. Neurol. 529, 3171–3193 (2021).
Li, Y., Yu, S., Jia, X., Qiu, X. & He, J. Defining morphologically and genetically distinct GABAergic/cholinergic amacrine cell subtypes in the vertebrate retina. PLoS Biol. 22, e3002506 (2024).
Wagner, H.-J., Wagner, E. & Boycott, B. B. Amacrine cells in the retina of a teleost fish, the roach (Rutilus rutilus): a Golgi study on differentiation and layering. Philos. Trans. R. Soc. Lond. B Biol. Sci. 321, 263–324 (1997).
Hausselt, S. E., Euler, T., Detwiler, P. B. & Denk, W. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol. 5, e185 (2007).
Kim, J. S. et al. Space–time wiring specificity supports direction selectivity in the retina. Nature 509, 331–336 (2014).
Vlasits, A. L. et al. A role for synaptic input distribution in a dendritic computation of motion direction in the retina. Neuron 89, 1317–1330 (2016).
Lee, S. & Zhou, Z. J. The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51, 787–799 (2006).
Barlow, H. B. & Hill, R. M. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139, 412–414 (1963).
Briggman, K. L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).
Lee, S., Kim, K. & Zhou, Z. J. Role of ACh-GABA cotransmission in detecting image motion and motion direction. Neuron 68, 1159–1172 (2010).
Taylor, W. R., He, S., Levick, W. R. & Vaney, D. I. Dendritic computation of direction selectivity by retinal ganglion cells. Science 289, 2347–2350 (2000).
Yoshida, K. et al. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771–780 (2001).
Maisak, M. S. et al. A directional tuning map of Drosophila elementary motion detectors. Nature 500, 212–216 (2013).
Shinomiya, K. et al. A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system. Front. Neural Circuits 9, 1–12 (2015).
Arenz, A., Drews, M. S., Richter, F. G., Ammer, G. & Borst, A. The temporal tuning of the Drosophila motion detectors is determined by the dynamics of their input elements. Curr. Biol. 82, 887–895 (2017).
Shinomiya, K. et al. Comparisons between the ON- and OFF-edge motion pathways in the Drosophila brain. eLife 8, 1–19 (2019).
Strother, J. A. et al. The emergence of directional selectivity in the visual motion pathway of Drosophila. Neuron 94, 168–182.e10 (2017).
Takemura, S. et al. The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila. eLife 6, e24394 (2017).
Strausfeld, N. J. The lobula plate is exclusive to insects. Arthropod Struct. Dev. 61, 101031 (2021).
Strausfeld, N. J. & Blest, A. D. Golgi studies on insects part I. The optic lobes of Lepidoptera. Philos. Trans. R. Soc. Lond. B Biol. Sci. 258, 81–134 (1970).
Semmelhack, J. L. et al. A dedicated visual pathway for prey detection in larval zebrafish. eLife 3, 1–19 (2014).
Ölveczky, B. P., Baccus, S. A. & Meister, M. Segregation of object and background motion in the retina. Nature 423, 401–408 (2003).
Zhang, Y., Kim, I.-J., Sanes, J. R. & Meister, M. The most numerous ganglion cell type of the mouse retina is a selective feature detector. Proc. Natl Acad. Sci. USA 109, E2391–E2398 (2012).
Lee, S. et al. An unconventional glutamatergic circuit in the retina formed by vGluT3 amacrine cells. Neuron 84, 708–715 (2014).
Kim, T., Soto, F. & Kerschensteiner, D. An excitatory amacrine cell detects object motion and provides feature-selective input to ganglion cells in the mouse retina. eLife 4, 1–15 (2015).
Lee, S., Zhang, Y., Chen, M. & Zhou, Z. J. Segregated glycine-glutamate co-transmission from vGluT3 amacrine cells to contrast-suppressed and contrast-enhanced retinal circuits. Neuron 90, 27–34 (2016).
Tien, N. W., Kim, T. & Kerschensteiner, D. Target-specific glycinergic transmission from VGluT3-expressing amacrine cells shapes suppressive contrast responses in the retina. Cell Rep. 15, 1369–1375 (2016).
Keleş, M. F., Hardcastle, B. J., Städele, C., Qi, X. & Frye, M. A. Inhibitory interactions and columnar inputs to an object motion detector in Drosophila. Cell Rep. 30, 2115–2124 (2020).
Tanaka, R. & Clark, D. A. Object-displacement-sensitive visual neurons drive freezing in Drosophila. Curr. Biol. 30, 2532–2550.e8 (2020).
Osorio, D. Mechanisms of early visual processing in the medulla of the locust optic lobe: how self-inhibition, spatial-pooling, and signal rectification contribute to the properties of transient cells. Vis. Neurosci. 7, 345–355 (1991).
Bloomfield, S. A. Two types of orientation-sensitive responses of amacrine cells in the mammalian retina. Nature 350, 347–350 (1991).
Park, S. J. et al. Molecular identification of wide-field amacrine cells in mouse retina that encode stimulus orientation. Preprint at bioRxiv https://doi.org/10.1101/2023.12.28.573580 (2023).
Seung, H. S. Predicting visual function by interpreting a neuronal wiring diagram. Nature 634, 113–123 (2024).
Famiglietti, E. V. & Kolb, H. Structural basis for ON- and OFF-center responses in retinal ganglion cells. Science 194, 193–195 (1976).
Wässle, H., Puller, C., Müller, F. & Haverkamp, S. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J. Neurosci. 29, 106–117 (2009).
Bartel, P., Yoshimatsu, T., Janiak, F. K. & Baden, T. Spectral inference reveals principal cone-integration rules of the zebrafish inner retina. Curr. Biol. 31, 5214–5226.e4 (2021).
Seifert, M., Roberts, P. A., Kafetzis, G., Osorio, D. & Baden, T. Birds multiplex spectral and temporal visual information via retinal On- and Off-channels. Nat. Commun. 14, 5308 (2023).
Strother, J. A., Nern, A. & Reiser, M. B. Direct observation of on and off pathways in the Drosophila visual system. Curr. Biol. 24, 976–983 (2014).
Robles, E., Laurell, E. & Baier, H. The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity. Curr. Biol. 24, 2085–2096 (2014).
Kubo, F. et al. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 81, 1344–1359 (2014).
Zhou, M. et al. Zebrafish retinal ganglion cells asymmetrically encode spectral and temporal information across visual space. Curr. Biol. 30, 2927–2942.e7 (2020).
Longden, K. D., Rogers, E. M., Nern, A., Dionne, H. & Reiser, M. B. Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila. Nat. Commun. 14, 7693 (2023).
Gibson, J. J. The Senses Considered as Perceptual Systems (G. Allen & Unwin, 1966).
Dodge, R. Five types of eye movement (in the horizontal meridian plane of the field of regard). Am. J. Physiol. VIII, 307–329 (1903).
Fenk, L. M. et al. Muscles that move the retina augment compound eye vision in Drosophila. Nature https://doi.org/10.1038/s41586-022-05317-5 (2022).
Gioanni, H., Rey, J., Villalobos, J., Bouyer, J. J. & Gioanni, Y. Optokinetic nystagmus in the pigeon (Columba livia) — I. Study in monocular and binocular vision. Exp. Brain Res. 44, 362–370 (1981).
Neuhauss, S. C. F. et al. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J. Neurosci. 19, 8603–8615 (1999).
Götz, K. G. Optomotorische untersuchung des visuellen systems einiger augenmutanten der fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964).
Harden Jones, F. R. The reaction of fish to moving backgrounds. J. Exp. Biol. 40, 437–446 (1963).
Giolli, R. A., Blanks, R. H. I. & Lui, F. in Progress in Brain Research (ed. Büttner-Ennever, J. A.) vol. 151, 407–440 (Elsevier, 2006).
Simpson, J. I. The accessory optic system. Annu. Rev. Neurosci. 7, 13–41 (1984).
Wullimann, M. F. & Northcutt, R. G. Connections of the corpus cerebelli in the green sunfish and the common goldfish. Brain Behav. Evol. https://doi.org/10.5282/ubm/epub.3303 (1988).
Oyster, C. W., Simpson, J. I., Takahashi, E. S. & Soodak, R. E. Retinal ganglion cells projecting to the rabbit accessory optic system. J. Comp. Neurol. 190, 49–61 (1980).
Brecha, N., Karten, H. J. & Hunt, S. P. Projections of the nucleus of the basal optic root in the pigeon: an autoradiographic and horseradish peroxidase study. J. Comp. Neurol. 189, 615–670 (1980).
Mizuno, N., Mochizuki, K., Akimoto, C. & Matsushima, R. Pretectal projections to the inferior olive in the rabbit. Exp. Neurol. 39, 498–506 (1973).
Gioanni, H., Rey, J., Villalobos, J. & Dalbera, A. Single unit activity in the nucleus of the basal optic root (nBOR) during optokinetic, vestibular and visuo-vestibular stimulations in the alert pigeon (Columbia livia). Exp. Brain Res. 57, 49–60 (1984).
Walley, R. E. Receptive fields in the accessory optic system of the rabbit. Exp. Neurol. 17, 27–43 (1967).
Simpson, J. I., Soodak, R. E. & Hess, R. in Progress in Brain Research (eds Granit, R. & Pompeiano, O.) 50 715–724 (Elsevier, 1979).
Lázár, G. Role of the accessory optic system in the optokinetic nystagmus of the frog. Brain Behav. Evol. 5, 443–460 (1973).
Ito, K. et al. A systematic nomenclature for the insect brain. Neuron 81, 755–765 (2014).
Fabian, J. M., el Jundi, B., Wiederman, S. D. & O’Carroll, D. C. The complex optic lobe of dragonflies. Preprint at bioRxiv https://doi.org/10.1101/2020.05.10.087437 (2020).
Buchner, E., Buchner, S. & Bülthoff, I. Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. J. Comp. Physiol. A 155, 471–483 (1984).
Hausen, K. Motion sensitive interneurons in the optomotor system of the fly II. The horizontal cells: receptive field organization and response characteristics. Biol. Cybern. 46, 67–79 (1982).
Hengstenberg, R. Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. 149, 179–193 (1982).
Franz, M. O. & Krapp, H. G. Wide-field, motion-sensitive neurons and matched filters for optic flow fields. Biol. Cybern. 83, 185–197 (2000).
Krapp, H. G. & Hengstenberg, R. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384, 463–466 (1996).
Farrow, K., Haag, J. & Borst, A. Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron. Nat. Neurosci. 9, 1312–1320 (2006).
Blondeau, J. Electrically evoked course control in the fly Calliphora erythrocephala. J. Exp. Biol. 92, 143–153 (1981).
Heisenberg, M., Wonneberger, R. & Wolf, R. Optomotor-blindH31 — a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. 124, 287–296 (1978).
Kramer, A., Wu, Y., Baier, H. & Kubo, F. Neuronal architecture of a visual center that processes optic flow. Neuron 103, 118–132.e7 (2019).
Ahrens, M. B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012).
Portugues, R., Feierstein, C. E., Engert, F. & Orger, M. B. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81, 1328–1343 (2014).
Naumann, E. A. et al. From whole-brain data to functional circuit models: the zebrafish optomotor response. Cell 167, 947–960.e20 (2016).
Wang, K., Hinz, J., Zhang, Y., Thiele, T. R. & Arrenberg, A. B. Parallel channels for motion feature extraction in the pretectum and tectum of larval zebrafish. Cell Rep. 30, 442–453.e6 (2020).
Zhang, Y., Huang, R., Nörenberg, W. & Arrenberg, A. B. A robust receptive field code for optic flow detection and decomposition during self-motion. Curr. Biol. 32, 2505–2516.e8 (2022).
Dragomir, E. I., Štih, V. & Portugues, R. Evidence accumulation during a sensorimotor decision task revealed by whole-brain imaging. Nat. Neurosci. 23, 85–93 (2020).
Grasse, K. L. & Cynader, M. S. Electrophysiology of lateral and dorsal terminal nuclei of the cat accessory optic system. J. Neurophysiol. 51, 276–293 (1984).
Collewijn, H. Direction-selective units in the rabbit’s nucleus of the optic tract. Brain Res. 100, 489–508 (1975).
Winterson, B. J. & Brauth, S. E. Direction-selective single units in the nucleus lentiformis mesencephali of the pigeon (Columba livia). Exp. Brain Res. 60, 215–226 (1985).
Schnell, B., Raghu, S. V., Nern, A. & Borst, A. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J. Comp. Physiol. A 198, 389–395 (2012).
Shinomiya, K., Nern, A., Meinertzhagen, I. A., Plaza, S. M. & Reiser, M. B. Neuronal circuits integrating visual motion information in Drosophila melanogaster. Curr. Biol. 32, 3529–3544.e2 (2022).
Mauss, A. S. et al. Neural circuit to integrate opposing motions in the visual field. Cell 162, 351–362 (2015).
Schnell, B. et al. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J. Neurophysiol. 103, 1646–1657 (2010).
Tanaka, R. et al. Neural mechanisms to incorporate visual counterevidence in self-movement estimation. Curr. Biol. 33, 4960–4979.e7 (2023).
Wasserman, S. M. et al. Olfactory neuromodulation of motion vision circuitry in Drosophila. Curr. Biol. 25, 467–472 (2015).
Chiappe, M. E., Seelig, J. D., Reiser, M. B. & Jayaraman, V. Walking modulates speed sensitivity in Drosophila motion vision. Curr. Biol. 20, 1470–1475 (2010).
Maimon, G., Straw, A. D. & Dickinson, M. H. Active flight increases the gain of visual motion processing in Drosophila. Nat. Neurosci. 13, 393–399 (2010).
Suver, M. P., Mamiya, A. & Dickinson, M. H. Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila. Curr. Biol. 22, 2294–2302 (2012).
Kim, A. J., Fitzgerald, J. K. & Maimon, G. Cellular evidence for efference copy in Drosophila visuomotor processing. Nat. Neurosci. 18, 1247–1255 (2015).
Kim, A. J., Fenk, L. M., Lyu, C. & Maimon, G. Quantitative predictions orchestrate visual signaling in Drosophila. Cell 168, 280–294.e12 (2017).
Fenk, L. M., Kim, A. J. & Maimon, G. Suppression of motion vision during course-changing, but not course-stabilizing, navigational turns. Curr. Biol. 31, 4608–4619.e3 (2021).
Fujiwara, T., Cruz, T. L., Bohnslav, J. P. & Chiappe, M. E. A faithful internal representation of walking movements in the Drosophila visual system. Nat. Neurosci. 20, 72–81 (2017).
Fujiwara, T., Brotas, M. & Chiappe, M. E. Walking strides direct rapid and flexible recruitment of visual circuits for course control in Drosophila. Neuron 110, 2124–2138.e8 (2022).
Boergens, K. M., Kapfer, C., Helmstaedter, M., Denk, W. & Borst, A. Full reconstruction of large lobula plate tangential cells in Drosophila from a 3D EM dataset. PLoS ONE 13, 1–15 (2018).
Wei, H., Kyung, H. Y., Kim, P. J. & Desplan, C. The diversity of lobula plate tangential cells (LPTCs) in the Drosophila motion vision system. J. Comp. Physiol. A 206, 139–148 (2020).
Zhao, A. et al. A comprehensive neuroanatomical survey of the Drosophila lobula plate tangential neurons with predictions for their optic flow sensitivity. eLife 13, RP93659 (2024).
Ammer, G. et al. Multilevel visual motion opponency in Drosophila. Nat. Neurosci. 26, 1894–1905 (2023).
Wu, M. et al. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. eLife 5, e21022 (2016).
Isaacson, M. D. et al. Small-field visual projection neurons detect translational optic flow and support walking control. Preprint at bioRxiv https://doi.org/10.1101/2023.06.21.546024 (2023).
Wu, Y., dal Maschio, M., Kubo, F. & Baier, H. An optical illusion pinpoints an essential circuit node for global motion processing. Neuron 108, 722–734.e5 (2020).
Busch, C., Borst, A. & Mauss, A. S. Bi-directional control of walking behavior by horizontal optic flow sensors. Curr. Biol. 28, 4037–4045.e5 (2018).
Haikala, V., Joesch, M., Borst, A. & Mauss, A. S. Optogenetic control of fly optomotor responses. J. Neurosci. 33, 13927–13934 (2013).
Creamer, M. S., Mano, O. & Clark, D. A. Visual control of walking speed in Drosophila. Neuron 100, 1460–1473.e6 (2018).
Knogler, L. D., Markov, D. A., Dragomir, E. I., Štih, V. & Portugues, R. Sensorimotor representations in cerebellar granule cells in larval zebrafish are dense, spatially organized, and non-temporally patterned. Curr. Biol. 27, 1288–1302 (2017).
Markov, D. A., Petrucco, L., Kist, A. M. & Portugues, R. A cerebellar internal model calibrates a feedback controller involved in sensorimotor control. Nat. Commun. 12, 6694 (2021).
Erginkaya, M. et al. A competitive disinhibitory network for robust optic flow processing in Drosophila. Nat. Neurosci. https://doi.org/10.1101/2023.08.06.552150 (2025).
Suver, M. P., Huda, A., Iwasaki, N., Safarik, S. & Dickinson, M. H. An array of descending visual interneurons encoding self-motion in Drosophila. J. Neurosci. 36, 1–13 (2016).
Hulse, B. K., Stanoev, A., Turner-Evans, D. B., Seelig, J. D. & Jayaraman, V. A rotational velocity estimate constructed through visuomotor competition updates the fly’s neural compass. Preprint at bioRxiv https://doi.org/10.1101/2023.09.25.559373 (2023).
Lu, J. et al. Transforming representations of movement from body- to world-centric space. Nature 601, 98–104 (2021).
Lyu, C., Abbott, L. F. & Maimon, G. Building an allocentric travelling direction signal via vector computation. Nature 601, 92–97 (2021).
Cisek, P. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys. 81, 2265–2287 (2019).
Bengtson, S. Origins and early evolution of predation. Paleontol. Soc. Pap. 8, 289–318 (2002).
Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).
Paterson, J. R. et al. Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature 480, 237–240 (2011).
Braitenberg, V. Vehicles: Experiments in Synthetic Psychology (MIT Press, 1986).
Remy, M. & Güntürkün, O. Retinal afferents to the tectum opticum and the nucleus opticus principalis thalami in the pigeon. J. Comp. Neurol. 305, 57–70 (1991).
Linden, R. & Perry, V. H. Massive retinotectal projection in rats. Brain Res. 272, 145–149 (1983).
Ellis, E. M., Gauvain, G., Sivyer, B. & Murphy, G. J. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol. 116, 602–610 (2016).
Robles, E., Filosa, A. & Baier, H. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. J. Neurosci. 33, 5027–5039 (2013).
Hong, Y. K., Kim, I. J. & Sanes, J. R. Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J. Comp. Neurol. 519, 1691–1711 (2011).
Thompson, A. W., Vanwalleghem, G. C., Heap, L. A. & Scott, E. K. Functional profiles of visual-, auditory-, and water flow-responsive neurons in the zebrafish tectum. Curr. Biol. 26, 743–754 (2016).
Heap, L. A., Vanwalleghem, G., Thompson, A. W., Favre-Bulle, I. A. & Scott, E. K. Luminance changes drive directional startle through a thalamic pathway. Neuron 99, 293–301.e4 (2018).
Heap, L. A. et al. Hypothalamic projections to the optic tectum in larval zebrafish. Front. Neuroanat. 11, 135 (2018).
Benavidez, N. L. et al. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun. 12, 4004 (2021).
Meek, J. & Schellart, N. A. M. A Golgi study of goldfish optic tectum. J. Comp. Neurol. 182, 89–121 (1978).
Robles, E., Smith, S. & Baier, H. Characterization of genetically targeted neuron types in the zebrafish optic tectum. Front. Neural Circuits 5, 1 (2011).
Scott, E. & Baier, H. The cellular architecture of the larval zebrafish tectum, as revealed by Gal4 enhancer trap lines. Front. Neural Circuits 3, 13 (2009).
Gale, S. D. & Murphy, G. J. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J. Neurosci. 34, 13458–13471 (2014).
Isa, T., Marquez-Legorreta, E., Grillner, S. & Scott, E. K. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol. 31, R741–R762 (2021).
Langer, T. P. & Lund, R. D. The upper layers of the superior colliculus of the rat: a Golgi study. J. Comp. Neurol. 158, 405–435 (1974).
Basso, M. A., Bickford, M. E. & Cang, J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 109, 918–937 (2021).
Strausfeld, N. J. & Olea-Rowe, B. Convergent evolution of optic lobe neuropil in Pancrustacea. Arthropod Struct. Dev. 61, 101040 (2021).
Otsuna, H. & Ito, K. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J. Comp. Neurol. 497, 928–958 (2006).
Panser, K. et al. Automatic segmentation of Drosophila neural compartments using GAL4 expression data reveals novel visual pathways. Curr. Biol. 26, 1943–1954 (2016).
Sterling, P. & Wickelgren, B. G. Visual receptive fields in the superior colliculus of the cat. J. Neurophysiol. 32, 1–15 (1969).
Lettvin, J. Y., Maturana, H. R., McCulloh, W. S. & Pitts, W. H. in Sensory Communications 757–776 (MIT Press, 1961).
Hatsopoulos, N., Gabbiani, F. & Laurent, G. Elementary computation of object approach by a wide-field visual neuron. Science 270, 1000–1003 (1995).
O’Shea, M. & Williams, J. L. D. The anatomy and output connection of a locust visual interneurone; the lobular giant movement detector (LGMD) neurone. J. Comp. Physiol. 91, 257–266 (1974).
O’Carroll, D. Feature-detecting neurons in dragonflies. Nature 362, 541–543 (1993).
Gilbert, C. & Strausfeld, N. J. The functional organization of male-specific visual neurons in flies. J. Comp. Physiol. A 169, 395–411 (1991).
Nordström, K. & O’Carroll, D. C. Small object detection neurons in female hoverflies. Proc. R. Soc. B Biol. Sci. 273, 1211–1216 (2006).
Niell, C. M. & Smith, S. J. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron 45, 941–951 (2005).
Bianco, I. H. & Engert, F. Visuomotor transformations underlying hunting behavior in zebrafish. Curr. Biol. 25, 831–846 (2015).
Förster, D. et al. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey. eLife 9, 1–26 (2020).
Barker, A. J. & Baier, H. Sensorimotor decision making in the zebrafish tectum. Curr. Biol. 25, 2804–2814 (2015).
Del Bene, F. et al. Filtering of visual information in the tectum by an identified neural circuit. Science 330, 669–673 (2010).
Preuss, S. J., Trivedi, C. A., vom Berg-Maurer, C. M., Ryu, S. & Bollmann, J. H. Classification of object size in retinotectal microcircuits. Curr. Biol. 24, 2376–2385 (2014).
Gabriel, J. P., Trivedi, C. A., Maurer, C. M., Ryu, S. & Bollmann, J. H. Layer-specific targeting of direction-selective neurons in the zebrafish optic tectum. Neuron 76, 1147–1160 (2012).
Hunter, P. R., Lowe, A. S., Thompson, I. D. & Meyer, M. P. Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity. J. Neurosci. 33, 13940–13945 (2013).
Temizer, I., Donovan, J. C., Baier, H. & Semmelhack, J. L. A visual pathway for looming-evoked escape in larval zebrafish. Curr. Biol. 25, 1823–1834 (2015).
Dunn, T. W. et al. Neural circuits underlying visually evoked escapes in larval zebrafish. Neuron 89, 613–628 (2016).
Helmbrecht, T. O., dal Maschio, M., Donovan, J. C., Koutsouli, S. & Baier, H. Topography of a visuomotor transformation. Neuron 100, 1429–1445.e4 (2018).
Fornetto, C., Tiso, N., Pavone, F. S. & Vanzi, F. Colored visual stimuli evoke spectrally tuned neuronal responses across the central nervous system of zebrafish larvae. BMC Biol. 18, 172 (2020).
Guggiana Nilo, D. A., Riegler, C., Hübener, M. & Engert, F. Distributed chromatic processing at the interface between retina and brain in the larval zebrafish. Curr. Biol. 31, 1945–1953.e5 (2021).
Li, Y. & Meister, M. Functional cell types in the mouse superior colliculus. eLife 12, e82367 (2023).
De Franceschi, G. & Solomon, S. G. Visual response properties of neurons in the superficial layers of the superior colliculus of awake mouse. J. Physiol. 596, 6307–6332 (2018).
Liu, Y. et al. Mapping visual functions onto molecular cell types in the mouse superior colliculus. Neuron 111, 1876–1886.e5 (2023).
Wang, L., Sarnaik, R., Rangarajan, K., Liu, X. & Cang, J. Visual receptive field properties of neurons in the superficial superior colliculus of the mouse. J. Neurosci. 30, 16573–16584 (2010).
Zhao, X., Liu, M. & Cang, J. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron 84, 202–213 (2014).
Shainer, I. et al. Transcriptomic neuron types vary topographically in function and morphology. Nature 638, 1023–1033 (2025).
von Reyn, C. R. et al. Feature integration drives probabilistic behavior in the Drosophila escape response. Neuron 94, 1190–1204.e6 (2017).
Ache, J. M. et al. Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. Curr. Biol. 29, 1073–1081.e4 (2019).
Klapoetke, N. C. et al. Ultra-selective looming detection from radial motion opponency. Nature 551, 237–241 (2017).
Morimoto, M. M. et al. Spatial readout of visual looming in the central brain of Drosophila. eLife 9, e57685 (2020).
Tanaka, R. & Clark, D. A. Neural mechanisms to exploit positional geometry for collision avoidance. Curr. Biol. 32, 2357–2374.e6 (2022).
Keleş, M. F. & Frye, M. A. Object-detecting neurons in Drosophila. Curr. Biol. 27, 1–8 (2017).
Klapoetke, N. C. et al. A functionally ordered visual feature map in the Drosophila brain. Neuron https://doi.org/10.1016/j.neuron.2022.02.013 (2022).
Städele, C., Keleş, M. F., Mongeau, J.-M. M. & Frye, M. A. Non-canonical receptive field properties and neuromodulation of feature-detecting neurons in flies. Curr. Biol. 30, 2508–2519.e6 (2020).
Turner, M. H., Krieger, A., Pang, M. M. & Clandinin, T. R. Visual and motor signatures of locomotion dynamically shape a population code for feature detection in Drosophila. eLife 11, e82587 (2022).
Fotowat, H. & Engert, F. Neural circuits underlying habituation of visually evoked escape behaviors in larval zebrafish. eLife 12, e82916 (2023).
Lee, K. H., Tran, A., Turan, Z. & Meister, M. The sifting of visual information in the superior colliculus. eLife 9, e50678 (2020).
O’Shea, M. & Rowell, C. H. F. Protection from habituation by lateral inhibition. Nature 254, 53–55 (1975).
Fabian, J. M., Dunbier, J. R., O’Carroll, D. C. & Wiederman, S. D. Properties of predictive gain modulation in a dragonfly visual neuron. J. Exp. Biol. 222, jeb207316 (2019).
Barnett, P. D., Nordström, K. & O’Carroll, D. C. Retinotopic organization of small-field-target-detecting neurons in the insect visual system. Curr. Biol. 17, 569–578 (2007).
Nordström, K., Barnett, P. D. & O’Carroll, D. C. Insect detection of small targets moving in visual clutter. PLoS Biol. 4, e54 (2006).
Yamawaki, Y. Unraveling the functional organization of lobula complex in the mantis brain by identification of visual interneurons. J. Comp. Neurol. 527, 1161–1178 (2019).
de Malmazet, D., Kühn, N. K. & Farrow, K. Retinotopic separation of nasal and temporal motion selectivity in the mouse superior colliculus. Curr. Biol. 28, 2961–2969.e4 (2018).
Xiao, T. & Baier, H. Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen dragnet. Nat. Neurosci. 10, 1529–1537 (2007).
Yamagata, M., Weiner, J. A., Dulac, C., Roth, K. A. & Sanes, J. R. Labeled lines in the retinotectal system: markers for retinorecipient sublaminae and the retinal ganglion cell subsets that innervate them. Mol. Cell. Neurosci. 33, 296–310 (2006).
Kim, I. J., Zhang, Y., Meister, M. & Sanes, J. R. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. J. Neurosci. 30, 1452–1462 (2010).
Nikolaou, N. et al. Parametric functional maps of visual inputs to the tectum. Neuron 76, 317–324 (2012).
Zhang, B., Yao, Y., Zhang, H., Kawakami, K. & Du, J. L. Left habenula mediates light-preference behavior in zebrafish via an asymmetrical visual pathway. Neuron 93, 914–928.e4 (2017).
Molotkov, D., Ferrarese, L., Boissonnet, T. & Asari, H. Topographic axonal projection at single-cell precision supports local retinotopy in the mouse superior colliculus. Nat. Commun. 14, 7418 (2023).
Shi, X. et al. Retinal origin of direction selectivity in the superior colliculus. Nat. Neurosci. 20, 550–558 (2017).
Gale, S. D. & Murphy, G. J. Active dendritic properties and local inhibitory input enable selectivity for object motion in mouse superior colliculus neurons. J. Neurosci. 36, 9111–9123 (2016).
Ribi, W. A. & Scheel, M. The second and third optic ganglia of the worker bee. Cell Tissue Res. 221, 17–43 (1981).
Tanaka, R. & Clark, D. A. Identifying Inputs to visual projection neurons in Drosophila lobula by analyzing connectomic data. eNeuro 9, ENEURO.0053-22.2022 (2022).
Donders, F. C. Ueber angeborene und erworbene association. Albrecht von Graefes Arch. Ophthalmol. 18, 153–164 (1872).
Apter, J. T. Projection of the retina on superior colliculus of cats. J. Neurophysiol. 8, 123–134 (1945).
Robinson, D. A. Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res. 12, 1795–1808 (1972).
Straschill, M. & Rieger, P. Eye movements evoked by focal stimulation of the cats superior colliculus. Brain Res. 59, 211–227 (1973).
Olds, M. E. & Olds, J. Approach-escape interactions in rat brain. Am. J. Physiol. 203, 803–810 (1962).
Olds, M. E. & Olds, J. Approach-avoidance analysis of rat diencephalon. J. Comp. Neurol. 120, 259–295 (1963).
Sahibzada, N., Dean, P. & Redgrave, P. Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci. 6, 723–733 (1986).
Fajardo, O., Zhu, P. & Friedrich, R. Control of a specific motor program by a small brain area in zebrafish. Front. Neural Circuits 7, 67 (2013).
Campagner, D. et al. A cortico-collicular circuit for orienting to shelter during escape. Nature 613, 111–119 (2023).
Shang, C. et al. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun. 9, 1232 (2018).
Hoy, J. L., Bishop, H. I. & Niell, C. M. Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr. Biol. 29, 4130–4138.e5 (2019).
Shang, C. et al. A subcortical excitatory circuit for sensory-triggered predatory hunting in mice. Nat. Neurosci. 22, 909–920 (2019).
De Franceschi, G., Vivattanasarn, T., Saleem, A. B. & Solomon, S. G. Vision guides selection of freeze or flight defense strategies in mice. Curr. Biol. 26, 2150–2154 (2016).
Ribeiro, I. M. A. et al. Visual projection neurons mediating directed courtship in Drosophila. Cell 174, 607–621.e18 (2018).
Sten, T. H., Li, R., Otopalik, A. & Ruta, V. Sexual arousal gates visual processing during Drosophila courtship. Nature 595, 549–553 (2021).
Cowley, B. R. et al. Mapping model units to visual neurons reveals population code for social behaviour. Nature https://doi.org/10.1038/s41586-024-07451-8 (2024).
Dean, P., Redgrave, P. & Westby, G. W. M. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci. 12, 137–147 (1989).
Zottoli, S. J., Hordes, A. R. & Faber, D. S. Localization of optic tectal input to the ventral dendrite of the goldfish Mauthner cell. Brain Res. 401, 113–121 (1987).
Nissanov, J., Eaton, R. C. & DiDomenico, R. The motor output of the Mauthner cell, a reticulospinal command neuron. Brain Res. 517, 88–98 (1990).
Frye, M. A. & Olberg, R. M. Visual receptive field properties of feature detecting neurons in the dragonfly. J. Comp. Physiol. A 177, 569–576 (1995).
Gronenberg, W. & Strausfeld, N. J. Premotor descending neurons responding selectively to local visual stimuli in flies. J. Comp. Neurol. 316, 87–103 (1992).
Rind, F. C. A chemical synapse between two motion detecting neurones in the locust brain. J. Exp. Biol. 110, 143–167 (1984).
Henriques, P. M., Rahman, N., Jackson, S. E. & Bianco, I. H. Nucleus isthmi is required to sustain target pursuit during visually guided prey-catching. Curr. Biol. 29, 1771–1786.e5 (2019).
Fernandes, A. M. et al. Neural circuitry for stimulus selection in the zebrafish visual system. Neuron 109, 805–822.e6 (2021).
Kappel, J. M. et al. Visual recognition of social signals by a tectothalamic neural circuit. Nature 608, 146–152 (2022).
Strausfeld, N. J., Sinkaevitch, I. & Okamura, J.-Y. Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. Dev. Neurobiol. 67, 1267–1288 (2007).
Namiki, S., Dickinson, M. H., Wong, A. M., Korff, W. & Card, G. M. The functional organization of descending sensory-motor pathways in Drosophila. eLife 7, e34272 (2018).
Gahtan, E., Tanger, P. & Baier, H. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J. Neurosci. 25, 9294–9303 (2005).
Tanouye, M. A. & Wyman, R. J. Motor outputs of giant nerve fiber in Drosophila. J. Neurophysiol. 44, 405–421 (1980).
von Reyn, C. R. et al. A spike-timing mechanism for action selection. Nat. Neurosci. 17, 962–970 (2014).
Dombrovski, M. et al. Synaptic gradients transform object location to action. Nature 613, 534–542 (2023).
Baier, H. & Wullimann, M. F. Anatomy and function of retinorecipient arborization fields in zebrafish. J. Comp. Neurol. 529, 3454–3476 (2021).
Morin, L. P. & Studholme, K. M. Retinofugal projections in the mouse. J. Comp. Neurol. 522, 3733–3753 (2014).
Santana, N. N. M. et al. Retinorecipient areas in the common marmoset (Callithrix jacchus): an image-forming and non-image forming circuitry. Front. Neural Circuits 17, 1088686 (2023).
Helfrich-Förster, C. The circadian clock in the brain: a structural and functional comparison between mammals and insects. J. Comp. Physiol. A 190, 601–613 (2004).
Omoto, J. J. et al. Visual input to the Drosophila central complex by developmentally and functionally distinct neuronal populations. Curr. Biol. 27, 1098–1110 (2017).
Vogt, K. et al. Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. eLife 5, 1–13 (2016).
Ganguly, I., Heckman, E. L., Litwin-Kumar, A., Clowney, E. J. & Behnia, R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. Nat. Commun. 15, 5698 (2024).
Bhadra, U., Thakkar, N., Das, P. & Pal Bhadra, M. Evolution of circadian rhythms: from bacteria to human. Sleep Med. 35, 49–61 (2017).
Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).
Hattar, S., Liao, H.-W., Takao, M., Berson, D. M. & Yau, K.-W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).
Aranda, M. L. & Schmidt, T. M. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell. Mol. Life Sci. 78, 889–907 (2021).
Beier, C., Zhang, Z., Yurgel, M. & Hattar, S. Projections of ipRGCs and conventional RGCs to retinorecipient brain nuclei. J. Comp. Neurol. 529, 1863–1875 (2021).
Ecker, J. L. et al. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67, 49–60 (2010).
Helfrich-Förster, C. The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 92, 612–616 (1995).
Grima, B., Chélot, E., Xia, R. & Rouyer, F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431, 869–873 (2004).
Reinhard, N. et al. Synaptic connectome of the Drosophila circadian clock. Nat. Commun. 15, 10392 (2024).
Shafer, O. T. et al. Connectomic analysis of the Drosophila lateral neuron clock cells reveals the synaptic basis of functional pacemaker classes. eLife 11, e79139 (2022).
Jékely, G. Evolution of phototaxis. Philos. Trans. R. Soc. B Biol. Sci. 364, 2795–2808 (2009).
Burgess, H. A., Schoch, H. & Granato, M. Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation. Curr. Biol. 20, 381–386 (2010).
Orger, M. B. & Baier, H. Channeling of red and green cone inputs to the zebrafish optomotor response. Vis. Neurosci. 22, 275–281 (2005).
Benzer, S. Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. Natl Acad. Sci. USA 58, 1112–1119 (1967).
Chen, X. & Engert, F. Navigational strategies underlying phototaxis in larval zebrafish. Front. Syst. Neurosci. 8, 1–13 (2014).
Karpenko, S. et al. From behavior to circuit modeling of light-seeking navigation in zebrafish larvae. eLife 9, e52882 (2020).
Guggiana Nilo, D. A. & Engert, F. Properties of the visible light phototaxis and UV avoidance behaviors in the larval zebrafish. Front. Behav. Neurosci. 10, 160 (2016).
Chen, X. et al. Brain-wide organization of neuronal activity and convergent sensorimotor transformations in larval zebrafish. Neuron 100, 876–890.e5 (2018).
Hikosaka, O. The habenula: from stress evasion to value-based decision-making. Nat. Rev. Neurosci. 11, 503–513 (2010).
Okamoto, H., Cherng, B.-W., Nakajo, H., Chou, M.-Y. & Kinoshita, M. Habenula as the experience-dependent controlling switchboard of behavior and attention in social conflict and learning. Curr. Opin. Neurobiol. 68, 36–43 (2021).
Cheng, R.-K., Krishnan, S., Lin, Q., Kibat, C. & Jesuthasan, S. Characterization of a thalamic nucleus mediating habenula responses to changes in ambient illumination. BMC Biol. 15, 104 (2017).
Dreosti, E., Vendrell Llopis, N., Carl, M., Yaksi, E. & Wilson, S. W. Left-right asymmetry is required for the habenulae to respond to both visual and olfactory stimuli. Curr. Biol. 24, 440–445 (2014).
Lin, Q. & Jesuthasan, S. Masking of a circadian behavior in larval zebrafish involves the thalamo-habenula pathway. Sci. Rep. 7, 4104 (2017).
Huang, L. et al. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron 102, 128–142.e8 (2019).
Zhu, Y., Nern, A., Zipursky, S. L. & Frye, M. A. Peripheral visual circuits functionally segregate motion and phototaxis behaviors in the fly. Curr. Biol. 19, 613–619 (2009).
Otsuna, H., Shinomiya, K. & Ito, K. Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior. Front. Neural Circuits 8, 1–12 (2014).
Lin, T. Y. et al. Mapping chromatic pathways in the Drosophila visual system. J. Comp. Neurol. 524, 213–227 (2016).
Kind, E. et al. Synaptic targets of photoreceptors specialized to detect color and skylight polarization in Drosophila. eLife 10, e71858 (2021).
Timaeus, L., Geid, L., Sancer, G., Wernet, M. F. & Hummel, T. Parallel visual pathways with topographic versus nontopographic organization connect the Drosophila eyes to the central brain. iScience 23, 101590 (2020).
Seelig, J. D. & Jayaraman, V. Feature detection and orientation tuning in the Drosophila central complex. Nature 503, 262–266 (2013).
Hanesch, U., Fischbach, K.-F. & Heisenberg, M. Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257, 343–366 (1989).
Artiushin, G. & Sehgal, A. The Drosophila circuitry of sleep–wake regulation. Curr. Opin. Neurobiol. 44, 243–250 (2017).
Heinze, S. Variations on an ancient theme — the central complex across insects. Curr. Opin. Behav. Sci. 57, 101390 (2024).
Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).
Fisher, Y. E., Lu, J., D’Alessandro, I. & Wilson, R. I. Sensorimotor experience remaps visual input to a heading-direction network. Nature https://doi.org/10.1038/s41586-019-1772-4 (2019).
Kim, S. S., Hermundstad, A. M., Romani, S., Abbott, L. F. & Jayaraman, V. Generation of stable heading representations in diverse visual scenes. Nature https://doi.org/10.1038/s41586-019-1767-1 (2019).
Shiozaki, H. M. & Kazama, H. Parallel encoding of recent visual experience and self-motion during navigation in Drosophila. Nat. Neurosci. 20, 1395–1403 (2017).
Sun, Y. et al. Neural signatures of dynamic stimulus selection in Drosophila. Nat. Neurosci. 20, 1104–1113 (2017).
Hardcastle, B. J. et al. A visual pathway for skylight polarization processing in Drosophila. eLife 10, 1–46 (2021).
Hardie, R. C. Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J. Comp. Physiol. A 154, 157–165 (1984).
Weir, P. T. et al. Anatomical reconstruction and functional imaging reveal an ordered array of skylight polarization detectors in Drosophila. J. Neurosci. 36, 5397–5404 (2016).
Wernet, M. F. et al. Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr. Biol. 22, 12–20 (2012).
Heinze, S., Florman, J., Asokaraj, S., el Jundi, B. & Reppert, S. M. Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly. J. Comp. Neurol. 521, 267–298 (2013).
Pfeiffer, K. & Kinoshita, M. Segregation of visual inputs from different regions of the compound eye in two parallel pathways through the anterior optic tubercle of the bumblebee (Bombus ignitus). J. Comp. Neurol. 520, 212–229 (2012).
Träger, U., Wagner, R., Bausenwein, B. & Homberg, U. A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain. J. Comp. Neurol. 506, 288–300 (2008).
Heinze, S. & Reppert, S. M. Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69, 345–358 (2011).
el Jundi, B., Pfeiffer, K. & Homberg, U. A distinct layer of the medulla integrates sky compass signals in the brain of an insect. PLoS ONE 6, e27855 (2011).
Aizawa, H. et al. Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus. Curr. Biol. 15, 238–243 (2005).
Bianco, I. H., Carl, M., Russell, C., Clarke, J. D. & Wilson, S. W. Brain asymmetry is encoded at the level of axon terminal morphology. Neural Dev. 3, 1–20 (2008).
McLaughlin, I., Dani, J. A. & De Biasi, M. The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. J. Neurochem. 142, 130–143 (2017).
Petrucco, L. et al. Neural dynamics and architecture of the heading direction circuit in zebrafish. Nat. Neurosci. 26, 765–773 (2023).
Lavian, H., Prat, O., Petrucco, L., Štih, V. & Portugues, R. The representation of visual motion and landmark position aligns with heading direction in the zebrafish interpeduncular nucleus. Preprint at bioRxiv https://doi.org/10.1101/2024.09.25.614953 (2024).
Tanaka, R. & Portugues, R. Mechanisms for plastic landmark anchoring in zebrafish compass neurons. Preprint at bioRxiv https://doi.org/10.1101/2024.12.13.628331 (2024).
Briscoe, S. D. & Ragsdale, C. W. Evolution of the chordate telencephalon. Curr. Biol. 29, R647–R662 (2019).
Suryanarayana, S. M., Pérez-Fernández, J., Robertson, B. & Grillner, S. The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat. Ecol. Evol. 4, 639–651 (2020).
Bloch, S. et al. Non-thalamic origin of zebrafish sensory nuclei implies convergent evolution of visual pathways in amniotes and teleosts. eLife 9, e54945 (2020).
Kaas, J. H., Qi, H. & Stepniewska, I. Escaping the nocturnal bottleneck, and the evolution of the dorsal and ventral streams of visual processing in primates. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210293 (2021).
Modi, M. N., Shuai, Y. & Turner, G. C. The Drosophila mushroom body: from architecture to algorithm in a learning circuit. Annu. Rev. Neurosci. 43, 465–484 (2020).
Paulk, A. C. & Gronenberg, W. Higher order visual input to the mushroom bodies in the bee, Bombus impatiens. Arthropod Struct. Dev. 37, 443–458 (2008).
Srinivasan, M. V. Honey bees as a model for vision, perception, and cognition. Annu. Rev. Entomol. 55, 267–284 (2010).
Zhang, S. Visually guided decision making in foraging honeybees. Front. Neurosci. 6, 88 (2012).
Baden, T. From water to land: evolution of photoreceptor circuits for vision in air. PLoS Biol. 22, e3002422 (2024).
Gabbiani, F., Krapp, H. G. & Laurent, G. Computation of object approach by a wide-field, motion-sensitive neuron. J. Neurosci. 19, 1122–1141 (1999).
Burkhardt, P. & Jékely, G. Evolution of synapses and neurotransmitter systems: the divide-and-conquer model for early neural cell-type evolution. Curr. Opin. Neurobiol. 71, 127–138 (2021).
Pungor, J. R. & Niell, C. M. The neural basis of visual processing and behavior in cephalopods. Curr. Biol. 33, R1106–R1118 (2023).
Bok, M. J., Macali, A. & Garm, A. High-resolution vision in pelagic polychaetes. Curr. Biol. 34, R269–R270 (2024).
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
Wu, Y. K., Petrucco, L. & Portugues, R. Anatomical and functional organization of the interpeduncular nucleus in larval zebrafish. Preprint at bioRxiv https://doi.org/10.1101/2024.10.09.617353 (2024).
Puelles, L. & Medina, L. Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Res. Bull. 57, 243–255 (2002).
Brostek, L., Büttner, U., Mustari, M. J. & Glasauer, S. Eye velocity gain fields in MSTd during optokinetic stimulation. Cereb. Cortex 25, 2181–2190 (2015).
El-Danaf, R. N. et al. Morphological and functional convergence of visual projection neurons from diverse neurogenic origins in Drosophila. Nat. Commun. 16, 698 (2025).
Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).
Panier, T. et al. Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Front. Neural Circuits 7, 65 (2013).
Vladimirov, N. et al. Light-sheet functional imaging in fictively behaving zebrafish. Nat. Methods 11, 883–884 (2014).
Smarandache-Wellmann, C. R. Arthropod neurons and nervous system. Curr. Biol. 26, R960–R965 (2016).
Dionne, H., Hibbard, K. L., Cavallaro, A., Kao, J. C. & Rubin, G. M. Genetic reagents for making split-GAL4 lines in Drosophila. Genetics 209, 31–35 (2018).
Meissner, G. W. et al. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. eLife 12, e80660 (2023).
Dorkenwald, S. et al. Neuronal wiring diagram of an adult brain. Nature 634, 124–138 (2024).
Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, 1–74 (2020).
Aimon, S., Cheng, K. Y., Gjorgjieva, J. & Grunwald Kadow, I. C. Global change in brain state during spontaneous and forced walk in Drosophila is composed of combined activity patterns of different neuron classes. eLife 12, e85202 (2023).
Schaffer, E. S. et al. The spatial and temporal structure of neural activity across the fly brain. Nat. Commun. 14, 5572 (2023).
Shainer, I. et al. A single-cell resolution gene expression atlas of the larval zebrafish brain. Sci. Adv. 9, eade9909 (2023).
Svara, F. et al. Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain. Nat. Methods 19, 1357–1366 (2022).
Acknowledgements
The authors thank the members of the Portugues laboratory for helpful comments and discussions. R.T. was supported by EMBO Postdoctoral Fellowship (ALTF732-2022) and HFSP Postdoctoral Fellowship (LT0027/2023-L). R.P. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the SPP 2205 — project 430156228. In addition, R.P. was supported by the DFG under the Excellence Strategy of Germany within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, identifier 390857198).
Author information
Authors and Affiliations
Contributions
Both authors contributed to all aspects of the preparation of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no completing interests.
Peer review
Peer review information
Nature Reviews Neuroscience thanks Tom Baden, Ethan Scott and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tanaka, R., Portugues, R. On analogies in vertebrate and insect visual systems. Nat. Rev. Neurosci. 26, 456–475 (2025). https://doi.org/10.1038/s41583-025-00932-3
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41583-025-00932-3