Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sensory modality-specific wiring of thalamocortical circuits

Abstract

The thalamus is an essential element for sensory information processing, serving as a link between peripheral sensory stimuli and cortical circuits. Consequently, the development of thalamocortical (TC) projections has been a central focus in systems neuroscience. Although substantial progress has been made in understanding the mechanisms guiding thalamic axon navigation from the diencephalon to the cortex, our understanding of the processes underlying sensory modality specificity in TC circuits remains incomplete. Modern genomic, physiological and imaging approaches have yielded exciting results, providing novel insights into the specialization of visual, somatosensory and auditory TC circuits. Recent findings have shed light on the genetic and spontaneous activity mechanisms involved in the formation of distinct sensory modalities, rekindling the interest in the thalamus and opening new research perspectives on the development of this diencephalic structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct thalamic nuclei relay sensory modality-specific information to the corresponding sensory cortices.
Fig. 2: Thalamus formation and regionalization.
Fig. 3: The role of thalamic waves in sensory cortical map development.
Fig. 4: Thalamocortical axon navigation through the ventral telencephalon towards the cortex.
Fig. 5: Developmental switch from multimodal to unimodal configuration in sensory circuits.
Fig. 6: Thalamocortical plasticity.

Similar content being viewed by others

References

  1. Halassa, M. M. The Thalamus (Cambridge Univ. Press, 2022).

  2. Rikhye, R. V., Gilra, A. & Halassa, M. M. Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nat. Neurosci. 21, 1753–1763 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Vertes, R. P., Linley, S. B., Groenewegen, H. J. & Witter, M. P. in The Rat Nervous System (ed. Paxinos, G.) 335–390 (Academic Press, 2015).

  4. Gezelius, H. & Lopez-Bendito, G. Thalamic neuronal specification and early circuit formation. Dev. Neurobiol. 77, 830–843 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. Jones, E. G. The Thalamus 2nd edn Vols 1 & 2 (Cambridge Univ. Press, 2007).

  6. Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Theyel, B. B., Llano, D. A. & Sherman, S. M. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat. Neurosci. 13, 84–88 (2010).

    Article  PubMed  CAS  Google Scholar 

  8. Sherman, S. M. & Guillery, R. W. Distinct functions for direct and transthalamic corticocortical connections. J. Neurophysiol. 106, 1068–1077 (2011).

    Article  PubMed  Google Scholar 

  9. Clascá, F., Rubio-Garrido, P. & Jabaudon, D. Unveiling the diversity of thalamocortical neuron subtypes. Eur. J. Neurosci. 35, 1524–1532 (2012).

    Article  PubMed  Google Scholar 

  10. Landisman, C. E. & Connors, B. W. VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Cereb. Cortex 17, 2853–2865 (2007).

    Article  PubMed  Google Scholar 

  11. Li, J., Bickford, M. E. & Guido, W. Distinct firing properties of higher order thalamic relay neurons. J. Neurophysiol. 90, 291–299 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. Vue, T. Y. et al. Characterization of progenitor domains in the developing mouse thalamus. J. Comp. Neurol. 505, 73–91 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. Phillips, J. W. et al. A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 1925–1935 (2019). This study provides compelling evidence that thalamocortical projections, irrespective of sensory modality, share a conserved molecular architecture. These findings suggest the existence of a fundamental, modality-independent organizational framework for thalamus-to-cortex communication, pointing to universal rules governing sensory information transfer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nagalski, A. et al. Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Struct. Funct. 221, 2493–2510 (2016).

    Article  PubMed  CAS  Google Scholar 

  15. Frangeul, L. et al. A cross-modal genetic framework for the development and plasticity of sensory pathways. Nature 538, 96–98 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. Govek, K. W. et al. Developmental trajectories of thalamic progenitors revealed by single-cell transcriptome profiling and Shh perturbation. Cell Rep. 41, 111768 (2022). By combining single-cell transcriptomics with Sonic hedgehog (Shh) pathway perturbation, this study maps developmental trajectories of thalamic progenitors, identifying distinct lineage trajectories and revealing how Shh signalling influences fate specification in the developing thalamus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lo Giudice, Q., Wagener, R. J., Abe, P., Frangeul, L. & Jabaudon, D. Developmental emergence of first- and higher-order thalamic neuron molecular identities. Development 151, dev202764 (2024). This study provides a systematic characterization of the developmental emergence of molecular identities distinguishing first-order and higher-order thalamic neurons, using single-cell transcriptomic profiling to reveal distinct gene expression programmes that define these classes and illuminating the temporal dynamics and lineage relationships underlying thalamic circuit specification.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gezelius, H. et al. Genetic labeling of nuclei-specific thalamocortical neurons reveals putative sensory-modality specific genes. Cereb. Cortex 27, 5054–5069 (2017).

    PubMed  Google Scholar 

  19. Bulfone, A. et al. Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J. Neurosci. 13, 3155–3172 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Echevarría, D., Vieira, C., Gimeno, L. & Martínez, S. Neuroepithelial secondary organizers and cell fate specification in the developing brain. Brain Res. Brain Res. Rev. 43, 179–191 (2003).

    Article  PubMed  Google Scholar 

  21. Puelles, L. Functional implications of the prosomeric brain model. Biomolecules 14, 331 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Puelles, L., Harrison, M., Paxinos, G. & Watson, C. A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci. 36, 570–578 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Puelles, L. & Rubenstein, J. L. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 26, 469–476 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. Hagemann, A. I. & Scholpp, S. The tale of the three brothers — Shh, Wnt, and Fgf during development of the thalamus. Front. Neurosci. 6, 76 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Vue, T. Y. et al. Sonic hedgehog signaling controls thalamic progenitor identity and nuclei specification in mice. J. Neurosci. 29, 4484–4497 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fode, C. et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hippenmeyer, S. et al. Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68, 695–709 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shi, W. et al. Ontogenetic establishment of order-specific nuclear organization in the mammalian thalamus. Nat. Neurosci. 20, 516–528 (2017). This study provides insight into how thalamic nuclei organization emerges from lineage-specific progenitor domains. By tracing clonal lineages in the embryonic thalamus, the authors demonstrate the critical role of ontogenetic patterns and progenitor fate decisions in shaping thalamic compartmentalization, uncovering a developmental blueprint for thalamic functional specialization.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wong, S. Z. H. et al. In vivo clonal analysis reveals spatiotemporal regulation of thalamic nucleogenesis. PLoS Biol. 16, e2005211 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Angevine, J. B. Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J. Comp. Neurol. 139, 129–187 (1970).

    Article  PubMed  Google Scholar 

  31. Guo, Q. & Li, J. Y. H. Defining developmental diversification of diencephalon neurons through single cell gene expression profiling. Development 146, dev174284 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang, L., Bluske, K. K., Dickel, L. K. & Nakagawa, Y. Basal progenitor cells in the embryonic mouse thalamus — their molecular characterization and the role of neurogenins and Pax6. Neural Dev. 6, 35 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Thor, S. Indirect neurogenesis in space and time. Nat. Rev. Neurosci. 25, 519–534 (2024).

    Article  PubMed  CAS  Google Scholar 

  34. Golding, B. et al. Retinal input directs the recruitment of inhibitory interneurons into thalamic visual circuits. Neuron 81, 1443 (2014). This study demonstrates that retinal activity guides the migration and integration of GABAergic interneurons into visual thalamic circuits. This input-dependent recruitment process underscores a key developmental principle: that afferent activity shapes both excitatory and inhibitory components of sensory pathways.

    Article  PubMed  CAS  Google Scholar 

  35. Herrero-Navarro, Á. et al. Astrocytes and neurons share region-specific transcriptional signatures that confer regional identity to neuronal reprogramming. Sci. Adv. 7, eabe8978 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Akdemir, E. S., Huang, A. Y. & Deneen, B. Astrocytogenesis: where, when, and how. F1000Res https://doi.org/10.12688/f1000research.22405.1 (2020).

  37. Moreno-Juan, V. et al. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat. Commun. 8, 14172 (2017). This study provides evidence that thalamic spontaneous calcium waves have a crucial role in modulating cortical area size and early sensory plasticity. Prior to any external sensory experience, these intrinsic waves regulate gene expression and connectivity patterns in the developing cortex, underscoring a fundamental pre-sensory role for thalamic signalling in neocortical organization.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Martini, F. J., Moreno-Juan, V., Filipchuk, A., Valdeolmillos, M. & Lopez-Bendito, G. Impact of thalamocortical input on barrel cortex development. Neuroscience 368, 246–255 (2018).

    Article  PubMed  CAS  Google Scholar 

  39. Martini, F. J., Guillamon-Vivancos, T., Moreno-Juan, V., Valdeolmillos, M. & Lopez-Bendito, G. Spontaneous activity in developing thalamic and cortical sensory networks. Neuron 109, 2519–2534 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Herrmann, K. & Shatz, C. J. Blockade of action potential activity alters initial arborization of thalamic axons within cortical layer 4. Proc. Natl Acad. Sci. USA 92, 11244–11248 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Uesaka, N., Hayano, Y., Yamada, A. & Yamamoto, N. Interplay between laminar specificity and activity-dependent mechanisms of thalamocortical axon branching. J. Neurosci. 27, 5215–5223 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mire, E. et al. Spontaneous activity regulates Robo1 transcription to mediate a switch in thalamocortical axon growth. Nat. Neurosci. 15, 1134–1143 (2012).

    Article  PubMed  CAS  Google Scholar 

  43. Yamamoto, N. & López-Bendito, G. Shaping brain connections through spontaneous neural activity. Eur. J. Neurosci. 35, 1595–1604 (2012).

    Article  PubMed  Google Scholar 

  44. Castillo-Paterna, M. et al. DCC functions as an accelerator of thalamocortical axonal growth downstream of spontaneous thalamic activity. EMBO Rep. 16, 851–862 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Antón-Bolaños, N. et al. Prenatal activity from thalamic neurons governs the emergence of functional cortical maps in mice. Science 364, 987–990 (2019). This work demonstrates that thalamic calcium waves have an instructive role in the columnar organization of the cortical somatosensory map, highlighting a direct link between spontaneous prenatal thalamic activity and the establishment of functional cortical maps.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cang, J. & Feldheim, D. A. Developmental mechanisms of topographic map formation and alignment. Annu. Rev. Neurosci. 36, 51–77 (2013).

    Article  PubMed  CAS  Google Scholar 

  47. Faust, T. E., Gunner, G. & Schafer, D. P. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat. Rev. Neurosci. 22, 657–673 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Fitzgibbon, T. Do first order and higher order regions of the thalamic reticular nucleus have different developmental timetables? Exp. Neurol. 204, 339–354 (2007).

    Article  PubMed  Google Scholar 

  49. Hanganu-Opatz, I. L. Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. Brain Res. Rev. 64, 160–176 (2010).

    Article  PubMed  Google Scholar 

  50. Molnar, Z., Luhmann, H. J. & Kanold, P. O. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 370, eabb2153 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. O’Donnell, P. & Grace, A. A. Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptom clusters. Schizophr. Bull. 24, 267–283 (1998).

    Article  PubMed  Google Scholar 

  52. Herrera, C. G. & Tarokh, L. A thalamocortical perspective on sleep spindle alterations in neurodevelopmental disorders. Curr. Sleep Med. Rep. 10, 103–118 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Benoit, L. J., Canetta, S. & Kellendonk, C. Thalamocortical development: a neurodevelopmental framework for schizophrenia. Biol. Psychiatry 92, 491–500 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. López-Bendito, G. & Molnár, Z. Thalamocortical development: how are we going to get there? Nat. Rev. Neurosci. 4, 276–289 (2003).

    Article  PubMed  Google Scholar 

  55. Khazipov, R., Minlebaev, M. & Valeeva, G. Early gamma oscillations. Neuroscience 250, 240–252 (2013).

    Article  PubMed  CAS  Google Scholar 

  56. Murata, Y. & Colonnese, M. T. An excitatory cortical feedback loop gates retinal wave transmission in rodent thalamus. eLife 5, e18816 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Minlebaev, M., Colonnese, M., Tsintsadze, T., Sirota, A. & Khazipov, R. Early γ oscillations synchronize developing thalamus and cortex. Science 334, 226–229 (2011).

    Article  PubMed  CAS  Google Scholar 

  58. Yang, J. W. et al. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. Cereb. Cortex 23, 1299–1316 (2013).

    Article  PubMed  Google Scholar 

  59. Murata, Y. & Colonnese, M. T. Thalamus controls development and expression of arousal states in visual cortex. J. Neurosci. 38, 8772–8786 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Golshani, P. et al. Internally mediated developmental desynchronization of neocortical network activity. J. Neurosci. 29, 10890–10899 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mizuno, H. et al. Patchwork-type spontaneous activity in neonatal barrel cortex layer 4 transmitted via thalamocortical projections. Cell Rep. 22, 123–135 (2018).

    Article  PubMed  CAS  Google Scholar 

  62. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gribizis, A. et al. Visual cortex gains independence from peripheral drive before eye opening. Neuron 104, 711–723 (2019). The authors show that at the beginning of the second postnatal week in mice — just before eye opening — the cortex becomes progressively less sensitive to retinal input, while retinal signal transfer to superior colliculus and thalamus remains unchanged. This suggests that intrinsic cortical activity overrides signals from the periphery as the cortex matures, allowing for a more complex processing of visual information.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Chatterjee, M. et al. Gbx2 regulates thalamocortical axon guidance by modifying the LIM and Robo codes. Development 139, 4633–4643 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Marcos-Mondéjar, P. et al. The lhx2 transcription factor controls thalamocortical axonal guidance by specific regulation of robo1 and robo2 receptors. J. Neurosci. 32, 4372–4385 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mallika, C., Guo, Q. & Li, J. Y. Gbx2 is essential for maintaining thalamic neuron identity and repressing habenular characters in the developing thalamus. Dev. Biol. 407, 26–39 (2015).

    Article  PubMed  CAS  Google Scholar 

  67. Ebisu, H., Iwai-Takekoshi, L., Fujita-Jimbo, E., Momoi, T. & Kawasaki, H. Foxp2 regulates identities and projection patterns of thalamic nuclei during development. Cereb. Cortex 27, 3648–3659 (2017).

    PubMed  Google Scholar 

  68. Gao, P. P. et al. Regulation of thalamic neurite outgrowth by the Eph ligand ephrin-A5: implications in the development of thalamocortical projections. Proc. Natl Acad. Sci. USA 95, 5329–5334 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mackarehtschian, K., Lau, C. K., Caras, I. & McConnell, S. K. Regional differences in the developing cerebral cortex revealed by ephrin-A5 expression. Cereb. Cortex 9, 601–610 (1999).

    Article  PubMed  CAS  Google Scholar 

  70. Uziel, D. et al. Miswiring of limbic thalamocortical projections in the absence of ephrin-A5. J. Neurosci. 22, 9352–9357 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Vanderhaeghen, P. et al. A mapping label required for normal scale of body representation in the cortex. Nat. Neurosci. 3, 358–365 (2000).

    Article  PubMed  CAS  Google Scholar 

  72. Takemoto, M. et al. Ephrin–B3–EphA4 interactions regulate the growth of specific thalamocortical axon populations in vitro. Eur. J. Neurosci. 16, 1168–1172 (2002).

    Article  PubMed  Google Scholar 

  73. Dufour, A. et al. Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39, 453–465 (2003).

    Article  PubMed  CAS  Google Scholar 

  74. Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Cabelli, R. J., Shelton, D. L., Segal, R. A. & Shatz, C. J. Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns. Neuron 19, 63–76 (1997).

    Article  PubMed  CAS  Google Scholar 

  76. Xu, B. et al. Cortical degeneration in the absence of neurotrophin signaling: dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron 26, 233–245 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. Jiao, Y. et al. A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo. Proc. Natl Acad. Sci. USA 108, 12131–12136 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lu, B., Nagappan, G. & Lu, Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 220, 223–250 (2014).

    Article  PubMed  CAS  Google Scholar 

  79. Park, H. & Poo, M. M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7–23 (2013).

    Article  PubMed  CAS  Google Scholar 

  80. Bortolotto, Z. A., Fitzjohn, S. M. & Collingridge, G. L. Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr. Opin. Neurobiol. 9, 299–304 (1999).

    Article  PubMed  CAS  Google Scholar 

  81. Hannan, A. J. et al. PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat. Neurosci. 4, 282–288 (2001).

    Article  PubMed  CAS  Google Scholar 

  82. Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).

    Article  PubMed  CAS  Google Scholar 

  83. Salichon, N. et al. Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J. Neurosci. 21, 884–896 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Matsumoto, N., Hoshiko, M., Sugo, N., Fukazawa, Y. & Yamamoto, N. Synapse-dependent and independent mechanisms of thalamocortical axon branching are regulated by neuronal activity. Dev. Neurobiol. 76, 323–336 (2016).

    Article  PubMed  Google Scholar 

  85. Kim, J. I. et al. Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway. Neuron 112, 4048–4059 (2024).

    Article  PubMed  CAS  Google Scholar 

  86. Golshani, P., Hutnick, L., Schweizer, F. & Fan, G. Conditional Dnmt1 deletion in dorsal forebrain disrupts development of somatosensory barrel cortex and thalamocortical long-term potentiation. Thalamus Relat. Syst. 3, 227–233 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Pumo, G. M., Kitazawa, T. & Rijli, F. M. Epigenetic and transcriptional regulation of spontaneous and sensory activity dependent programs during neuronal circuit development. Front. Neural Circuits 16, 911023 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Fetter-Pruneda, I. et al. Shifts in developmental timing, and not increased levels of experience-dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth. PLoS ONE 8, e54940 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Alchini, R. et al. Nucleocytoplasmic shuttling of histone deacetylase 9 controls activity-dependent thalamocortical axon branching. Sci. Rep. 7, 6024 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Mitrofanis, J. & Guillery, R. W. New views of the thalamic reticular nucleus in the adult and the developing brain. Trends Neurosci. 16, 240–245 (1993).

    Article  PubMed  CAS  Google Scholar 

  92. Métin, C. & Godement, P. The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons. J. Neurosci. 16, 3219–3235 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Molnár, Z., Adams, R. & Blakemore, C. Mechanisms underlying the early establishment of thalamocortical connections in the rat. J. Neurosci. 18, 5723–5745 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Braisted, J. E., Tuttle, R. & O’leary, D. D. Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. Dev. Biol. 208, 430–440 (1999).

    Article  PubMed  CAS  Google Scholar 

  95. Braisted, J. E. et al. Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection. J. Neurosci. 20, 5792–5801 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Tuttle, R., Nakagawa, Y., Johnson, J. E. & O’Leary, D. D. Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. Development 126, 1903–1916 (1999).

    Article  PubMed  CAS  Google Scholar 

  97. Garel, S., Marín, F., Grosschedl, R. & Charnay, P. Ebf1 controls early cell differentiation in the embryonic striatum. Development 126, 5285–5294 (1999).

    Article  PubMed  CAS  Google Scholar 

  98. Garel, S., Yun, K., Grosschedl, R. & Rubenstein, J. L. The early topography of thalamocortical projections is shifted in Ebf1 and Dlx1/2 mutant mice. Development 129, 5621–5634 (2002).

    Article  PubMed  CAS  Google Scholar 

  99. Marín, O., Baker, J., Puelles, L. & Rubenstein, J. L. Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development 129, 761–773 (2002).

    Article  PubMed  Google Scholar 

  100. López-Bendito, G. et al. Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125, 127–142 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Edwards, M. A., Yamamoto, M. & Caviness, V. S. Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience 36, 121–144 (1990).

    Article  PubMed  CAS  Google Scholar 

  102. Stoykova, A., Götz, M., Gruss, P. & Price, J. Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 124, 3765–3777 (1997).

    Article  PubMed  CAS  Google Scholar 

  103. Hartfuss, E., Galli, R., Heins, N. & Götz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30 (2001).

    Article  PubMed  CAS  Google Scholar 

  104. Carney, R. S. et al. Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system. J. Neurosci. 26, 11562–11574 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Molnár, Z. & Cordery, P. Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat. J. Comp. Neurol. 413, 1–25 (1999).

    Article  PubMed  Google Scholar 

  106. Chen, Y., Magnani, D., Theil, T., Pratt, T. & Price, D. J. Evidence that descending cortical axons are essential for thalamocortical axons to cross the pallial–subpallial boundary in the embryonic forebrain. PLoS ONE 7, e33105 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Molnár, Z. & Blakemore, C. How do thalamic axons find their way to the cortex? Trends Neurosci. 18, 389–397 (1995).

    Article  PubMed  Google Scholar 

  108. Hevner, R. F., Miyashita-Lin, E. & Rubenstein, J. L. Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other. J. Comp. Neurol. 447, 8–17 (2002).

    Article  PubMed  Google Scholar 

  109. Jones, L., López-Bendito, G., Gruss, P., Stoykova, A. & Molnár, Z. Pax6 is required for the normal development of the forebrain axonal connections. Development 129, 5041–5052 (2002).

    Article  PubMed  CAS  Google Scholar 

  110. López-Bendito, G., Chan, C. H., Mallamaci, A., Parnavelas, J. & Molnár, Z. Role of Emx2 in the development of the reciprocal connectivity between cortex and thalamus. J. Comp. Neurol. 451, 153–169 (2002).

    Article  PubMed  Google Scholar 

  111. Kanold, P. O. & Luhmann, H. J. The subplate and early cortical circuits. Annu. Rev. Neurosci. 33, 23–48 (2010).

    Article  PubMed  CAS  Google Scholar 

  112. Price, D. J., Aslam, S., Tasker, L. & Gillies, K. Fates of the earliest generated cells in the developing murine neocortex. J. Comp. Neurol. 377, 414–422 (1997).

    Article  PubMed  CAS  Google Scholar 

  113. Ghosh, A., Antonini, A., McConnell, S. K. & Shatz, C. J. Requirement for subplate neurons in the formation of thalamocortical connections. Nature 347, 179–181 (1990).

    Article  PubMed  CAS  Google Scholar 

  114. Ghosh, A. & Shatz, C. J. Involvement of subplate neurons in the formation of ocular dominance columns. Science 255, 1441–1443 (1992).

    Article  PubMed  CAS  Google Scholar 

  115. Kanold, P. O., Kara, P., Reid, R. C. & Shatz, C. J. Role of subplate neurons in functional maturation of visual cortical columns. Science 301, 521–525 (2003).

    Article  PubMed  CAS  Google Scholar 

  116. Ghosh, A. & Shatz, C. J. Pathfinding and target selection by developing geniculocortical axons. J. Neurosci. 12, 39–55 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Naegele, J. R., Jhaveri, S. & Schneider, G. E. Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster. J. Comp. Neurol. 277, 593–607 (1988).

    Article  PubMed  CAS  Google Scholar 

  118. Hanganu, I. L., Kilb, W. & Luhmann, H. J. Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J. Neurosci. 22, 7165–7176 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Herrmann, K., Antonini, A. & Shatz, C. J. Ultrastructural evidence for synaptic interactions between thalamocortical axons and subplate neurons. Eur. J. Neurosci. 6, 1729–1742 (1994).

    Article  PubMed  CAS  Google Scholar 

  120. Higashi, S., Molnár, Z., Kurotani, T. & Toyama, K. Prenatal development of neural excitation in rat thalamocortical projections studied by optical recording. Neuroscience 115, 1231–1246 (2002).

    Article  PubMed  CAS  Google Scholar 

  121. Hirsch, S. & Luhmann, H. J. Pathway-specificity in N-methyl-d-aspartate receptor-mediated synaptic inputs onto subplate neurons. Neuroscience 153, 1092–1102 (2008).

    Article  PubMed  CAS  Google Scholar 

  122. Catalano, S. M. & Shatz, C. J. Activity-dependent cortical target selection by thalamic axons. Science 281, 559–562 (1998). Using intracranial infusion of tetrodotoxin, the authors demonstrate for the first time that neuronal activity is required for thalamic axons to reach the visual cortex and become topographically organized.

    Article  PubMed  CAS  Google Scholar 

  123. Doyle, D. Z. et al. Chromatin remodeler Arid1a regulates subplate neuron identity and wiring of cortical connectivity. Proc. Natl Acad. Sci. USA 118, e2100686118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Yamamoto, N., Higashi, S. & Toyama, K. Stop and branch behaviors of geniculocortical axons: a time-lapse study in organotypic cocultures. J. Neurosci. 17, 3653–3663 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Yamamoto, N. et al. Characterization of factors regulating lamina-specific growth of thalamocortical axons. J. Neurobiol. 42, 56–68 (2000).

    Article  PubMed  CAS  Google Scholar 

  126. Yamamoto, N. Cellular and molecular basis for the formation of lamina-specific thalamocortical projections. Neurosci. Res. 42, 167–173 (2002).

    Article  PubMed  CAS  Google Scholar 

  127. Donoghue, M. J. & Rakic, P. Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J. Neurosci. 19, 5967–5979 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Donoghue, M. J. & Rakic, P. Molecular gradients and compartments in the embryonic primate cerebral cortex. Cereb. Cortex 9, 586–600 (1999).

    Article  PubMed  CAS  Google Scholar 

  129. Nakagawa, Y., Johnson, J. E. & O’Leary, D. D. Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J. Neurosci. 19, 10877–10885 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Miyashita-Lin, E. M., Hevner, R., Wassarman, K. M., Martinez, S. & Rubenstein, J. L. Early neocortical regionalization in the absence of thalamic innervation. Science 285, 906–909 (1999).

    Article  PubMed  CAS  Google Scholar 

  131. Gulisano, M., Broccoli, V., Pardini, C. & Boncinelli, E. Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur. J. Neurosci. 8, 1037–1050 (1996).

    Article  PubMed  CAS  Google Scholar 

  132. Stoykova, A. & Gruss, P. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J. Neurosci. 14, 1395–1412 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Bishop, K. M., Goudreau, G. & O’Leary, D. D. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–349 (2000).

    Article  PubMed  CAS  Google Scholar 

  134. Mallamaci, A., Muzio, L., Chan, C. H., Parnavelas, J. & Boncinelli, E. Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nat. Neurosci. 3, 679–686 (2000).

    Article  PubMed  CAS  Google Scholar 

  135. Clegg, J. M. et al. Pax6 is required intrinsically by thalamic progenitors for the normal molecular patterning of thalamic neurons but not the growth and guidance of their axons. Neural Dev. 10, 26 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Georgala, P. A., Carr, C. B. & Price, D. J. The role of Pax6 in forebrain development. Dev. Neurobiol. 71, 690–709 (2011).

    Article  PubMed  CAS  Google Scholar 

  137. Quintana-Urzainqui, I. et al. The role of the diencephalon in the guidance of thalamocortical axons in mice. Development 147, dev184523 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Liu, Q., Dwyer, N. D. & O’Leary, D. D. Differential expression of COUP-TFI, CHL1, and two novel genes in developing neocortex identified by differential display PCR. J. Neurosci. 20, 7682–7690 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Zhou, C., Tsai, S. Y. & Tsai, M. J. COUP-TFI: an intrinsic factor for early regionalization of the neocortex. Genes Dev. 15, 2054–2059 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Qiu, Y. et al. Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon. Proc. Natl Acad. Sci. USA 91, 4451–4455 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995).

    Article  PubMed  CAS  Google Scholar 

  142. Crossley, P. H., Martinez, S., Ohkubo, Y. & Rubenstein, J. L. Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 108, 183–206 (2001).

    Article  PubMed  CAS  Google Scholar 

  143. Grove, E. A., Tole, S., Limon, J., Yip, L. & Ragsdale, C. W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

    Article  PubMed  CAS  Google Scholar 

  144. Furuta, Y., Piston, D. W. & Hogan, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).

    Article  PubMed  CAS  Google Scholar 

  145. Shimamura, K., Hartigan, D. J., Martinez, S., Puelles, L. & Rubenstein, J. L. Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933 (1995).

    Article  PubMed  CAS  Google Scholar 

  146. Callejas-Marin, A. et al. Gli2-mediated Shh signaling is required for thalamocortical projection guidance. Front. Neuroanat. 16, 830758 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001).

    Article  PubMed  CAS  Google Scholar 

  148. Shimogori, T. & Grove, E. A. Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation. J. Neurosci. 25, 6550–6560 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Abe, P. et al. Intermediate progenitors facilitate intracortical progression of thalamocortical axons and interneurons through CXCL12 chemokine signaling. J. Neurosci. 35, 13053–13063 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Wagener, R. J. et al. Thalamocortical connections drive intracortical activation of functional columns in the mislaminated reeler somatosensory cortex. Cereb. Cortex 26, 820–837 (2016).

    PubMed  Google Scholar 

  151. Guillamón-Vivancos, T. et al. Input-dependent segregation of visual and somatosensory circuits in the mouse superior colliculus. Science 377, 845–850 (2022). This study uncovers a developmental role for perinatal retinal waves in the segregation of visual and somatosensory thalamocortical circuits, which initially emerge intermingled in the embryo. The earliest form of retinal waves induces a reconfiguration of superior colliculus circuits, ultimately leading to modality-specific cortical responses to peripheral stimuli.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Dupont, E., Hanganu, I. L., Kilb, W., Hirsch, S. & Luhmann, H. J. Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439, 79–83 (2006).

    Article  PubMed  CAS  Google Scholar 

  153. Singh, M. B., White, J. A., McKimm, E. J., Milosevic, M. M. & Antic, S. D. Mechanisms of spontaneous electrical activity in the developing cerebral cortex-mouse subplate zone. Cereb. Cortex 29, 3363–3379 (2019).

    Article  PubMed  Google Scholar 

  154. Luhmann, H. J., Kilb, W. & Hanganu-Opatz, I. L. Subplate cells: amplifiers of neuronal activity in the developing cerebral cortex. Front. Neuroanat. 3, 19 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Tolner, E. A., Sheikh, A., Yukin, A. Y., Kaila, K. & Kanold, P. O. Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J. Neurosci. 32, 692–702 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Kanold, P. O. & Shatz, C. J. Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron 51, 627–638 (2006).

    Article  PubMed  CAS  Google Scholar 

  157. Tuncdemir, S. N. et al. Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits. Neuron 89, 521–535 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Marques-Smith, A. et al. A transient translaminar GABAergic interneuron circuit connects thalamocortical recipient layers in neonatal somatosensory cortex. Neuron 89, 536–549 (2016). This study provides evidence that thalamic-recipient layer 5b somatostatin-positive interneurons establish early, transient reciprocal connections with layer 4 spiny stellate neurons, a process critical for proper thalamic engagement and the functional maturation of layer 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Dwivedi, D. et al. Metabotropic signaling within somatostatin interneurons controls transient thalamocortical inputs during development. Nat. Commun. 15, 5421 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Mizuno, H. et al. NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates. Neuron 82, 365–379 (2014).

    Article  PubMed  CAS  Google Scholar 

  161. De León Reyes, N. S. et al. Transient callosal projections of L4 neurons are eliminated for the acquisition of local connectivity. Nat. Commun. 10, 4549 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ibrahim, L. A. et al. Bottom-up inputs are required for establishment of top-down connectivity onto cortical layer 1 neurogliaform cells. Neuron 109, 3473–3485 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Chou, S. J. et al. Geniculocortical input drives genetic distinctions between primary and higher-order visual areas. Science 340, 1239–1242 (2013).

    Article  PubMed  CAS  Google Scholar 

  164. Vue, T. Y. et al. Thalamic control of neocortical area formation in mice. J. Neurosci. 33, 8442–8453 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Pouchelon, G. et al. Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature 511, 471–474 (2014).

    Article  PubMed  CAS  Google Scholar 

  166. Li, H. et al. Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron 79, 970–986 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Matsui, A. et al. BTBD3 controls dendrite orientation toward active axons in mammalian neocortex. Science 342, 1114–1118 (2013).

    Article  PubMed  CAS  Google Scholar 

  168. Young, T. R. et al. Thalamocortical control of cell-type specificity drives circuits for processing whisker-related information in mouse barrel cortex. Nat. Commun. 14, 6077 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Guillamon-Vivancos, T. et al. Distinct neocortical progenitor lineages fine-tune neuronal diversity in a layer-specific manner. Cereb. Cortex 29, 1121–1138 (2019).

    Article  PubMed  Google Scholar 

  170. Buchan, M. J. et al. Higher-order thalamocortical circuits are specified by embryonic cortical progenitor types in the mouse brain. Cell Rep. 43, 114157 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Blumberg, M. S., Coleman, C. M., Gerth, A. I. & McMurray, B. Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies. Curr. Biol. 23, 2100–2109 (2013).

    Article  PubMed  CAS  Google Scholar 

  172. Inácio, A. R., Nasretdinov, A., Lebedeva, J. & Khazipov, R. Sensory feedback synchronizes motor and sensory neuronal networks in the neonatal rat spinal cord. Nat. Commun. 7, 13060 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kennedy, H. J. New developments in understanding the mechanisms and function of spontaneous electrical activity in the developing mammalian auditory system. J. Assoc. Res. Otolaryngol. 13, 437–445 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Leighton, A. H. & Lohmann, C. The wiring of developing sensory circuits — from patterned spontaneous activity to synaptic plasticity mechanisms. Front. Neural Circuits 10, 71 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Wang, H. C. & Bergles, D. E. Spontaneous activity in the developing auditory system. Cell Tissue Res. 361, 65–75 (2015).

    Article  PubMed  CAS  Google Scholar 

  176. Geal-Dor, M., Freeman, S., Li, G. & Sohmer, H. Development of hearing in neonatal rats: air and bone conducted ABR thresholds. Hear. Res. 69, 236–242 (1993).

    Article  PubMed  CAS  Google Scholar 

  177. Blankenship, A. G. & Feller, M. B. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11, 18–29 (2010). This work provides a comparative study of patterned, spontaneous activity across several developing neural circuits and demonstrates that, despite differences in adult function and architecture, the activity patterns and the mechanisms generating them are remarkably similar across these circuits. The robustness of this conserved activity suggests that it has a crucial role in shaping neuronal connections during early development.

    Article  PubMed  CAS  Google Scholar 

  178. López-Bendito, G., Aníbal-Martínez, M. & Martini, F. J. Cross-modal plasticity in brains deprived of visual input before vision. Annu. Rev. Neurosci. 45, 471–489 (2022).

    Article  PubMed  Google Scholar 

  179. Cang, J. et al. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48, 797–809 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Burbridge, T. J. et al. Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors. Neuron 84, 1049–1064 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Dooley, J. C. & Krubitzer, L. A. Alterations in cortical and thalamic connections of somatosensory cortex following early loss of vision. J. Comp. Neurol. 527, 1675–1688 (2019).

    Article  PubMed  Google Scholar 

  182. Dye, C. A., Abbott, C. W. & Huffman, K. J. Bilateral enucleation alters gene expression and intraneocortical connections in the mouse. Neural Dev. 7, 5 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Izraeli, R. et al. Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour. Eur. J. Neurosci. 15, 693–712 (2002).

    Article  PubMed  Google Scholar 

  184. Karlen, S. J. & Krubitzer, L. Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain. Cereb. Cortex 19, 1360–1371 (2009).

    Article  PubMed  Google Scholar 

  185. Rhoades, R. W., Mooney, R. D. & Fish, S. E. A comparison of visual callosal organization in normal, bilaterally enucleated and congenitally anophthalmic mice. Exp. Brain Res. 56, 92–105 (1984).

    Article  PubMed  CAS  Google Scholar 

  186. Williams, A. L., Reese, B. E. & Jeffery, G. Role of retinal afferents in regulating growth and shape of the lateral geniculate nucleus. J. Comp. Neurol. 445, 269–277 (2002).

    Article  PubMed  Google Scholar 

  187. Dehay, C., Giroud, P., Berland, M., Killackey, H. & Kennedy, H. Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J. Comp. Neurol. 367, 70–89 (1996).

    Article  PubMed  CAS  Google Scholar 

  188. Sur, M., Garraghty, P. E. & Roe, A. W. Experimentally induced visual projections into auditory thalamus and cortex. Science 242, 1437–1441 (1988).

    Article  PubMed  CAS  Google Scholar 

  189. Hensch, T. K. Critical period mechanisms in developing visual cortex. Curr. Top. Dev. Biol. 69, 215–237 (2005).

    Article  PubMed  CAS  Google Scholar 

  190. Hooks, B. M. & Chen, C. Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron 56, 312–326 (2007).

    Article  PubMed  CAS  Google Scholar 

  191. Reh, R. K. et al. Critical period regulation across multiple timescales. Proc. Natl Acad. Sci. USA 117, 23242–23251 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Barkat, T. R., Polley, D. B. & Hensch, T. K. A critical period for auditory thalamocortical connectivity. Nat. Neurosci. 14, 1189–1194 (2011).

    Article  PubMed  CAS  Google Scholar 

  193. Erzurumlu, R. S. & Gaspar, P. Development and critical period plasticity of the barrel cortex. Eur. J. Neurosci. 35, 1540–1553 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Aníbal-Martínez, M. et al. A prenatal window for enhancing spatial resolution of cortical barrel maps. Nat. Commun. 16, 1955 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Sadato, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 (1996).

    Article  PubMed  CAS  Google Scholar 

  196. Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    Article  PubMed  CAS  Google Scholar 

  197. Belford, G. R. & Killackey, H. P. The development of vibrissae representation in subcortical trigeminal centers of the neonatal rat. J. Comp. Neurol. 188, 63–74 (1979).

    Article  PubMed  CAS  Google Scholar 

  198. Killackey, H. P. & Dawson, D. R. Expansion of the central Hindpaw representation following fetal forelimb removal in the rat. Eur. J. Neurosci. 1, 210–221 (1989).

    Article  PubMed  Google Scholar 

  199. Woolsey, T. A., Anderson, J. R., Wann, J. R. & Stanfield, B. B. Effects of early vibrissae damage on neurons in the ventrobasal (VB) thalamus of the mouse. J. Comp. Neurol. 184, 363–380 (1979).

    Article  PubMed  CAS  Google Scholar 

  200. Killackey, H. P., Belford, G., Ryugo, R. & Ryugo, D. K. Anomalous organization of thalamocortical projections consequent to vibrissae removal in the newborn rat and mouse. Brain Res. 104, 309–315 (1976).

    Article  PubMed  CAS  Google Scholar 

  201. Renier, N. et al. A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex. eLife 6, e23494 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Woolsey, T. A. & Wann, J. R. Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages. J. Comp. Neurol. 170, 53–66 (1976).

    Article  PubMed  CAS  Google Scholar 

  203. Hubel, D. H. & Wiesel, T. N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994–1002 (1963).

    Article  PubMed  CAS  Google Scholar 

  204. Craddock, R., Vasalauskaite, A., Ranson, A. & Sengpiel, F. Experience dependent plasticity of higher visual cortical areas in the mouse. Cereb. Cortex 33, 9303–9312 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Takahata, T. Development of ocular dominance columns across rodents and other species: revisiting the concept of critical period plasticity. Front. Neural Circuits 18, 1402700 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Allen, C. B., Celikel, T. & Feldman, D. E. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat. Neurosci. 6, 291–299 (2003).

    Article  PubMed  CAS  Google Scholar 

  207. Feldman, D. E. & Brecht, M. Map plasticity in somatosensory cortex. Science 310, 810–815 (2005). This study provides an overview of how somatosensory maps adapt to experience and injury, revealing that plasticity involves changes across multiple circuit levels, not just at individual synapses. The authors review evidence that cortical reorganization following sensory deprivation or stimulation entails rewiring across layers and columns, highlighting the distributed and dynamic mechanisms that underlie map refinement in the somatosensory cortex.

    Article  PubMed  CAS  Google Scholar 

  208. Petersen, C. C. The functional organization of the barrel cortex. Neuron 56, 339–355 (2007).

    Article  PubMed  CAS  Google Scholar 

  209. Foeller, E. & Feldman, D. E. Synaptic basis for developmental plasticity in somatosensory cortex. Curr. Opin. Neurobiol. 14, 89–95 (2004).

    Article  PubMed  CAS  Google Scholar 

  210. Goldreich, D. & Kanics, I. M. Performance of blind and sighted humans on a tactile grating detection task. Percept. Psychophys. 68, 1363–1371 (2006).

    Article  PubMed  Google Scholar 

  211. Renier, L. et al. Right occipital cortex activation correlates with superior odor processing performance in the early blind. PLoS ONE 8, e71907 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Röder, B. et al. Improved auditory spatial tuning in blind humans. Nature 400, 162–166 (1999).

    Article  PubMed  Google Scholar 

  213. Bavelier, D. & Neville, H. J. Cross-modal plasticity: where and how? Nat. Rev. Neurosci. 3, 443–452 (2002).

    Article  PubMed  CAS  Google Scholar 

  214. Lomber, S. G., Meredith, M. A. & Kral, A. Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat. Neurosci. 13, 1421–1427 (2010).

    Article  PubMed  CAS  Google Scholar 

  215. Zimmermann, M., Cusack, R., Bedny, M. & Szwed, M. Auditory areas are recruited for naturalistic visual meaning in early deaf people. Nat. Commun. 15, 8035 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Auer, E. T., Bernstein, L. E., Sungkarat, W. & Singh, M. Vibrotactile activation of the auditory cortices in deaf versus hearing adults. Neuroreport 18, 645–648 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Cardon, G. & Sharma, A. Somatosensory cross-modal reorganization in adults with age-related, early-stage hearing loss. Front. Hum. Neurosci. 12, 172 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Kozanian, O. O., Abbott, C. W. & Huffman, K. J. Rapid changes in cortical and subcortical brain regions after early bilateral enucleation in the mouse. PLoS ONE 10, e0140391 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Mezzera, C. & López-Bendito, G. Cross-modal plasticity in sensory deprived animal models: from the thalamocortical development point of view. J. Chem. Neuroanat. 75, 32–40 (2016).

    Article  PubMed  Google Scholar 

  220. Chabot, N. et al. Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants. Eur. J. Neurosci. 26, 2334–2348 (2007).

    Article  PubMed  Google Scholar 

  221. Rauschecker, J. P. & Korte, M. Auditory compensation for early blindness in cat cerebral cortex. J. Neurosci. 13, 4538–4548 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Abbott, C. W., Kozanian, O. O. & Huffman, K. J. The effects of lifelong blindness on murine neuroanatomy and gene expression. Front. Aging Neurosci. 7, 144 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Toldi, J., Farkas, T. & Völgyi, B. Neonatal enucleation induces cross-modal changes in the barrel cortex of rat. A behavioural and electrophysiological study. Neurosci. Lett. 167, 1–4 (1994).

    Article  PubMed  CAS  Google Scholar 

  224. Bronchti, G. et al. Auditory activation of ‘visual’ cortical areas in the blind mole rat (Spalax ehrenbergi). Eur. J. Neurosci. 16, 311–329 (2002).

    Article  PubMed  Google Scholar 

  225. Chabot, N. et al. Subcortical auditory input to the primary visual cortex in anophthalmic mice. Neurosci. Lett. 433, 129–134 (2008).

    Article  PubMed  CAS  Google Scholar 

  226. Karlen, S. J., Kahn, D. M. & Krubitzer, L. Early blindness results in abnormal corticocortical and thalamocortical connections. Neuroscience 142, 843–858 (2006).

    Article  PubMed  CAS  Google Scholar 

  227. Charbonneau, V., Laramée, M. E., Boucher, V., Bronchti, G. & Boire, D. Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice. Eur. J. Neurosci. 36, 2949–2963 (2012).

    Article  PubMed  Google Scholar 

  228. Olcese, U., Iurilli, G. & Medini, P. Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79, 579–593 (2013).

    Article  PubMed  CAS  Google Scholar 

  229. Sur, M. & Leamey, C. A. Development and plasticity of cortical areas and networks. Nat. Rev. Neurosci. 2, 251–262 (2001).

    Article  PubMed  CAS  Google Scholar 

  230. Lyckman, A. W. et al. Enhanced plasticity of retinothalamic projections in an ephrin-A2/A5 double mutant. J. Neurosci. 21, 7684–7690 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364, eaav2522 (2019). Using single-cell transcriptomics and lineage tracing, the authors show that apical progenitors in the developing cortex produce distinct neuron types in a temporally regulated sequence, driven by intrinsic gene expression programmes and epigenetic mechanisms. This temporal patterning is essential for generating the neuronal diversity required for proper cortical circuit formation.

    Article  PubMed  CAS  Google Scholar 

  232. Badia-I-Mompel, P. et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 24, 739–754 (2023).

    Article  PubMed  CAS  Google Scholar 

  233. Haghverdi, L. & Ludwig, L. S. Single-cell multi-omics and lineage tracing to dissect cell fate decision-making. Stem Cell Rep. 18, 13–25 (2023).

    Article  CAS  Google Scholar 

  234. Cadwell, C. R. et al. Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq. Nat. Protoc. 12, 2531–2553 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Dooley, J. C. & van der Heijden, M. E. More than a small brain: the importance of studying neural function during development. J. Neurosci. 44, e1367242024 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. O’Leary, D. D., Yates, P. A. & McLaughlin, T. Molecular development of sensory maps: representing sights and smells in the brain. Cell 96, 255–269 (1999).

    Article  PubMed  Google Scholar 

  238. Korematsu, K. & Redies, C. Restricted expression of cadherin-8 in segmental and functional subdivisions of the embryonic mouse brain. Dev. Dyn. 208, 178–189 (1997).

    Article  PubMed  CAS  Google Scholar 

  239. Inoue, T., Chisaka, O., Matsunami, H. & Takeichi, M. Cadherin-6 expression transiently delineates specific rhombomeres, other neural tube subdivisions, and neural crest subpopulations in mouse embryos. Dev. Biol. 183, 183–194 (1997).

    Article  PubMed  CAS  Google Scholar 

  240. Suzuki, S. C., Inoue, T., Kimura, Y., Tanaka, T. & Takeichi, M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell. Neurosci. 9, 433–447 (1997).

    Article  PubMed  CAS  Google Scholar 

  241. Nakagawa, Y. & O’Leary, D. D. Combinatorial expression patterns of LIM-homeodomain and other regulatory genes parcellate developing thalamus. J. Neurosci. 21, 2711–2725 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Engmann, A. K. et al. Neuronal subtype-specific growth cone and soma purification from mammalian CNS via fractionation and fluorescent sorting for subcellular analyses and spatial mapping of local transcriptomes and proteomes. Nat. Protoc. 17, 222–251 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Sherman, S. M. & Usrey, W. M. Transthalamic pathways for cortical function. J. Neurosci. 44, e0909242024 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-2021-ADG-101054313 SPONTSENSE), PID2021-127112NBI00 from the MCIN/AEI/10.13039/501100011033/ and ERDF ‘A way to make Europe’ and Generalitat Valenciana, Conselleria d’Educació, Universitats, i Ocupació (PROMETEO 2021/052) to G.L.-B. This work was also funded by the Spanish State Research Agency (AEI/10.13039/501100011033), through the ‘Severo Ochoa’ Center of Excellence grant to the IN (CEX2021-001165-S). T.G.-V. was supported by the ‘la Caixa’ Foundation (LCF/BQ/PR23/11980050).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for article, made substantial contributions to discussion of content and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Guillermina López-Bendito.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks C. Lohmann, who co-reviewed with D. Cabrera Garcia; Y. Nakagawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillamón-Vivancos, T., Aníbal-Martínez, M., Puche-Aroca, L. et al. Sensory modality-specific wiring of thalamocortical circuits. Nat. Rev. Neurosci. 26, 623–641 (2025). https://doi.org/10.1038/s41583-025-00945-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00945-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing