Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sleuthing subjectivity: a review of covert measures of consciousness

Abstract

Consciousness is private. Although conscious beings directly access their own conscious experiences, the consciousness of others must be inferred through overt report: observable behaviours — such as overt facial expressions, vocalizations and body gestures — that suggest the level, state and content of consciousness. However, overt report is limited because it can be erroneous (for example, resulting from wilful deception or being subject to recall error), absent (for example, during sleep and paralysis) or conflict with research goals (for example, in no-report paradigms and resting-state studies). These limitations encourage the search for covert measures of consciousness: physiological signals that disclose consciousness without relying on overt behaviour. This Review highlights emerging covert measures of consciousness in humans, including eye, skin, respiratory and heart signals. We also address the challenge of distinguishing physiological signals linked to conscious versus unconscious neural processing. Finally, we consider the ethical implications of infringing on the innate privacy of consciousness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods of overt report and limitations.
Fig. 2: Covert measures of consciousness.
Fig. 3: Physiological signals used to infer conscious level and state.
Fig. 4: Physiological signals to infer conscious content.
Fig. 5: Distinguishing physiological signals indicative of conscious and unconscious processing.

Similar content being viewed by others

References

  1. Koch, C., Massimini, M., Boly, M. & Tononi, G. Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Nagel, T. What is it like to be a bat? Philos. Rev. 83, 435–450 (1974).

    Article  Google Scholar 

  3. Kronemer, S. I. et al. Human visual consciousness involves large scale cortical and subcortical networks independent of task report and eye movement activity. Nat. Commun. 13, 7342 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Snider, S. B. & Edlow, B. L. Magnetic resonance imaging in disorders of consciousness. Curr. Opin. Neurol. 33, 676–683 (2022).

    Article  Google Scholar 

  5. Young, M. J., Edlow, B. L. & Bodien, Y. G. Covert consciousness. NeuroRehabilitation 54, 23–42 (2024).

    PubMed  PubMed Central  Google Scholar 

  6. Sandin, R. H., Enlund, G., Samuelsson, P. & Lennmarken, C. Awareness during anaesthesia: a prospective case study. Lancet 355, 707–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Birch, J., Schnell, A. K. & Clayton, N. S. Dimensions of animal consciousness. Trends Cogn. Sci. 24, 789–801 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schooler, J. W. Re-representing consciousness: dissociations between experience and meta-consciousness. Trends Cogn. Sci. 6, 339–344 (2002).

    Article  PubMed  Google Scholar 

  9. Hurlburt, R. T. & Heavey, C. L. Investigating pristine inner experience: implications for experience sampling and questionnaires. Conscious. Cogn. 31, 148–159 (2015).

    Article  PubMed  Google Scholar 

  10. Garric, C. et al. Dissociation between objective and subjective perceptual experiences in a population of hemianopic patients: a new form of blindsight? Cortex 117, 299–310 (2019).

    Article  PubMed  Google Scholar 

  11. Levine, F. M. & Lee De Simone, L. The effects of experimenter gender on pain report in male and female subjects. Pain 44, 69–72 (1991).

    Article  PubMed  Google Scholar 

  12. Ekman, P. & Friesen, W. V. Nonverbal leakage and clues to deception. Psychiatry 32, 88–106 (1969).

    Article  CAS  PubMed  Google Scholar 

  13. Block, N. On a confusion about a function of consciousness. Behav. Brain Sci. 18, 227–247 (1995).

    Article  Google Scholar 

  14. Roediger, H. L. & McDermott, K. B. Creating false memories: remembering words not presented in lists. J. Exp. Psychol. Learn. 21, 803–814 (1995).

    Article  Google Scholar 

  15. Loftus, E. F. & Palmer, J. C. Reconstruction of automobile destruction: example of the interaction between language and memory. J. Verb. Learn. Verb. Behav. 13, 585–589 (1974).

    Article  Google Scholar 

  16. Tateno, A., Jorge, R. E. & Robinson, R. G. Pathological laughing and crying following traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 16, 426–434 (2004).

    Article  PubMed  Google Scholar 

  17. Cummings, J. L. et al. Defining and diagnosing involuntary emotional expression disorder. CNS Spectr. 11, 1–7 (2006).

    Article  PubMed  Google Scholar 

  18. Childs, N. L., Mercer, W. N. & Childs, H. W. Accuracy of diagnosis of persistent vegetative state. Neurology 43, 1465–1467 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Vallotton, C. D. Signs of emotion: what can preverbal children “Say” about internal states? Infant. Ment. Health J. 29, 234–258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Terrace, H. S., Petitto, L. A., Sanders, R. J. & Bever, T. G. Can an ape create a sentence? Science 206, 891–902 (1979).

    Article  CAS  PubMed  Google Scholar 

  21. Aru, J., Bachmann, T., Singer, W. & Melloni, L. Distilling the neural correlates of consciousness. Neurosci. Biobehav. Rev. 36, 737–746 (2012).

    Article  PubMed  Google Scholar 

  22. Tsuchiya, N., Wilke, M., Frassle, S. & Lamme, V. A. F. No-report paradigms: extracting the true neural correlates of consciousness. Trends Cogn. Sci. 19, 757–770 (2015).

    Article  PubMed  Google Scholar 

  23. Frässle, S., Sommer, J., Jansen, A., Naber, M. & Einhäuser, W. Binocular rivalry: frontal activity relates to introspection and action but not to perception. J. Neurosci. 34, 1738–1747 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Block, N. What is wrong with the no-report paradigm and how to fix it. Trends Cogn. Sci. 23, 1003–1013 (2019).

    Article  PubMed  Google Scholar 

  25. Michel, M. & Morales, J. Minority reports: consciousness and the prefrontal cortex. Mind Lang. 35, 493–513 (2020).

    Article  Google Scholar 

  26. Gonzalez-Castillo, J., Kam, J. W. Y., Hoy, C. W. & Bandettini, P. A. How to interpret resting-state fMRI: ask your participants. J. Neurosci. 41, 1130–1141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stoll, J. et al. Pupil responses allow communication in locked-in syndrome patients. Curr. Biol. 23, R647–R648 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Monti, M. M. et al. Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 362, 579–589 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Martinez-Conde, S., Macknik, S. L., Troncoso, X. G. & Dyar, T. A. Microsaccades counteract visual fading during fixation. Neuron 49, 297–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Otero-Millan, J., Macknik, S. L. & Martinez-Conde, S. Microsaccades and blinks trigger illusory rotation in the “rotating snakes” illusion. J. Neurosci. 32, 6043–6051 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sulutvedt, U. et al. Brightness perception changes related to pupil size. Vis. Res. 178, 41–47 (2021).

    Article  PubMed  Google Scholar 

  32. Posner, J. B., Saper, C. B., Schiff, N. D. & Claassen, J. Plum and Posner’s Diagnosis and Treatment of Stupor and Coma 5th edn (Oxford Univ. Press, 2019).

  33. Aru, J., Suzuki, M., Rutiku, R., Larkum, M. E. & Bachmann, T. Coupling the state and contents of consciousness. Front. Syst. Neurosci. 13, 43 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bayne, T., Hohwy, J. & Owen, A. M. Are there levels of consciousness? Trends Cogn. Sci. 20, 405–413 (2016).

    Article  PubMed  Google Scholar 

  35. Vaitl, D. et al. Psychobiology of altered states of consciousness. Psychol. Bull. 131, 98–127 (2005).

    Article  PubMed  Google Scholar 

  36. Blanke, O. & Metzinger, T. Full-body illusions and minimal phenomenal selfhood. Trends Cogn. Sci. 13, 7–13 (2009).

    Article  PubMed  Google Scholar 

  37. Lewis, C. I. Mind and the World-Order: Outline of a Theory of Knowledge (Charles Scribner’s Sons, 1929).

  38. Redinbaugh, M. J. et al. Thalamus modulates consciousness via layer-specific control of cortex. Neuron 106, 66–75 e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Di Perri, C. et al. Neural correlates of consciousness in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study. Lancet Neurol. 15, 830–842 (2016).

    Article  PubMed  Google Scholar 

  40. Varley, T. F. et al. Fractal dimension of cortical functional connectivity networks and severity of disorders of consciousness. PLoS ONE 15, e0223812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Casali, A. G. et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5, 198ra105 (2013).

    Article  PubMed  Google Scholar 

  42. Stender, J. et al. The minimal energetic requirement of sustained awareness after brain injury. Curr. Biol. 26, 1494–1499 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Aubinet, C. et al. Brain metabolism but not gray matter volume underlies the presence of language function in the minimally conscious state (MCS): MCS+ versus MCS− neuroimaging differences. Neurorehabil Neural Repair 34, 172–184 (2020).

    Article  PubMed  Google Scholar 

  44. Mélotte, E. et al. Is oral feeding compatible with an unresponsive wakefulness syndrome? J. Neurol. 265, 954–961 (2018).

    Article  PubMed  Google Scholar 

  45. Horikawa, T., Tamaki, M., Miyawaki, Y. & Kamitani, Y. Neural decoding of visual imagery during sleep. Science 340, 639–642 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Vetter, P. et al. Decoding natural sounds in early “visual” cortex of congenitally blind individuals. Curr. Biol. 30, 3039–3044 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bannert, M. M. & Bartels, A. Human V4 activity patterns predict behavioral performance in imagery of object color. J. Neurosci. 38, 3657–3668 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emmerling, T. C., Zimmermann, J., Sorger, B., Frost, M. A. & Goebel, R. Decoding the direction of imagined visual motion using 7T ultra-high field fMRI. Neuroimage 125, 61–73 (2016).

    Article  PubMed  Google Scholar 

  49. Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V. High-performance brain-to-text communication via handwriting. Nature 593, 249–254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hatamimajoumerd, E., Ratan Murty, N. A., Pitts, M. & Cohen, M. A. Decoding perceptual awareness across the brain with a no-report fMRI masking paradigm. Curr. Biol. 32, 4139–4149 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Hajonides, J. E., Nobre, A. C., van Ede, F. & Stokes, M. G. Decoding visual colour from scalp electroencephalography measurements. Neuroimage 237, 118030 (2021).

    Article  PubMed  Google Scholar 

  52. Koide-Majima, N., Nishimoto, S. & Majima, K. Mental image reconstruction from human brain activity: neural decoding of mental imagery via deep neural network-based Bayesian estimation. Neural Netw. 170, 349–363 (2024).

    Article  PubMed  Google Scholar 

  53. Gaziv, G. et al. Self-supervised natural image reconstruction and large-scale semantic classification from brain activity. Neuroimage 254, 119121 (2022).

    Article  PubMed  Google Scholar 

  54. Ronconi, L., Balestrieri, E., Baldauf, D. & Melcher, D. Distinct cortical networks subserve spatio-temporal sampling in vision through different oscillatory rhythms. J. Cogn. Neurosci. 36, 572–589 (2023).

    Article  Google Scholar 

  55. Fovet, T. et al. Decoding activity in Broca’s area predicts the occurrence of auditory hallucinations across subjects. Biol. Psychiatry 91, 194–201 (2022).

    Article  PubMed  Google Scholar 

  56. Franke, K. et al. State-dependent pupil dilation rapidly shifts visual feature selectivity. Nature 610, 128–134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H. & Balsters, J. H. Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum. Brain Mapp. 35, 4140–4154 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84, 355–362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pfeffer, T. et al. Coupling of pupil- and neuronal population dynamics reveals diverse influences of arousal on cortical processing. eLife 11, e71890 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Einhäuser, W., Koch, C. & Carter, O. L. Pupil dilation betrays the timing of decisions. Front. Hum. Neurosci. 4, 18 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Farraj, Y. et al. Measuring pupil size and light response through closed eyelids. Biomed. Opt. Express 12, 6485–6495 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Goldfine, A. M. & Schiff, N. D. Consciousness: its neurobiology and the major classes of impairment. Neurol. Clin. 29, 723–737 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fiebelkorn, I. C. & Kastner, S. A rhythmic theory of attention. Trends Cogn. Sci. 23, 87–101 (2019).

    Article  PubMed  Google Scholar 

  65. Blumenfeld, H. Brain mechanisms of conscious awareness: detect, pulse, switch, and wave. Neuroscientist 29, 9–18 (2023).

    Article  PubMed  Google Scholar 

  66. Joshi, S., Li, Y., Kalwani, R. & Gold, J. I. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89, 221–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Reimer, J. et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 7, 13289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schneider, M. et al. Spontaneous pupil dilations during the resting state are associated with activation of the salience network. Neuroimage 139, 189–201 (2016).

    Article  PubMed  Google Scholar 

  69. Van Egroo, M., Gaggioni, G., Cespedes-Ortiz, C., Ly, J. Q. M. & Vandewalle, G. Steady-state pupil size varies with circadian phase and sleep homeostasis in healthy young men. Clocks Sleep. 1, 240–258 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wilhelm, B., Wilhem, H., Lüdtke, H., Streicher, P. & Adler, M. Pupillographic assessment of sleepiness in sleep-deprived healthy subjects. Sleep 21, 258–265 (1998).

    CAS  PubMed  Google Scholar 

  71. Lieberman, J. D. et al. Use of admission Glasgow coma score, pupil size, and pupil reactivity to determine outcome for trauma patients. J. Trauma 55, 437–442 (2003).

    Article  PubMed  Google Scholar 

  72. Emami, P. et al. Impact of Glasgow coma scale score and pupil parameters on mortality rate and outcome in pediatric and adult severe traumatic brain injury: a retrospective, multicenter cohort study. J. Neurosurg. 126, 760–767 (2017).

    Article  PubMed  Google Scholar 

  73. Isbell, H. Comparison of the reactions induced by psilocybin and LSD-25 in man. Psychopharmacologia 1, 29–38 (1959).

    Article  CAS  PubMed  Google Scholar 

  74. Franklin, M. S., Broadway, J. M., Mrazek, M. D., Smallwood, J. & Schooler, J. W. Window to the wandering mind: pupillometry of spontaneous thought while reading. Q. J. Exp. Psychol. 66, 2289–2294 (2013).

    Article  Google Scholar 

  75. Schwartz, Z. P., Buran, B. N. & David, S. V. Pupil-associated states modulate excitability but not stimulus selectivity in primary auditory cortex. J. Neurophysiol. 123, 191–208 (2020).

    Article  PubMed  Google Scholar 

  76. van Kempen, J. et al. Behavioural and neural signatures of perceptual decision-making are modulated by pupil-linked arousal. eLife 8, e42541 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sangare, A. et al. Pupil dilation response elicited by violations of auditory regularities is a promising but challenging approach to probe consciousness at the bedside. Sci. Rep. 13, 20331 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Naber, M., Frässle, S. & Einhäuser, W. Perceptual rivalry: reflexes reveal the gradual nature of visual awareness. PLoS ONE 6, e20910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bárány, E. H. & Halldén, U. Phasic inhibition of the light reflex of the pupil during retinal rivalry. J. Neurophysiol. 11, 25–30 (1948).

    Article  PubMed  Google Scholar 

  80. Binda, P., Pereverzeva, M. & Murray, S. O. Pupil size reflects the focus of feature-based attention. J. Neurophysiol. 112, 3046–3052 (2014).

    Article  PubMed  Google Scholar 

  81. Unsworth, N. & Robison, M. K. Pupillary correlates of covert shifts of attention during working memory maintenance. Atten. Percept. Psychophys. 79, 782–795 (2017).

    Article  PubMed  Google Scholar 

  82. Mathot, S., van der Linden, L., Grainger, J. & Vitu, F. The pupillary light response reflects eye-movement preparation. J. Exp. Psychol. Hum. Percept. Perform. 41, 28–35 (2015).

    Article  PubMed  Google Scholar 

  83. Gusso, M. M. et al. More than a feeling: scalp EEG and eye signals in conscious tactile perception. Conscious. Cogn. 105, 103411 (2022).

    Article  PubMed  Google Scholar 

  84. Naber, M., Alvarez, G. A. & Nakayama, K. Tracking the allocation of attention using human pupillary oscillations. Front. Psychol. 4, 919 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zavagno, D., Tommasi, L. & Laeng, B. The eye pupil’s response to static and dynamic illusions of luminosity and darkness. Iperception 8, 2041669517717754 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Laeng, B. & Endestad, T. Bright illusions reduce the eye’s pupil. Proc. Natl Acad. Sci. USA 109, 2162–2167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sperandio, I., Bond, N. & Binda, P. Pupil size as a gateway into conscious interpretation of brightness. Front. Neurol. 9, 1070 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Laeng, B. & Sulutvedt, U. The eye pupil adjusts to imaginary light. Psychol. Sci. 25, 188–197 (2014).

    Article  PubMed  Google Scholar 

  89. Hustá, C., Dalmaijer, E., Belopolsky, A. & Mathôt, S. The pupillary light response reflects visual working memory content. J. Exp. Psychol. Hum. Percept. Perform. 45, 1522–1528 (2019).

    Article  PubMed  Google Scholar 

  90. Mathôt, S., Grainger, J. & Strijkers, K. Pupillary responses to words that convey a sense of brightness or darkness. Psychol. Sci. 28, 1116–1124 (2017).

    Article  PubMed  Google Scholar 

  91. Kay, L., Keogh, R., Andrillon, T. & Pearson, J. The pupillary light response as a physiological index of aphantasia, sensory and phenomenological imagery strength. eLife 11, e72484 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gao, J., Ko, A., Yabe, Y., Goodale, M. A. & Chen, J. Pupil size is modulated by the size of equal-luminance gratings. J. Vis. 20, 4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tortelli, C., Turi, M., Burr, D. C. & Binda, P. Pupillary responses obey Emmert’s law and co-vary with autistic traits. J. Autism Dev. Disord. 51, 2908–2919 (2021).

    Article  PubMed  Google Scholar 

  94. Vemuri, K., Srivastava, A., Agrawal, S. & Anand, M. Age, pupil size differences, and color choices for the “dress” and the “jacket”. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 35, B347–B355 (2018).

    Article  PubMed  Google Scholar 

  95. Beukema, S., Olson, J. A., Jennings, B. J. & Kingdom, F. A. A. Pupil dilation to illusory motion in peripheral drift images: perception versus reality. J. Vis. 17, 1–13 (2017).

    Article  PubMed  Google Scholar 

  96. Sahraie, A. & Barbur, J. L. Pupil response triggered by the onset of coherent motion. Graefes Arch. Clin. Exp. Ophthalmol. 235, 494–500 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Castellotti, S., Francisci, C. & Del Viva, M. M. Pupillary response to real, illusory, and implied motion. PLoS ONE 16, e0254105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sapir, A., Hershman, R. & Henik, A. Top-down effect on pupillary response: evidence from shape from shading. Cognition 212, 104664 (2021).

    Article  PubMed  Google Scholar 

  99. Sulutvedt, U., Mannix, T. K. & Laeng, B. Gaze and the eye pupil adjust to imagined size and distance. Cogn. Sci. 42, 3159–3176 (2018).

    Article  PubMed  Google Scholar 

  100. Enright, J. T. Perspective vergence: oculomotor responses to line drawings. Vis. Res. 27, 1513–1526 (1987).

    Article  CAS  PubMed  Google Scholar 

  101. Mathot, S. Pupillometry: psychology, physiology, and function. J. Cogn. 1, 16 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Castaldi, E., Pomè, A., Cicchini, G. M., Burr, D. & Binda, P. The pupil responds spontaneously to perceived numerosity. Nat. Commun. 12, 5944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hupé, J. M., Lamirel, C. & Lorenceau, J. Pupil dynamics during bistable motion perception. J. Vis. 9, 10 (2009).

    Article  PubMed  Google Scholar 

  104. Brascamp, J. W., de Hollander, G., Wertheimer, M. D., DePew, A. N. & Knapen, T. Separable pupillary signatures of perception and action during perceptual multistability. eLlife 10, e66161 (2021).

    Article  CAS  Google Scholar 

  105. Turi, M., Burr, D. C. & Binda, P. Pupillometry reveals perceptual differences that are tightly linked to autistic traits in typical adults. eLife 7, e32399 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Einhäuser, W., Stout, J., Koch, C. & Carter, O. Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proc. Natl Acad. Sci. USA 105, 1704–1709 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Acquafredda, M., Binda, P. & Lunghi, C. Attention cueing in rivalry: insights from pupillometry. eNeuro 9, ENEURO.0497-21.2022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lowe, S. W. & Ogle, K. N. Dynamics of the pupil during binocular rivalry. Arch. Ophthalmol. 75, 395–403 (1966).

    Article  CAS  PubMed  Google Scholar 

  109. Kloosterman, N. A. et al. Pupil size tracks perceptual content and surprise. Eur. J. Neurosci. 41, 1068–1078 (2015).

    Article  PubMed  Google Scholar 

  110. Strauch, C., Greiter, L. & Huckauf, A. Pupil dilation but not microsaccade rate robustly reveals decision formation. Sci. Rep. 8, 13165 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. de Gee, J. W., Knapen, T. & Donner, T. H. Decision-related pupil dilation reflects upcoming choice and individual bias. Proc. Natl Acad. Sci. USA 111, E618–E625 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. Rozado, D., Lochner, M., Engelke, U. & Dünser, A. Detecting intention through motor-imagery-triggered pupil dilations. Hum. Comput. Interact. 34, 83–113 (2019).

    Article  Google Scholar 

  113. Richer, F. & Beatty, J. Pupillary dilations in movement preparation and execution. Psychophysiology 22, 204–207 (1985).

    Article  CAS  PubMed  Google Scholar 

  114. Mischkowski, D., Palacios-Barrios, E. E., Banker, L., Dildine, T. C. & Atlas, L. Y. Pain or nociception? Subjective experience mediates the effects of acute noxious heat on autonomic responses — corrected and republished. Pain 160, 1469–1481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. van Hooijdonk, R. et al. Touch-induced pupil size reflects stimulus intensity, not subjective pleasantness. Exp. Brain Res. 237, 201–210 (2019).

    Article  PubMed  Google Scholar 

  116. Ellermeier, W. & Westphal, W. Gender differences in pain ratings and pupil reactions to painful pressure stimuli. Pain 61, 435–439 (1995).

    Article  PubMed  Google Scholar 

  117. Lewandowska, K., Gagol, A., Sikora-Wachowicz, B., Marek, T. & Fąfrowicz, M. Saying “yes” when you want to say “no” — pupil dilation reflects evidence accumulation in a visual working memory recognition task. Int. J. Psychophysiol. 139, 18–32 (2019).

    Article  PubMed  Google Scholar 

  118. Jessen, S., Altvater-Mackensen, N. & Grossmann, T. Pupillary responses reveal infants’ discrimination of facial emotions independent of conscious perception. Cognition 150, 163–169 (2016).

    Article  PubMed  Google Scholar 

  119. Kinner, V. L. et al. What our eyes tell us about feelings: tracking pupillary responses during emotion regulation processes. Psychophysiology 54, 508–518 (2017).

    Article  PubMed  Google Scholar 

  120. Bradley, M. M., Miccoli, L., Escrig, M. A. & Lang, P. J. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45, 602–607 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Partala, T. & Surakka, V. Pupil size variation as an indication of affective processing. Int. J. Hum. Comput Stud. 59, 185–198 (2003).

    Article  Google Scholar 

  122. Kashihara, K., Okanoya, K. & Kawai, N. Emotional attention modulates microsaccadic rate and direction. Psychol. Res. 78, 166–179 (2014).

    Article  PubMed  Google Scholar 

  123. de’Sperati, C., Roatta, S., Zovetti, N. & Baroni, T. Decoding overt shifts of attention in depth through pupillary and cortical frequency tagging. J. Neural Eng. 18, 036008 (2021).

    Article  Google Scholar 

  124. Kang, O. & Wheatley, T. Pupil dilation patterns reflect the contents of consciousness. Conscious. Cogn. 35, 128–135 (2015).

    Article  PubMed  Google Scholar 

  125. Kang, O. & Banaji, M. R. Pupillometric decoding of high-level musical imagery. Conscious. Cogn. 77, 102862 (2020).

    Article  PubMed  Google Scholar 

  126. Monster, A. W., Chan, H. C. & O’Connor, D. Long-term trends in human eye blink rate. Biotelem. Patient Monit. 5, 206–222 (1978).

    CAS  PubMed  Google Scholar 

  127. Doane, M. G. Interactions of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink. Am. J. Ophthalmol. 89, 507–516 (1980).

    Article  CAS  PubMed  Google Scholar 

  128. Guipponi, O., Odouard, S., Pinède, S., Wardak, C. & Ben Hamed, S. fMRI cortical correlates of spontaneous eye blinks in the nonhuman primate. Cereb. Cortex 25, 2333–2345 (2015).

    Article  PubMed  Google Scholar 

  129. Golan, T. et al. Human intracranial recordings link suppressed transients rather than ‘filling-in’ to perceptual continuity across blinks. eLife 5, e17243 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kern, M., Schulze-Bonhage, A. & Ball, T. Blink- and saccade-related suppression effects in early visual areas of the human brain: intracranial EEG investigations during natural viewing conditions. Neuroimage 230, 117788 (2021).

    Article  PubMed  Google Scholar 

  131. Blin, O., Masson, G., Azulay, J. P., Fondarai, J. & Serratrice, G. Apomorphine-induced blinking and yawning in healthy volunteers. Br. J. Clin. Pharmacol. 30, 769–773 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nakano, T. Blink-related dynamic switching between internal and external orienting networks while viewing videos. Neurosci. Res. 96, 54–58 (2015).

    Article  PubMed  Google Scholar 

  133. Holland, M. K. & Tarlow, G. Blinking and thinking. Percept. Mot. Skills 41, 503–506 (1975).

    Article  CAS  PubMed  Google Scholar 

  134. Slagter, H. A., Georgopoulou, K. & Frank, M. J. Spontaneous eye blink rate predicts learning from negative, but not positive, outcomes. Neuropsychologia 71, 126–132 (2015).

    Article  PubMed  Google Scholar 

  135. Jongkees, B. J. & Colzato, L. S. Spontaneous eye blink rate as predictor of dopamine-related cognitive function — a review. Neurosci. Biobehav. Rev. 71, 58–82 (2016).

    Article  PubMed  Google Scholar 

  136. Nakano, T., Kato, M., Morito, Y., Itoi, S. & Kitazawa, S. Blink-related momentary activation of the default mode network while viewing videos. Proc. Natl Acad. Sci. USA 110, 702–706 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Volkmann, F. C., Riggs, L. A. & Moore, R. K. Eyeblinks and visual suppression. Science 207, 900–902 (1980).

    Article  CAS  PubMed  Google Scholar 

  138. Hari, R., Salmellin, R., Tissari, S. O., Kajola, M. & Virsu, V. Visual stability during eyeblinks. Nature 367, 121–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  139. Bristow, D., Frith, C. & Rees, G. Two distinct neural effects of blinking on human visual processing. Neuroimage 27, 136–145 (2005).

    Article  PubMed  Google Scholar 

  140. Ranti, C., Jones, W., Klin, A. & Shultz, S. Blink rate patterns provide a reliable measure of individual engagement with scene content. Sci. Rep. 10, 8267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nakano, T., Yamamoto, Y., Kitajo, K., Takahashi, T. & Kitazawa, S. Synchronization of spontaneous eyeblinks while viewing video stories. Proc. Biol. Sci. 276, 3635–3644 (2009).

    PubMed  PubMed Central  Google Scholar 

  142. Hoppe, D., Helfmann, S. & Rothkopf, C. A. Humans quickly learn to blink strategically in response to environmental task demands. Proc. Natl Acad. Sci. USA 115, 2246–2251 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shultz, S., Klin, A. & Jones, W. Inhibition of eye blinking reveals subjective perceptions of stimulus salience. Proc. Natl Acad. Sci. USA 108, 21270–21275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Abeles, D., Amit, R., Tal-Perry, N., Carrasco, M. & Yuval-Greenberg, S. Oculomotor inhibition precedes temporally expected auditory targets. Nat. Commun. 11, 3524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bonfiglio, L. et al. Cortical source of blink-related delta oscillations and their correlation with levels of consciousness. Hum. Brain Mapp. 34, 2178–2189 (2013).

    Article  PubMed  Google Scholar 

  146. Bonfiglio, L. et al. Spectral parameters modulation and source localization of blink-related alpha and low-beta oscillations differentiate minimally conscious state from vegetative state/unresponsive wakefulness syndrome. PLoS ONE 9, e93252 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Magliacano, A. et al. Spontaneous eye blinking as a diagnostic marker in prolonged disorders of consciousness. Sci. Rep. 11, 22393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bonfiglio, L. et al. Spontaneous blinking behaviour in persistent vegetative and minimally conscious states: relationships with evolution and outcome. Brain Res. Bull. 68, 163–170 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Maffei, A. & Angrilli, A. Spontaneous eye blink rate: an index of dopaminergic component of sustained attention and fatigue. Int. J. Psychophysiol. 123, 58–63 (2018).

    Article  PubMed  Google Scholar 

  150. Jacobs, L., Feldman, M. & Bender, M. B. Eye movements during sleep. I. The pattern in the normal human. Arch. Neurol. 25, 151–159 (1971).

    Article  CAS  PubMed  Google Scholar 

  151. Zargari Marandi, R., Madeleine, P., Omland, O., Vuillerme, N. & Samani, A. Eye movement characteristics reflected fatigue development in both young and elderly individuals. Sci. Rep. 8, 13148 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Stern, J. A., Boyer, D. & Schroeder, D. Blink rate: a possible measure of fatigue. Hum. Factors 36, 285–297 (1994).

    Article  CAS  PubMed  Google Scholar 

  153. Barbato, G. et al. Effects of sleep deprivation on spontaneous eye blink rate and alpha EEG power. Biol. Psychiatry 38, 340–341 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Crevits, L., Simons, B. & Wildenbeest, J. Effect of sleep deprivation on saccades and eyelid blinking. Eur. Neurol. 50, 176–180 (2003).

    Article  PubMed  Google Scholar 

  155. Ponder, E. & Kennedy, W. P. On the act of blinking. Q. J. Exp. Physiol. 18, 89–198 (1927).

    Article  Google Scholar 

  156. Nakano, T. & Miyazaki, Y. Blink synchronization is an indicator of interest while viewing videos. Int. J. Psychophysiol. 135, 1–11 (2019).

    Article  PubMed  Google Scholar 

  157. Smilek, D., Carriere, J. S. & Cheyne, J. A. Out of mind, out of sight: eye blinking as indicator and embodiment of mind wandering. Psychol. Sci. 21, 786–789 (2010).

    Article  PubMed  Google Scholar 

  158. Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, H., Anderson, N. C. & Miller, K. F. Refixation patterns of mind-wandering during real-world scene perception. J. Exp. Psychol. Hum. Percept. Perform. 47, 36–52 (2021).

    Article  PubMed  Google Scholar 

  160. Tebecis, A. K. & Provins, K. A. Hypnosis and eye movements. Biol. Psychol. 3, 31–47 (1975).

    Article  CAS  PubMed  Google Scholar 

  161. Brych, M., Murali, S. & Handel, B. The role of blinks, microsaccades and their retinal consequences in bistable motion perception. Front. Psychol. 12, 647256 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ito, J. et al. Perceptual switching, eye movements, and the bus paradox. Perception 32, 681–698 (2003).

    Article  PubMed  Google Scholar 

  163. Kalisvaart, J. P. & Goossens, J. Influence of retinal image shifts and extra-retinal eye movement signals on binocular rivalry alternations. PLoS ONE 8, e61702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Murali, S. & Händel, B. Spontaneous eye blinks map the probability of perceptual reinterpretation during visual and auditory ambiguity. Cogn. Sci. 48, e13414 (2024).

    Article  PubMed  Google Scholar 

  165. Bonneh, Y. S., Adini, Y. & Polat, U. Contrast sensitivity revealed by spontaneous eyeblinks: evidence for a common mechanism of oculomotor inhibition. J. Vis. 16, 1–15 (2016).

    Article  PubMed  Google Scholar 

  166. Paparella, G. et al. Painful stimulation increases spontaneous blink rate in healthy subjects. Sci. Rep. 10, 20014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bradley, M. M., Codispoti, M., Cuthbert, B. N. & Lang, P. J. Emotion and motivation I: defensive and appetitive reactions in picture processing. Emotion 1, 276–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Hare, R., Wood, K., Britain, S. & Shadman, J. Autonomic responses to affective visual stimulation. Psychophysiology 7, 408–417 (1970).

    Article  CAS  PubMed  Google Scholar 

  169. Terhune, D. B., Sullivan, J. G. & Simola, J. M. Time dilates after spontaneous blinking. Curr. Biol. 26, R459–R460 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Rosenzweig, G. & Bonneh, Y. S. Familiarity revealed by involuntary eye movements on the fringe of awareness. Sci. Rep. 9, 3029 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Walcher, S., Korner, C. & Benedek, M. Looking for ideas: eye behavior during goal-directed internally focused cognition. Conscious. Cogn. 53, 165–175 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Annerer-Walcher, S., Korner, C., Beaty, R. E. & Benedek, M. Eye behavior predicts susceptibility to visual distraction during internally directed cognition. Atten. Percept. Psychophys. 82, 3432–3444 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Callara, A. L., Greco, A., Scilingo, E. P. & Bonfiglio, L. Neuronal correlates of eyeblinks are an expression of primary consciousness phenomena. Sci. Rep. 13, 12617 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Van Opstal, F., De Loof, E., Verguts, T. & Cleeremans, A. Spontaneous eyeblinks during breaking continuous flash suppression are associated with increased detection times. J. Vis. 16, 21 (2016).

    Article  PubMed  Google Scholar 

  175. Mahanama, B. et al. Eye movement and pupil measures: a review. Front. Comp. Sci. 3, 1–22 (2022).

    Google Scholar 

  176. Intoy, J. & Rucci, M. Finely tuned eye movements enhance visual acuity. Nat. Commun. 11, 795 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rucci, M., Iovin, R., Poletti, M. & Santini, F. Miniature eye movements enhance fine spatial detail. Nature 447, 851–854 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Pritchard, R. M. Stabilized images on the retina. Sci. Am. 204, 72–78 (1961).

    Article  CAS  PubMed  Google Scholar 

  179. Coiner, B. et al. Functional neuroanatomy of the human eye movement network: a review and atlas. Brain Struct. Funct. 224, 2603–2617 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Hafed, Z. M., Goffart, L. & Krauzlis, R. J. A neural mechanism for microsaccade generation in the primate superior colliculus. Science 323, 940–943 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bremmer, F., Kubischik, M., Hoffmann, K. P. & Krekelberg, B. Neural dynamics of saccadic suppression. J. Neurosci. 29, 12374–12383 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Golan, T. et al. Increasing suppression of saccade-related transients along the human visual hierarchy. eLife 6, e27819 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Sdoia, S., Conversi, D., Pecchinenda, A. & Ferlazzo, F. Access to consciousness of briefly presented visual events is modulated by transcranial direct current stimulation of left dorsolateral prefrontal cortex. Sci. Rep. 9, 10950 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Schall, J. D. The neural selection and control of saccades by the frontal eye field. Philos. Trans. R. Soc. Lond. B 357, 1073–1082 (2002).

    Article  Google Scholar 

  185. Rivaud, S., Müri, R. M., Gaymard, B., Vermersch, A. I. & Pierrot-Deseilligny, C. Eye movement disorders after frontal eye field lesions in humans. Exp. Brain Res. 102, 110–120 (1994).

    Article  CAS  PubMed  Google Scholar 

  186. Ting, W. K., Perez Velazquez, J. L. & Cusimano, M. D. Eye movement measurement in diagnostic assessment of disorders of consciousness. Front. Neurol. 5, 137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Overbeek, B., Eilander, H., Lavrijsen, J. & Koopmans, R. Are visual functions diagnostic signs of the minimally conscious state? An integrative review. Brain Inj. 33, 234–234 (2019).

    Google Scholar 

  188. Yagi, T. & Baba, S. Evaluation of the brain-stem function by the auditory brain-stem response and the caloric vestibular reaction in comatose patient. Arch. Otorhinolaryngol. 238, 33–43 (1983).

    Article  CAS  PubMed  Google Scholar 

  189. Schlosser, H. G., Unterberg, A. & Clarke, A. Using video-oculography for galvanic evoked vestibulo-ocular monitoring in comatose patients. J. Neurosci. Methods 145, 127–131 (2005).

    Article  PubMed  Google Scholar 

  190. Trojano, L. et al. Quantitative assessment of visual behavior in disorders of consciousness. J. Neurol. 259, 1888–1895 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Giacino, J. T. & Kalmar, K. The vegetative and minimally conscious states: a comparison of clinical features and functional outcome. J. Head Trauma Rehab. 12, 36–51 (1997).

    Article  Google Scholar 

  192. Dolce, G. et al. Visual pursuit in the severe disorder of consciousness. J. Neurotrauma 28, 1149–1154 (2011).

    Article  PubMed  Google Scholar 

  193. Kallio, S., Hyönä, J., Revonsuo, A., Sikka, P. & Nummenmaa, L. The existence of a hypnotic state revealed by eye movements. PLoS ONE 6, e26374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Weitzenhoffer, A. M. Hypnosis and eye movements. I. Preliminary report on a possible slow eye movement correlate of hypnosis. Am. J. Clin. Hypn. 11, 221–227 (1969).

    Article  CAS  PubMed  Google Scholar 

  195. Lange, E. B., Zweck, F. & Sinn, P. Microsaccade-rate indicates absorption by music listening. Conscious. Cogn. 55, 59–78 (2017).

    Article  PubMed  Google Scholar 

  196. Hebbard, F. W. & Fischer, R. Effect of psilocybin, LSD, and mescaline on small, involuntary eye movements. Psychopharmacologia 9, 146–156 (1966).

    Article  CAS  PubMed  Google Scholar 

  197. Aserinsky, E. & Kleitman, N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118, 273–274 (1953).

    Article  CAS  PubMed  Google Scholar 

  198. Zils, E., Sprenger, A., Heide, W., Born, J. & Gais, S. Differential effects of sleep deprivation on saccadic eye movements. Sleep 28, 1109–1115 (2005).

    Article  PubMed  Google Scholar 

  199. De Gennaro, L., Ferrara, M., Curcio, G. & Bertini, M. Visual search performance across 40 h of continuous wakefulness: measures of speed and accuracy and relation with oculomotor performance. Physiol. Behav. 74, 197–204 (2001).

    Article  PubMed  Google Scholar 

  200. Di Stasi, L. L. et al. Microsaccade and drift dynamics reflect mental fatigue. Eur. J. Neurosci. 38, 2389–2398 (2013).

    Article  PubMed  Google Scholar 

  201. Di Stasi, L. L. et al. Towards a driver fatigue test based on the saccadic main sequence: a partial validation by subjective report data. Transp. Res. C. Emerg. Technol. 21, 122–133 (2012).

    Article  Google Scholar 

  202. Grace, P. M., Stanford, T., Gentgall, M. & Rolan, P. E. Utility of saccadic eye movement analysis as an objective biomarker to detect the sedative interaction between opioids and sleep deprivation in opioid-naive and opioid-tolerant populations. J. Psychopharmacol. 24, 1631–1640 (2010).

    Article  PubMed  Google Scholar 

  203. Scholes, C., McGraw, P. V., Nyström, M. & Roach, N. W. Fixational eye movements predict visual sensitivity. Proc. Biol. Sci. 282, 20151568 (2015).

    PubMed  PubMed Central  Google Scholar 

  204. Engbert, R. & Kliegl, R. Microsaccades uncover the orientation of covert attention. Vis. Res. 43, 1035–1045 (2003).

    Article  PubMed  Google Scholar 

  205. Pastukhov, A., Vonau, V., Stonkute, S. & Braun, J. Spatial and temporal attention revealed by microsaccades. Vis. Res. 85, 45–57 (2013).

    Article  PubMed  Google Scholar 

  206. Kaufmann, B. C. et al. Eyetracking during free visual exploration detects neglect more reliably than paper-pencil tests. Cortex 129, 223–235 (2020).

    Article  PubMed  Google Scholar 

  207. Ro, T., Rorden, C., Driver, J. & Rafal, R. Ipsilesional biases in saccades but not perception after lesions of the human inferior parietal lobule. J. Cogn. Neurosci. 13, 920–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  208. Laubrock, J., Engbert, R. & Kliegl, R. Fixational eye movements predict the perceived direction of ambiguous apparent motion. J. Vis. 8, 13.1–13.17 (2008).

    Article  PubMed  Google Scholar 

  209. Madelain, L. & Krauzlis, R. J. Pursuit of the ineffable: perceptual and motor reversals during the tracking of apparent motion. J. Vis. 3, 642–653 (2003).

    Article  PubMed  Google Scholar 

  210. Troncoso, X. G., Macknik, S. L., Otero-Millan, J. & Martinez-Conde, S. Microsaccades drive illusory motion in the enigma illusion. Proc. Natl Acad. Sci. USA 105, 16033–16038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Piras, A., Raffi, M., Persiani, M., Perazzolo, M. & Squatrito, S. Effect of heading perception on microsaccade dynamics. Behav. Brain Res. 312, 246–252 (2016).

    Article  PubMed  Google Scholar 

  212. Yarbus, A. L. Eye Movements and Vision (Plenum, 1967).

  213. Senzai, Y. & Scanziani, M. A cognitive process occurring during sleep is revealed by rapid eye movements. Science 377, 999–1004 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Herman, J. H. et al. Evidence for a directional correspondence between eye movements and dream imagery in REM sleep. Sleep 7, 52–63 (1984).

    Article  CAS  PubMed  Google Scholar 

  215. Dement, W. & Wolpert, E. A. The relation of eye movements, body motility, and external stimuli to dream content. J. Exp. Psychol. 55, 543–553 (1958).

    Article  CAS  PubMed  Google Scholar 

  216. Hobson, J. A., Goldfrank, F. & Snyder, F. Respiration and mental activity in sleep. J. Psychiatr. Res. 3, 79–90 (1965).

    Article  CAS  PubMed  Google Scholar 

  217. Gurtner, L. M., Hartmann, M. & Mast, F. W. Eye movements during visual imagery and perception show spatial correspondence but have unique temporal signatures. Cognition 210, 104597 (2021).

    Article  PubMed  Google Scholar 

  218. Brandt, S. A. & Stark, L. W. Spontaneous eye movements during visual imagery reflect the content of the visual scene. J. Cogn. Neurosci. 9, 27–38 (1997).

    Article  CAS  PubMed  Google Scholar 

  219. Totten, E. Eye movement during visual imagery. Comp. Psychol. Monogr. 11, 46 (1935).

    Google Scholar 

  220. Johansson, R., Holsanova, J. & Holmqvist, K. Pictures and spoken descriptions elicit similar eye movements during mental imagery, both in light and in complete darkness. Cogn. Sci. 30, 1053–1079 (2006).

    Article  PubMed  Google Scholar 

  221. Bonneh, Y. S., Adini, Y. & Polat, U. Contrast sensitivity revealed by microsaccades. J. Vis. 15, 11 (2015).

    Article  Google Scholar 

  222. Yu, G., Yang, M., Yu, P. & Dorris, M. C. Time compression of visual perception around microsaccades. J. Neurophysiol. 118, 416–424 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Morrone, M. C., Ross, J. & Burr, D. Saccadic eye movements cause compression of time as well as space. Nat. Neurosci. 8, 950–954 (2005).

    Article  CAS  PubMed  Google Scholar 

  224. Ross, J., Morrone, M. C. & Burr, D. C. Compression of visual space before saccades. Nature 386, 598–601 (1997).

    Article  CAS  PubMed  Google Scholar 

  225. Enoksson, P. Binocular rivalry and monocular dominance studied with optokinetic nystagmus. Acta Ophthalmol. 41, 544–563 (1963).

    Article  CAS  Google Scholar 

  226. White, A. L., Moreland, J. C. & Rolfs, M. Oculomotor freezing indicates conscious detection free of decision bias. J. Neurophysiol. 127, 571–585 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Kronemer, S. I. et al. Eye metrics are a marker of visual conscious awareness and neural processing in cerebral blindness. Preprint at bioRxiv https://doi.org/10.1101/2025.01.06.631506 (2025)

  228. White, A. L. & Rolfs, M. Oculomotor inhibition covaries with conscious detection. J. Neurophysiol. 116, 1507–1521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Badde, S., Myers, C. F., Yuval-Greenberg, S. & Carrasco, M. Oculomotor freezing reflects tactile temporal expectation and aids tactile perception. Nat. Commun. 11, 3341 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Schiff, N. D. Cognitive motor dissociation following severe brain injuries. JAMA Neurol. 72, 1413–1415 (2015).

    Article  PubMed  Google Scholar 

  231. Ekman, P. & Friesen, W. V. Detecting deception from the body or face. J. Personal. Soc. Psychol. 29, 288–298 (1974).

    Article  Google Scholar 

  232. Kapoustina, O., Echegaray-Benites, C. & Gélinas, C. Fluctuations in vital signs and behavioural responses of brain surgery patients in the intensive care unit: are they valid indicators of pain? J. Adv. Nurs. 70, 2562–2576 (2014).

    Article  PubMed  Google Scholar 

  233. Chatelle, C. et al. Assessment of nociception and pain in participants in an unresponsive or minimally conscious state after acquired brain injury: the relation between the coma recovery scale-revised and the nociception coma scale-revised. Arch. Phys. Med. Rehabil. 99, 1755–1762 (2018).

    Article  PubMed  Google Scholar 

  234. Gelinas, C. et al. Behaviors indicative of pain in brain-injured adult patients with different levels of consciousness in the Intensive care unit. J. Pain. Symptom Manag. 57, 761–773 (2019).

    Article  Google Scholar 

  235. Arbour, C. et al. Detecting pain in traumatic brain-injured patients with different levels of consciousness during common procedures in the ICU: typical or atypical behaviors? Clin. J. Pain 30, 960–969 (2014).

    Article  PubMed  Google Scholar 

  236. Roulin, M. J. & Ramelet, A. S. Behavioral changes in brain-injured critical care adults with different levels of consciousness during nociceptive stimulation: an observational study. Intensive Care Med. 40, 1115–1123 (2014).

    Article  PubMed  Google Scholar 

  237. Pincherle, A. et al. Motor behavior unmasks residual cognition in disorders of consciousness. Ann. Neurol. 85, 443–447 (2019).

    Article  PubMed  Google Scholar 

  238. Remi, J. et al. The crossed leg sign indicates a favorable outcome after severe stroke. Neurology 77, 1453–1456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Mélotte, E. et al. Swallowing in individuals with disorders of consciousness: a cohort study. Ann. Phys. Rehabil. Med. 64, 101403 (2021).

    Article  PubMed  Google Scholar 

  240. Mat, B. et al. New behavioral signs of consciousness in patients with severe brain injuries. Semin. Neurol. 42, 259–272 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Ouellette, S. M. & Simpson, C. Monitoring for intraoperative-awareness. AORN J. 68, 950–961 (1998).

    Article  CAS  PubMed  Google Scholar 

  242. Darwin, C. The Expression of Emotions in Man and Animals (D. Appleton and Company, 1872).

  243. Takalkar, M., Xu, M., Wu, Q. & Chaczko, Z. A survey: facial micro-expression recognition. Multimed. Tools Appl. 77, 19301–19325 (2017).

    Article  Google Scholar 

  244. Lang, P. J., Greenwald, M. K., Bradley, M. M. & Hamm, A. O. Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261–273 (1993).

    Article  CAS  PubMed  Google Scholar 

  245. Wolf, K. et al. The facial pattern of disgust, appetence, excited joy and relaxed joy: an improved facial EMG study. Scand. J. Psychol. 46, 403–409 (2005).

    Article  PubMed  Google Scholar 

  246. Rudokaite, J., Ertugrul, I. O., Ong, S., Janssen, M. P. & Huis In ‘t Veld, E. Predicting vasovagal reactions to needles from facial action units. J. Clin. Med. 12, 1644 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Schwartz, G. E., Brown, S. L. & Ahern, G. L. Facial muscle patterning and subjective experience during affective imagery: sex differences. Psychophysiology 17, 75–82 (1980).

    Article  CAS  PubMed  Google Scholar 

  248. Fridlund, A. J., Schwartz, G. E. & Fowler, S. C. Pattern recognition of self-reported emotional state from multiple-site facial EMG activity during affective imagery. Psychophysiology 21, 622–637 (1984).

    Article  CAS  PubMed  Google Scholar 

  249. Witvliet, C. V. & Vrana, S. R. Psychophysiological responses as indices of affective dimensions. Psychophysiology 32, 436–443 (1995).

    Article  CAS  PubMed  Google Scholar 

  250. Schwartz, G. E., Fair, P. L., Salt, P., Mandel, M. R. & Klerman, G. L. Facial muscle patterning to affective imagery in depressed and nondepressed subjects. Science 192, 489–491 (1976).

    Article  CAS  PubMed  Google Scholar 

  251. Raduga, M. ‘I love you’: the first phrase detected from dreams. Sleep Sci. 15, 149–157 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Raduga, M. Detecting lucid dreams only by submentalis electromyography. Sleep Med. 88, 221–230 (2021).

    Article  PubMed  Google Scholar 

  253. McGuigan, F. J. & Tanner, R. G. Covert oral behavior during conversational and visual dreams. Psychon. Sci. 23, 263–264 (1971).

    Article  Google Scholar 

  254. Shimizu, A. & Inoue, T. Dreamed speech and speech muscle activity. Psychophysiology 23, 210–214 (1986).

    Article  CAS  PubMed  Google Scholar 

  255. Fenwick, P. et al. Lucid dreaming: correspondence between dreamed and actual events in one subject during REM sleep. Biol. Psychol. 18, 243–252 (1984).

    Article  CAS  PubMed  Google Scholar 

  256. Gardner, R. Jr., Grossman, W. I., Roffwarg, H. P. & Weiner, H. The relationship of small limb movements during REM sleep to dreamed limb action. Psychosom. Med. 37, 147–159 (1975).

    Article  PubMed  Google Scholar 

  257. Wolpert, E. A. Studies in psychophysiology of dreams. II. An electromyographic study of dreaming. AMA Arch. Gen. Psychiatry 2, 231–241 (1960).

    Article  CAS  PubMed  Google Scholar 

  258. Shepard, R. N. & Metzler, J. Mental rotation of three-dimensional objects. Science 171, 701–703 (1971).

    Article  CAS  PubMed  Google Scholar 

  259. Libet, B. The neural time factor in conscious and unconscious events. Ciba Found. Symp. 174, 123–137 (1993).

    CAS  PubMed  Google Scholar 

  260. Cederblad, A. M. H., Visokomogilski, A., Andersen, S. K., MacLeod, M. J. & Sahraie, A. Conscious awareness modulates processing speed in the redundant signal effect. Exp. Brain Res. 239, 1877–1893 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Ben-Haim, M. S. et al. Disentangling perceptual awareness from nonconscious processing in rhesus monkeys (Macaca mulatta). Proc. Natl Acad. Sci. USA 118, e2017543118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Wilson, S. A note on an associated movement of the eyes and ears in man. Rev. Neurol. Psychiatry 6, 331–336 (1908).

    Google Scholar 

  263. Strauss, D. J. et al. Vestigial auriculomotor activity indicates the direction of auditory attention in humans. eLife 9, e54536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Salameh, C., Perchet, C., Hagiwara, K. & Garcia-Larrea, L. Sympathetic skin response as an objective tool to estimate stimulus-associated arousal in a human model of hyperalgesia. Neurophysiol. Clin. 52, 436–445 (2022).

    Article  PubMed  Google Scholar 

  265. Mangina, C. A. & Beuzeron-Mangina, J. H. Direct electrical stimulation of specific human brain structures and bilateral electrodermal activity. Int. J. Psychophysiol. 22, 1–8 (1996).

    Article  CAS  PubMed  Google Scholar 

  266. Boucsein, W. Electrodermal Activity 2nd edn (Springer, 2012).

  267. Altintop, C. G., Latifoğlu, F., Akin, A. K., İleri, R. & Yazar, M. A. Analysis of consciousness level using galvanic skin response during therapeutic effect. J. Med. Syst. 45, 1–12 (2020).

    Article  PubMed  Google Scholar 

  268. Daltrozzo, J. et al. Emotional electrodermal response in coma and other low-responsive patients. Neurosci. Lett. 475, 44–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  269. Salvato, G. et al. Autonomic responses to emotional linguistic stimuli and amplitude of low-frequency fluctuations predict outcome after severe brain injury. Neuroimage Clin. 28, 102356 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Reale, G. et al. The immediate effects of immersive virtual reality on autonomic nervous system function in patients with disorders of consciousness after severe acquired brain injury: a pilot study. J. Clin. Med. 12, 7639 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Luaute, J. et al. Electrodermal reactivity to emotional stimuli in healthy subjects and patients with disorders of consciousness. Ann. Phys. Rehabil. Med. 61, 401–406 (2018).

    Article  PubMed  Google Scholar 

  272. Storm, H. et al. Skin conductance correlates with perioperative stress. Acta Anaesthesiol. Scand. 46, 887–895 (2002).

    Article  CAS  PubMed  Google Scholar 

  273. Kurzová, A., Hess, L., Slíva, J. & Málek, J. Can changes in skin impedance be used to monitor sedation after midazolam and during recovery from anesthesia? Physiol. Res. 70, 265–272 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Storm, H., Shafiei, M., Myre, K. & Raeder, J. Palmar skin conductance compared to a developed stress score and to noxious and awakening stimuli on patients in anaesthesia. Acta Anaesthesiol. Scand. 49, 798–803 (2005).

    Article  CAS  PubMed  Google Scholar 

  275. Herlan, A., Ottenbacher, J., Schneider, J., Riemann, D. & Feige, B. Electrodermal activity patterns in sleep stages and their utility for sleep versus wake classification. J. Sleep Res. 28, 1–8 (2019).

    Article  Google Scholar 

  276. Lester, B. K., Burch, N. R. & Dossett, R. C. Nocturnal EEG-GSR profiles: the influence of presleep states. Psychophysiology 3, 238–248 (1967).

    Article  CAS  PubMed  Google Scholar 

  277. Johnson, L. C. & Lubin, A. Spontaneous electrodermal activity during waking and sleeping. Psychophysiology 3, 8–17 (1966).

    Article  CAS  PubMed  Google Scholar 

  278. Richter, C. P. The significance of changes in the electrical resistance of the body during sleep. Proc. Natl Acad. Sci. USA 12, 214–222 (1926).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Walrath, L. C. & Hamilton, D. W. Autonomic correlates of meditation and hypnosis. Am. J. Clin. Hypn. 17, 190–197 (1975).

    Article  CAS  PubMed  Google Scholar 

  280. Block, R. I., Ghoneim, M. M., Fowles, D. C., Kumar, V. & Pathak, D. Effects of a subanesthetic concentration of nitrous oxide on establishment, elicitation, and semantic and phonemic generalization of classically conditioned skin conductance responses. Pharmacol. Biochem. Behav. 28, 7–14 (1987).

    Article  CAS  PubMed  Google Scholar 

  281. Block, R. I., Ghoneim, M. M., Kumar, V. & Pathak, D. Psychedelic effects of a subanesthetic concentration of nitrous oxide. Anesth. Prog. 37, 271–276 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Loggia, M. L., Juneau, M. & Bushnell, C. M. Autonomic responses to heat pain: heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity. Pain 152, 592–598 (2011).

    Article  PubMed  Google Scholar 

  283. Ledowski, T. et al. Monitoring of skin conductance to assess postoperative pain intensity. Br. J. Anaesth. 97, 862–865 (2006).

    Article  CAS  PubMed  Google Scholar 

  284. Feinstein, B., Langton, J. N., Jameson, R. M. & Schiller, F. Experiments on pain referred from deep somatic tissues. J. Bone Joint Surg. Am. 36-A, 981–997 (1954).

    Article  CAS  PubMed  Google Scholar 

  285. Folkins, C. H., Lawson, K. D., Opton, E. M. Jr. & Lazarus, R. S. Desensitization and the experimental reduction of threat. J. Abnorm. Psychol. 73, 100–113 (1968).

    Article  CAS  PubMed  Google Scholar 

  286. Hoppe, J. M., Holmes, E. A. & Agren, T. Exploring the neural basis of fear produced by mental imagery: imaginal exposure in individuals fearful of spiders. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20190690 (2021).

    Article  PubMed  Google Scholar 

  287. Hauri, P. & Van de Castle, R. L. Psychophysiological parallels in dreams. Psychosom. Med. 35, 297–308 (1973).

    Article  CAS  PubMed  Google Scholar 

  288. He, W., Boesveldt, S., Delplanque, S., de Graaf, C. & de Wijk, R. A. Sensory-specific satiety: added insights from autonomic nervous system responses and facial expressions. Physiol. Behav. 170, 12–18 (2017).

    Article  CAS  PubMed  Google Scholar 

  289. Zaman, J., Van de Pavert, I., Van Oudenhove, L. & Van Diest, I. The use of stimulus perception to account for variability in skin conductance responses to interoceptive stimuli. Psychophysiology 57, e13494 (2020).

    Article  PubMed  Google Scholar 

  290. Vallar, G. & Ronchi, R. Somatoparaphrenia: a body delusion. A review of the neuropsychological literature. Exp. Brain Res. 192, 533–551 (2009).

    Article  PubMed  Google Scholar 

  291. Ramachandran, V. S., Rogers-Ramachandran, D. & Cobb, S. Touching the phantom limb. Nature 377, 489–490 (1995).

    Article  CAS  PubMed  Google Scholar 

  292. Gülbetekin, E. et al. Effects of right or left face stimulation on self and other perception in enfacement illusion. Soc. Neurosci. 16, 189–205 (2021).

    Article  PubMed  Google Scholar 

  293. Armel, K. C. & Ramachandran, V. S. Projecting sensations to external objects: evidence from skin conductance response. Proc. Biol. Sci. 270, 1499–1506 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Ocklenburg, S., Ruther, N., Peterburs, J., Pinnow, M. & Gunturkun, O. Laterality in the rubber hand illusion. Laterality 16, 174–187 (2011).

    Article  PubMed  Google Scholar 

  295. Palomo, P. et al. Subjective, behavioral, and physiological responses to the rubber hand illusion do not vary with age in the adult phase. Conscious. Cogn. 58, 90–96 (2018).

    Article  PubMed  Google Scholar 

  296. Moseley, G. L. et al. Psychologically induced cooling of a specific body part caused by the illusory ownership of an artificial counterpart. Proc. Natl Acad. Sci. USA 105, 13169–13173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Kammers, M. P. M., Rose, K. & Haggard, P. Feeling numb: temperature, but not thermal pain, modulates feeling of body ownership. Neuropsychologia 49, 1316–1321 (2011).

    Article  PubMed  Google Scholar 

  298. Ehrsson, H. H., Wiech, K., Weiskopf, N., Dolan, R. J. & Passingham, R. E. Threatening a rubber hand that you feel is yours elicits a cortical anxiety response. Proc. Natl Acad. Sci. USA 104, 9828–9833 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Williams, L. M. et al. Mapping the time course of nonconscious and conscious perception of fear: an integration of central and peripheral measures. Hum. Brain Mapp. 21, 64–74 (2004).

    Article  PubMed  Google Scholar 

  300. Scott, R. B., Minati, L., Dienes, Z., Critchley, H. D. & Seth, A. K. Detecting conscious awareness from involuntary autonomic responses. Conscious. Cogn. 20, 936–942 (2011).

    Article  PubMed  Google Scholar 

  301. Chuen, L., Sears, D. & McAdams, S. Psychophysiological responses to auditory change. Psychophysiology 53, 891–904 (2016).

    Article  PubMed  Google Scholar 

  302. Lapate, R. C., Rokers, B., Li, T. & Davidson, R. J. Nonconscious emotional activation colors first impressions: a regulatory role for conscious awareness. Psychol. Sci. 25, 349–357 (2014).

    Article  PubMed  Google Scholar 

  303. Wilms, L. & Oberfeld, D. Color and emotion: effects of hue, saturation, and brightness. Psychol. Res. 82, 896–914 (2018).

    Article  PubMed  Google Scholar 

  304. Zieliński, P. An arousal effect of colors saturation a study of self-reported ratings and electrodermal responses. J. Psychophysiol. 30, 9–16 (2016).

    Article  Google Scholar 

  305. Grossberg, J. M. & Wilson, H. K. Physiological changes accompanying the visualization of fearful and neutral situations. J. Personal. Soc. Psychol. 10, 124–133 (1968).

    Article  CAS  Google Scholar 

  306. Cortese, B. M. et al. Olfactory cue reactivity in nicotine-dependent adult smokers. Psychol. Addict. Behav. 29, 91–96 (2015).

    Article  PubMed  Google Scholar 

  307. Wicken, M., Keogh, R. & Pearson, J. The critical role of mental imagery in human emotion: insights from fear-based imagery and aphantasia. Proc. Biol. Sci. 288, 20210267 (2021).

    PubMed  PubMed Central  Google Scholar 

  308. Palma, J. A. & Benarroch, E. E. Neural control of the heart: recent concepts and clinical correlations. Neurology 83, 261–271 (2014).

    Article  PubMed  Google Scholar 

  309. Skora, L. I., Livermore, J. J. A. & Roelofs, K. The functional role of cardiac activity in perception and action. Neurosci. Biobehav. Rev. 137, 104655 (2022).

    Article  CAS  PubMed  Google Scholar 

  310. Baguley, I. J. et al. Dysautonomia after traumatic brain injury: a forgotten syndrome? J. Neurol. Neurosurg. Psychiatry 67, 39–43 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Riganello, F. et al. A heartbeat away from consciousness: heart rate variability entropy can discriminate disorders of consciousness and is correlated with resting-state fMRI brain connectivity of the central autonomic network. Front. Neurol. 9, 769 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Raimondo, F. et al. Brain–heart interactions reveal consciousness in noncommunicating patients. Ann. Neurol. 82, 578–591 (2017).

    Article  PubMed  Google Scholar 

  313. Sattin, D. et al. Analyzing the loss and the recovery of consciousness: functional connectivity patterns and changes in heart rate variability during propofol-induced anesthesia. Front. Syst. Neurosci. 15, 652080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Scheffer, G. J., Tenvoorde, B. J., Karemaker, J. M., Ros, H. H. & Delange, J. J. Effects of thiopentone, etomidate and propofol on beat-to-beat cardiovascular signals in man. Anaesthesia 48, 849–855 (1993).

    Article  CAS  PubMed  Google Scholar 

  315. Moerman, N., Bonke, B. & Oosting, J. Awareness and recall during general anesthesia. facts and feelings. Anesthesiology 79, 454–464 (1993).

    Article  CAS  PubMed  Google Scholar 

  316. DeBenedittis, G., Cigada, M., Bianchi, A., Signorini, M. G. & Cerutti, S. Autonomic changes during hypnosis: a heart rate variability power spectrum analysis as a marker of sympatho-vagal balance. Int. J. Clin. Exp. Hypn. 42, 140–152 (1994).

    Article  CAS  PubMed  Google Scholar 

  317. Oswald, V. et al. Autonomic nervous system modulation during self-induced non-ordinary states of consciousness. Sci. Rep. 13, 151811 (2023).

    Article  Google Scholar 

  318. Cauthen, N. R. & Prymak, C. A. Meditation versus relaxation: an examination of the physiological effects of relaxation training and of different levels of experience with transcendental meditation. J. Consult. Clin. Psychol. 45, 496–497 (1977).

    Article  CAS  PubMed  Google Scholar 

  319. Yüksel, R., Ozcan, O. & Dane, S. The effects of hypnosis on heart rate variability. Int. J. Clin. Exp. Hypn. 61, 162–171 (2013).

    Article  PubMed  Google Scholar 

  320. Uslu, T. et al. Cerebral blood flow evaluation during the hypnotic state with transcranial doppler sonography. Int. J. Clin. Exp. Hypn. 60, 81–87 (2012).

    Article  PubMed  Google Scholar 

  321. Somers, V. K., Dyken, M. E., Mark, A. L. & Abboud, F. M. Sympathetic-nerve activity during sleep in normal subjects. N. Engl. J. Med. 328, 303–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  322. Trinder, J. et al. Autonomic activity during human sleep as a function of time and sleep stage. J. Sleep Res. 10, 253–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  323. Gronfier, C., Simon, C., Piquard, F., Ehrhart, J. & Brandenberger, G. Neuroendocrine processes underlying ultradian sleep regulation in man. J. Clin. Endocrinol. Metab. 84, 2686–2690 (1999).

    Article  CAS  PubMed  Google Scholar 

  324. Chouchou, F. & Desseilles, M. Heart rate variability: a tool to explore the sleeping brain? Front. Neurosci. 8, 402 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  325. Brylowski, A., Levitan, L. & Laberge, S. H-Reflex suppression and autonomic activation during lucid rem-sleep: a case-study. Sleep 12, 374–378 (1989).

    Article  CAS  PubMed  Google Scholar 

  326. Nardelli, M. et al. Activation of brain–heart axis during REM sleep: a trigger for dreaming. Am. J. Physiol. Regul. Integr. Comp. Physiol. 321, R951–R959 (2021).

    Article  CAS  PubMed  Google Scholar 

  327. LaBerge, S., Levitan, L. & Dement, W. C. Lucid dreaming: physiological correlates of consciousness during REM sleep. J. Mind Behav. 7, 251–258 (1986).

    Google Scholar 

  328. Al, E. et al. Heart–brain interactions shape somatosensory perception and evoked potentials. Proc. Natl Acad. Sci. USA 117, 10575–10584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Walker, B. B. & Sandman, C. A. Visual evoked-potentials change as heart-rate and carotid pressure change. Psychophysiology 19, 520–527 (1982).

    Article  CAS  PubMed  Google Scholar 

  330. Sandman, C. A. Augmentation of the auditory event related potentials of the brain during diastole. Int. J. Psychophysiol. 2, 111–119 (1984).

    Article  CAS  PubMed  Google Scholar 

  331. Leupin, V. & Britz, J. Interoceptive signals shape the earliest markers and neural pathway to awareness at the visual threshold. Proc. Natl Acad. Sci. USA 121, e2311953121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Motyka, P. et al. Interactions between cardiac activity and conscious somatosensory perception. Psychophysiology 56, e13424 (2019).

    Article  PubMed  Google Scholar 

  333. Grund, M. et al. Respiration, heartbeat, and conscious tactile perception. J. Neurosci. 42, 643–656 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Sandman, C. A., McCanne, T. R., Kaiser, D. N. & Diamond, B. Heart rate and cardiac phase influences on visual perception. J. Comp. Physiol. Psychol. 91, 189–202 (1977).

    Article  CAS  PubMed  Google Scholar 

  335. Cobos, M. I., Guerra, P. M., Vila, J. & Chica, A. B. Heart-rate modulations reveal attention and consciousness interactions. Psychophysiology 56, e13295 (2019).

    Article  PubMed  Google Scholar 

  336. Salomon, R. et al. The insula mediates access to awareness of visual stimuli presented synchronously to the heartbeat. J. Neurosci. 36, 5115–5127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Dworkin, B. R. et al. Central effects of baroreceptor activation in humans: attenuation of skeletal reflexes and pain perception. Proc. Natl Acad. Sci. USA 91, 6329–6333 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Pramme, L., Larra, M. F., Schächinger, H. & Frings, C. Cardiac cycle time effects on mask inhibition. Biol. Psychol. 100, 115–121 (2014).

    Article  PubMed  Google Scholar 

  339. Burton, A. R., Birznieks, I., Bolton, P. S., Henderson, L. A. & Macefield, V. G. Effects of deep and superficial experimentally induced acute pain on muscle sympathetic nerve activity in human subjects. J. Physiol. 587, 183–193 (2009).

    Article  CAS  PubMed  Google Scholar 

  340. Kyle, B. N. & McNeil, D. W. Autonomic arousal and experimentally induced pain: a critical review of the literature. Pain Res. Manag. 19, 159–167 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  341. Burton, A. R., Brown, R. & Macefield, V. G. Selective activation of muscle and skin nociceptors does not trigger exaggerated sympathetic responses in spinal-injured subjects. Spinal Cord 46, 660–665 (2008).

    Article  CAS  PubMed  Google Scholar 

  342. Lang, P. J., Kozak, M. J., Miller, G. A., Levin, D. N. & McLean, A. Jr. Emotional imagery: conceptual structure and pattern of somato-visceral response. Psychophysiology 17, 179–192 (1980).

    Article  CAS  PubMed  Google Scholar 

  343. Wang, Y. & Morgan, W. P. The effect of imagery perspectives on the psychophysiological responses to imagined exercise. Behav. Brain Res. 52, 167–174 (1992).

    Article  CAS  PubMed  Google Scholar 

  344. Erlacher, D. & Schredl, M. Cardiovascular responses to dreamed physical exercise during REM lucid dreaming. Dreaming 18, 112–121 (2008).

    Article  Google Scholar 

  345. Decety, J., Jeannerod, M., Germain, M. & Pastene, J. Vegetative response during imagined movement is proportional to mental effort. Behav. Brain Res. 42, 1–5 (1991).

    Article  CAS  PubMed  Google Scholar 

  346. Park, H. D., Correia, S., Ducorps, A. & Tallon-Baudry, C. Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nat. Neurosci. 17, 612–618 (2014).

    Article  CAS  PubMed  Google Scholar 

  347. Sadeghi, S., Wittmann, M., De Rosa, E. & Anderson, A. K. Wrinkles in subsecond time perception are synchronized to the heart. Psychophysiology 60, e14270 (2023).

    Article  PubMed  Google Scholar 

  348. Ogden, R. S., Dobbins, C., Slade, K., McIntyre, J. & Fairclough, S. The psychophysiological mechanisms of real-world time experience. Sci. Rep. 12, 12890 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Schwarz, M. A., Winkler, I. & Sedlmeier, P. The heart beat does not make us tick: the impacts of heart rate and arousal on time perception. Atten. Percept. Psychophys. 75, 182–193 (2013).

    Article  PubMed  Google Scholar 

  350. Kralemann, B. et al. In vivo cardiac phase response curve elucidates human respiratory heart rate variability. Nat. Commun. 4, 2418 (2013).

    Article  PubMed  Google Scholar 

  351. Parviainen, T., Lyyra, P. & Nokia, M. S. Cardiorespiratory rhythms, brain oscillatory activity and cognition: review of evidence and proposal for significance. Neurosci. Biobehav. Rev. 142, 104908 (2022).

    Article  Google Scholar 

  352. Larsen, P. D., Tzeng, Y. C., Sin, P. Y. & Galletly, D. C. Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respir. Physiol. Neurobiol. 174, 111–118 (2010).

    Article  CAS  PubMed  Google Scholar 

  353. Kluger, D. S. et al. Modulatory dynamics of periodic and aperiodic activity in respiration–brain coupling. Nat. Commun. 14, 4699 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Allen, M., Varga, S. & Heck, D. H. Respiratory rhythms of the predictive mind. Psychol. Rev. 130, 1066–1080 (2023).

    Article  PubMed  Google Scholar 

  355. Kluger, D. S. & Gross, J. Respiration modulates oscillatory neural network activity at rest. PLoS Biol. 19, e3001457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Zelano, C. et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 36, 12448–12467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Yang, Q. et al. Smell-induced gamma oscillations in human olfactory cortex are required for accurate perception of odor identity. PLoS Biol. 20, 1–30 (2022).

    Article  Google Scholar 

  358. Perl, O. et al. Human non-olfactory cognition phase-locked with inhalation. Nat. Hum. Behav. 3, 501–512 (2019).

    Article  PubMed  Google Scholar 

  359. Laing, D. G. Natural sniffing gives optimum odour perception for humans. Perception 12, 99–117 (1983).

    Article  CAS  PubMed  Google Scholar 

  360. Sobel, N., Khan, R. M., Saltman, A., Sullivan, E. V. & Gabrieli, J. D. E. Olfaction — the world smells different to each nostril. Nature 402, 35–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  361. Solaz, J. et al. Drowsiness detection based on the analysis of breathing rate obtained from real-time image recognition. Transp. Res. Proc. 14, 3867–3876 (2016).

    Google Scholar 

  362. Kiashari, S. E. H., Nahvi, A., Homayounfard, A. & Bakhoda, H. Monitoring the variation in driver respiration rate from wakefulness to drowsiness: a non-instrusive method for drowsiness detection using thermal imaging. J. Sleep Sci. 3, 1–9 (2018).

    Google Scholar 

  363. Sattin, D. et al. Olfactory discrimination in disorders of consciousness: a new sniff protocol. Brain Behav. 9, e01273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  364. Arzi, A. et al. Olfactory sniffing signals consciousness in unresponsive patients with brain injuries. Nature 581, 428–433 (2020).

    Article  CAS  PubMed  Google Scholar 

  365. Charland-Verville, V. et al. Detection of response to command using voluntary control of breathing in disorders of consciousness. Front. Hum. Neurosci. 8, 1020 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  366. Plotkin, A. et al. Sniffing enables communication and environmental control for the severely disabled. Proc. Natl Acad. Sci. USA 107, 14413–14418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Douglas, N. J., White, D. P., Pickett, C. K., Weil, J. V. & Zwillich, C. W. Respiration during sleep in normal man. Thorax 37, 840–844 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Bulow, K. Respiration and wakefulness in man. Acta Physiol. Scand. Suppl. 209, 1–110 (1963).

    CAS  PubMed  Google Scholar 

  369. Trinder, J., Whitworth, F., Kay, A. & Wilkin, P. Respiratory instability during sleep onset. J. Appl. Physiol. 73, 2462–2469 (1992).

    Article  CAS  PubMed  Google Scholar 

  370. Saraswat, V. Effects of anaesthesia techniques and drugs on pulmonary function. Indian J. Anaesth. 59, 557–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Flexman, J. E., Demaree, R. G. & Simpson, D. D. Respiratory phase and visual signal-detection. Percept. Psychophys. 16, 337–339 (1974).

    Article  Google Scholar 

  372. Kluger, D. S., Balestrieri, E., Busch, N. A. & Gross, J. Respiration aligns perception with neural excitability. eLife 10, e70907 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Zaccaro, A., Perrucci, M. G., Parrotta, E., Costantini, M. & Ferri, F. Brain-heart interactions are modulated across the respiratory cycle via interoceptive attention. Neuroimage 262, 1–15 (2022).

    Article  Google Scholar 

  374. Molle, L. & Coste, A. The respiratory modulation of interoception. J. Neurophysiol. 127, 896–899 (2022).

    Article  PubMed  Google Scholar 

  375. Arsenault, M., Ladouceur, A., Lehmann, A., Rainville, P. & Piche, M. Pain modulation induced by respiration: phase and frequency effects. Neuroscience 252, 501–511 (2013).

    Article  CAS  PubMed  Google Scholar 

  376. Homma, I. & Masaoka, Y. Breathing rhythms and emotions. Exp. Physiol. 93, 1011–1021 (2008).

    Article  PubMed  Google Scholar 

  377. Gomez, P. & Danuser, B. Affective and physiological responses to environmental noises and music. Int. J. Psychophysiol. 53, 91–103 (2004).

    Article  PubMed  Google Scholar 

  378. Gomez, P., Stahel, W. A. & Danuser, B. Respiratory responses during affective picture viewing. Biol. Psychol. 67, 359–373 (2004).

    Article  PubMed  Google Scholar 

  379. Ogden, R. S., Henderson, J., Slade, K., McGlone, F. & Richter, M. The effect of increased parasympathetic activity on perceived duration. Conscious. Cogn. 76, 102829 (2019).

    Article  PubMed  Google Scholar 

  380. Mainland, J. & Sobel, N. The sniff is part of the olfactory percept. Chem. Senses 31, 181–196 (2006).

    Article  PubMed  Google Scholar 

  381. Masaoka, Y., Koiwa, N. & Homma, I. Inspiratory phase-locked alpha oscillation in human olfaction: source generators estimated by a dipole tracing method. J. Physiol. 566, 979–997 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Huijbers, W. et al. Respiration phase-locks to fast stimulus presentations: implications for the interpretation of posterior midline “deactivations”. Hum. Brain Mapp. 35, 4932–4943 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  383. Bocca, E., Antonelli, A. R. & Mosciaro, O. Mechanical co-factors in olfactory stimulation. Acta Oto-Laryngol. 59, 243–247 (1965).

    Article  Google Scholar 

  384. Leopold, D. Distortion of olfactory perception: diagnosis and treatment. Chem. Senses 27, 611–615 (2002).

    Article  PubMed  Google Scholar 

  385. Frank, R. A., Dulay, M. F. & Gesteland, R. C. Assessment of the sniff magnitude test as a clinical test of olfactory function. Physiol. Behav. 78, 195–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  386. Bensafi, M. et al. Olfactomotor activity during imagery mimics that during perception. Nat. Neurosci. 6, 1142–1144 (2003).

    Article  CAS  PubMed  Google Scholar 

  387. Bensafi, M., Pouliot, S. & Sobel, N. Odorant-specific patterns of sniffing during imagery distinguish ‘bad’ and ‘good’ olfactory imagers. Chem. Senses 30, 521–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  388. Oudiette, D. et al. Author correction: REM sleep respiratory behaviours match mental content in narcoleptic lucid dreamers. Sci. Rep. 8, 6128 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  389. Breivik, H. et al. Assessment of pain. Br. J. Anaesth. 101, 17–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  390. Daguet, I., Bouhassira, D. & Gronfier, C. Baseline pupil diameter is not a reliable biomarker of subjective sleepiness. Front. Neurol. 10, 108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  391. Cross, D. J. et al. Distinct neural circuits underlie assessment of a diversity of natural dangers by American crows. Proc. Biol. Sci. 280, 20131046 (2013).

    PubMed  PubMed Central  Google Scholar 

  392. Mott, R. O., Hawthorne, S. J. & McBride, S. D. Blink rate as a measure of stress and attention in the domestic horse (Equus caballus). Sci. Rep. 10, 21409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Ungurean, G., Martinez-Gonzalez, D., Massot, B., Libourel, P. A. & Rattenborg, N. C. Pupillary behavior during wakefulness, non-REM sleep, and REM sleep in birds is opposite that of mammals. Curr. Biol. 31, 5370–5376 (2021).

    Article  CAS  PubMed  Google Scholar 

  394. Pophale, A. et al. Wake-like skin patterning and neural activity during octopus sleep. Nature 619, 129–134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Medeiros, S. L. S. et al. Cyclic alternation of quiet and active sleep states in the octopus. iScience 24, 102223 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  396. Alamia, A., VanRullen, R., Pasqualotto, E., Mouraux, A. & Zenon, A. Pupil-linked arousal responds to unconscious surprisal. J. Neurosci. 39, 5369–5376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  397. Barbur, J. L., Weiskrantz, L. & Harlow, J. A. The unseen color aftereffect of an unseen stimulus: insight from blindsight into mechanisms of color afterimages. Proc. Natl Acad. Sci. USA 96, 11637–11641 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Harlan, G. C. Pupil reflex in absolute blindness. Trans. Am. Ophthalmol. Soc. 7, 671–677 (1896).

    CAS  PubMed  PubMed Central  Google Scholar 

  399. Weiskrantz, L., Cowey, A. & Le Mare, C. Learning from the pupil: a spatial visual channel in the absence of V1 in monkey and human. Brain 121, 1065–1072 (1998).

    Article  PubMed  Google Scholar 

  400. Abouleish, E. & Taylor, F. H. Effect of morphine–diazepam on signs of anesthesia, awareness, and dreams of patients under N2O for cesarean section. Anesth. Analg. 55, 702–705 (1976).

    Article  CAS  PubMed  Google Scholar 

  401. Arzi, A., Rozenkrantz, L., Holtzman, Y., Secundo, L. & Sobel, N. Sniffing patterns uncover implicit memory for undetected odors. Curr. Biol. 24, R263–R264 (2014).

    Article  CAS  PubMed  Google Scholar 

  402. McGinnies, E. Emotionality and perceptual defense. Psychol. Rev. 56, 244–251 (1949).

    Article  CAS  PubMed  Google Scholar 

  403. Dimberg, U., Thunberg, M. & Elmehed, K. Unconscious facial reactions to emotional facial expressions. Psychol. Sci. 11, 86–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  404. Wiemer, J., Gerdes, A. B. & Pauli, P. The effects of an unexpected spider stimulus on skin conductance responses and eye movements: an inattentional blindness study. Psychol. Res. 77, 155–166 (2013).

    Article  PubMed  Google Scholar 

  405. Chechko, N. et al. Progressively analogous evidence of covert face recognition from functional magnetic resonance imaging and skin conductance responses studies involving a patient with dissociative amnesia. Eur. J. Neurosci. 48, 1964–1975 (2018).

    Article  PubMed  Google Scholar 

  406. Tamietto, M. et al. Unseen facial and bodily expressions trigger fast emotional reactions. Proc. Natl Acad. Sci. USA 106, 17661–17666 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Gallegos-Ayala, G. et al. Brain communication in a completely locked-in patient using bedside near-infrared spectroscopy. Neurology 82, 1930–1932 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  408. Grujic, N., Polania, R. & Burdakov, D. Neurobehavioral meaning of pupil size. Neuron 112, 3381–3395 (2024).

    Article  CAS  PubMed  Google Scholar 

  409. Meissner, S. N. et al. Self-regulating arousal via pupil-based biofeedback. Nat. Hum. Behav. https://doi.org/10.1038/s41562-023-01729-z (2023).

  410. Rainey, S., Martin, S., Christen, A., Megevand, P. & Fourneret, E. Brain recording, mind-reading, and neurotechnology: ethical issues from consumer devices to brain-based speech decoding. Sci. Eng. Ethics 26, 2295–2311 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  411. Drew, L. Mind-reading machines are coming — how can we keep them in check? Nature 620, 18–19 (2023).

    Article  CAS  PubMed  Google Scholar 

  412. Mecacci, G. & Haselager, P. Identifying criteria for the evaluation of the implications of brain reading for mental privacy. Sci. Eng. Ethics 25, 443–461 (2019).

    Article  PubMed  Google Scholar 

  413. Istace, T. Neurorights: the debate about new legal safeguards to protect the mind. Issues Law Med. 37, 95–114 (2022).

    PubMed  Google Scholar 

  414. Sim, I. Mobile devices and health. N. Engl. J. Med. 381, 956–968 (2019).

    Article  PubMed  Google Scholar 

  415. Zheng, N. S. et al. Sleep patterns and risk of chronic disease as measured by long-term monitoring with commercial wearable devices in the all of us research program. Nat. Med. 30, 2648–2656 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Kronemer, S. I. et al. Cross-species real-time detection of trends in pupil size fluctuation. Behav. Res. Methods 57, 9 (2025).

    Article  Google Scholar 

  417. Meegan, D. V. Neuroimaging techniques for memory detection: scientific, ethical, and legal issues. Am. J. Bioeth. 8, 9–20 (2008).

    Article  PubMed  Google Scholar 

  418. Shao, D. D., Liu, C. B. & Tsow, F. Noncontact physiological measurement using a camera: a technical review and future directions. ACS Sens. 6, 321–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  419. Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366, 628–631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Gottschalk, L. A., Stone, W. N., Gleser, G. C. & Iacono, J. M. Anxiety levels in dreams: relation to changes in plasma free fatty acids. Science 153, 654–657 (1966).

    Article  CAS  PubMed  Google Scholar 

  421. Wooley, S. C. & Wooley, O. W. Salivation to the sight and thought of food: a new measure of appetite. Psychosom. Med. 35, 136–142 (1973).

    Article  CAS  PubMed  Google Scholar 

  422. Jenkins, G. N. & Dawes, C. The psychic flow of saliva in man. Arch. Oral. Biol. 11, 1203–1204 (1966).

    Article  CAS  PubMed  Google Scholar 

  423. Wilhelm, B., Jordan, M. & Birbaumer, N. Communication in locked-in syndrome: effects of imagery on salivary pH. Neurology 67, 534–535 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was made possible by support from the National Institute of Mental Health Intramural Research Program (ZIAMH002783). The authors thank members of the Section on Functional Imaging Methods for their constructive feedback. The views expressed in this article do not necessarily represent the views of the National Institutes of Health, the Department of Health and Human Services, or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

S.I.K. researched data for the article, provided a substantial contribution to discussion of its content, wrote the article and reviewed/edited the manuscript before submission. P.A.B. and J.G.-C. provided substantial contributions to discussion of the article’s content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Sharif I. Kronemer.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Nicholas Schiff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Conscious content

The subject or category of subjective experience; also called qualia, phenomenology or phenomenal experience.

Conscious level

The likelihood of being or becoming conscious, closely linked with the physiological states of arousal, alertness and vigilance.

Conscious state

The unique combination of conscious level and content characteristic of specific states of consciousness.

Covert measures of consciousness

Physiological signals linked to conscious level, state or content (for example, pupil size, eye movements and skin conductance).

Enabling factor of consciousness

Prerequisite or precursor physiological states (for example, arousal and attention) that facilitate consciousness. These factors are often necessary but not sufficient for consciousness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kronemer, S.I., Bandettini, P.A. & Gonzalez-Castillo, J. Sleuthing subjectivity: a review of covert measures of consciousness. Nat. Rev. Neurosci. 26, 476–496 (2025). https://doi.org/10.1038/s41583-025-00934-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00934-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing