Abstract
The thalamus is an essential element for sensory information processing, serving as a link between peripheral sensory stimuli and cortical circuits. Consequently, the development of thalamocortical (TC) projections has been a central focus in systems neuroscience. Although substantial progress has been made in understanding the mechanisms guiding thalamic axon navigation from the diencephalon to the cortex, our understanding of the processes underlying sensory modality specificity in TC circuits remains incomplete. Modern genomic, physiological and imaging approaches have yielded exciting results, providing novel insights into the specialization of visual, somatosensory and auditory TC circuits. Recent findings have shed light on the genetic and spontaneous activity mechanisms involved in the formation of distinct sensory modalities, rekindling the interest in the thalamus and opening new research perspectives on the development of this diencephalic structure.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Halassa, M. M. The Thalamus (Cambridge Univ. Press, 2022).
Rikhye, R. V., Gilra, A. & Halassa, M. M. Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nat. Neurosci. 21, 1753–1763 (2018).
Vertes, R. P., Linley, S. B., Groenewegen, H. J. & Witter, M. P. in The Rat Nervous System (ed. Paxinos, G.) 335–390 (Academic Press, 2015).
Gezelius, H. & Lopez-Bendito, G. Thalamic neuronal specification and early circuit formation. Dev. Neurobiol. 77, 830–843 (2017).
Jones, E. G. The Thalamus 2nd edn Vols 1 & 2 (Cambridge Univ. Press, 2007).
Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).
Theyel, B. B., Llano, D. A. & Sherman, S. M. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat. Neurosci. 13, 84–88 (2010).
Sherman, S. M. & Guillery, R. W. Distinct functions for direct and transthalamic corticocortical connections. J. Neurophysiol. 106, 1068–1077 (2011).
Clascá, F., Rubio-Garrido, P. & Jabaudon, D. Unveiling the diversity of thalamocortical neuron subtypes. Eur. J. Neurosci. 35, 1524–1532 (2012).
Landisman, C. E. & Connors, B. W. VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Cereb. Cortex 17, 2853–2865 (2007).
Li, J., Bickford, M. E. & Guido, W. Distinct firing properties of higher order thalamic relay neurons. J. Neurophysiol. 90, 291–299 (2003).
Vue, T. Y. et al. Characterization of progenitor domains in the developing mouse thalamus. J. Comp. Neurol. 505, 73–91 (2007).
Phillips, J. W. et al. A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 1925–1935 (2019). This study provides compelling evidence that thalamocortical projections, irrespective of sensory modality, share a conserved molecular architecture. These findings suggest the existence of a fundamental, modality-independent organizational framework for thalamus-to-cortex communication, pointing to universal rules governing sensory information transfer.
Nagalski, A. et al. Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Struct. Funct. 221, 2493–2510 (2016).
Frangeul, L. et al. A cross-modal genetic framework for the development and plasticity of sensory pathways. Nature 538, 96–98 (2016).
Govek, K. W. et al. Developmental trajectories of thalamic progenitors revealed by single-cell transcriptome profiling and Shh perturbation. Cell Rep. 41, 111768 (2022). By combining single-cell transcriptomics with Sonic hedgehog (Shh) pathway perturbation, this study maps developmental trajectories of thalamic progenitors, identifying distinct lineage trajectories and revealing how Shh signalling influences fate specification in the developing thalamus.
Lo Giudice, Q., Wagener, R. J., Abe, P., Frangeul, L. & Jabaudon, D. Developmental emergence of first- and higher-order thalamic neuron molecular identities. Development 151, dev202764 (2024). This study provides a systematic characterization of the developmental emergence of molecular identities distinguishing first-order and higher-order thalamic neurons, using single-cell transcriptomic profiling to reveal distinct gene expression programmes that define these classes and illuminating the temporal dynamics and lineage relationships underlying thalamic circuit specification.
Gezelius, H. et al. Genetic labeling of nuclei-specific thalamocortical neurons reveals putative sensory-modality specific genes. Cereb. Cortex 27, 5054–5069 (2017).
Bulfone, A. et al. Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J. Neurosci. 13, 3155–3172 (1993).
Echevarría, D., Vieira, C., Gimeno, L. & Martínez, S. Neuroepithelial secondary organizers and cell fate specification in the developing brain. Brain Res. Brain Res. Rev. 43, 179–191 (2003).
Puelles, L. Functional implications of the prosomeric brain model. Biomolecules 14, 331 (2024).
Puelles, L., Harrison, M., Paxinos, G. & Watson, C. A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci. 36, 570–578 (2013).
Puelles, L. & Rubenstein, J. L. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 26, 469–476 (2003).
Hagemann, A. I. & Scholpp, S. The tale of the three brothers — Shh, Wnt, and Fgf during development of the thalamus. Front. Neurosci. 6, 76 (2012).
Vue, T. Y. et al. Sonic hedgehog signaling controls thalamic progenitor identity and nuclei specification in mice. J. Neurosci. 29, 4484–4497 (2009).
Fode, C. et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80 (2000).
Hippenmeyer, S. et al. Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68, 695–709 (2010).
Shi, W. et al. Ontogenetic establishment of order-specific nuclear organization in the mammalian thalamus. Nat. Neurosci. 20, 516–528 (2017). This study provides insight into how thalamic nuclei organization emerges from lineage-specific progenitor domains. By tracing clonal lineages in the embryonic thalamus, the authors demonstrate the critical role of ontogenetic patterns and progenitor fate decisions in shaping thalamic compartmentalization, uncovering a developmental blueprint for thalamic functional specialization.
Wong, S. Z. H. et al. In vivo clonal analysis reveals spatiotemporal regulation of thalamic nucleogenesis. PLoS Biol. 16, e2005211 (2018).
Angevine, J. B. Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J. Comp. Neurol. 139, 129–187 (1970).
Guo, Q. & Li, J. Y. H. Defining developmental diversification of diencephalon neurons through single cell gene expression profiling. Development 146, dev174284 (2019).
Wang, L., Bluske, K. K., Dickel, L. K. & Nakagawa, Y. Basal progenitor cells in the embryonic mouse thalamus — their molecular characterization and the role of neurogenins and Pax6. Neural Dev. 6, 35 (2011).
Thor, S. Indirect neurogenesis in space and time. Nat. Rev. Neurosci. 25, 519–534 (2024).
Golding, B. et al. Retinal input directs the recruitment of inhibitory interneurons into thalamic visual circuits. Neuron 81, 1443 (2014). This study demonstrates that retinal activity guides the migration and integration of GABAergic interneurons into visual thalamic circuits. This input-dependent recruitment process underscores a key developmental principle: that afferent activity shapes both excitatory and inhibitory components of sensory pathways.
Herrero-Navarro, Á. et al. Astrocytes and neurons share region-specific transcriptional signatures that confer regional identity to neuronal reprogramming. Sci. Adv. 7, eabe8978 (2021).
Akdemir, E. S., Huang, A. Y. & Deneen, B. Astrocytogenesis: where, when, and how. F1000Res https://doi.org/10.12688/f1000research.22405.1 (2020).
Moreno-Juan, V. et al. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat. Commun. 8, 14172 (2017). This study provides evidence that thalamic spontaneous calcium waves have a crucial role in modulating cortical area size and early sensory plasticity. Prior to any external sensory experience, these intrinsic waves regulate gene expression and connectivity patterns in the developing cortex, underscoring a fundamental pre-sensory role for thalamic signalling in neocortical organization.
Martini, F. J., Moreno-Juan, V., Filipchuk, A., Valdeolmillos, M. & Lopez-Bendito, G. Impact of thalamocortical input on barrel cortex development. Neuroscience 368, 246–255 (2018).
Martini, F. J., Guillamon-Vivancos, T., Moreno-Juan, V., Valdeolmillos, M. & Lopez-Bendito, G. Spontaneous activity in developing thalamic and cortical sensory networks. Neuron 109, 2519–2534 (2021).
Herrmann, K. & Shatz, C. J. Blockade of action potential activity alters initial arborization of thalamic axons within cortical layer 4. Proc. Natl Acad. Sci. USA 92, 11244–11248 (1995).
Uesaka, N., Hayano, Y., Yamada, A. & Yamamoto, N. Interplay between laminar specificity and activity-dependent mechanisms of thalamocortical axon branching. J. Neurosci. 27, 5215–5223 (2007).
Mire, E. et al. Spontaneous activity regulates Robo1 transcription to mediate a switch in thalamocortical axon growth. Nat. Neurosci. 15, 1134–1143 (2012).
Yamamoto, N. & López-Bendito, G. Shaping brain connections through spontaneous neural activity. Eur. J. Neurosci. 35, 1595–1604 (2012).
Castillo-Paterna, M. et al. DCC functions as an accelerator of thalamocortical axonal growth downstream of spontaneous thalamic activity. EMBO Rep. 16, 851–862 (2015).
Antón-Bolaños, N. et al. Prenatal activity from thalamic neurons governs the emergence of functional cortical maps in mice. Science 364, 987–990 (2019). This work demonstrates that thalamic calcium waves have an instructive role in the columnar organization of the cortical somatosensory map, highlighting a direct link between spontaneous prenatal thalamic activity and the establishment of functional cortical maps.
Cang, J. & Feldheim, D. A. Developmental mechanisms of topographic map formation and alignment. Annu. Rev. Neurosci. 36, 51–77 (2013).
Faust, T. E., Gunner, G. & Schafer, D. P. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat. Rev. Neurosci. 22, 657–673 (2021).
Fitzgibbon, T. Do first order and higher order regions of the thalamic reticular nucleus have different developmental timetables? Exp. Neurol. 204, 339–354 (2007).
Hanganu-Opatz, I. L. Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. Brain Res. Rev. 64, 160–176 (2010).
Molnar, Z., Luhmann, H. J. & Kanold, P. O. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 370, eabb2153 (2020).
O’Donnell, P. & Grace, A. A. Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptom clusters. Schizophr. Bull. 24, 267–283 (1998).
Herrera, C. G. & Tarokh, L. A thalamocortical perspective on sleep spindle alterations in neurodevelopmental disorders. Curr. Sleep Med. Rep. 10, 103–118 (2024).
Benoit, L. J., Canetta, S. & Kellendonk, C. Thalamocortical development: a neurodevelopmental framework for schizophrenia. Biol. Psychiatry 92, 491–500 (2022).
López-Bendito, G. & Molnár, Z. Thalamocortical development: how are we going to get there? Nat. Rev. Neurosci. 4, 276–289 (2003).
Khazipov, R., Minlebaev, M. & Valeeva, G. Early gamma oscillations. Neuroscience 250, 240–252 (2013).
Murata, Y. & Colonnese, M. T. An excitatory cortical feedback loop gates retinal wave transmission in rodent thalamus. eLife 5, e18816 (2016).
Minlebaev, M., Colonnese, M., Tsintsadze, T., Sirota, A. & Khazipov, R. Early γ oscillations synchronize developing thalamus and cortex. Science 334, 226–229 (2011).
Yang, J. W. et al. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. Cereb. Cortex 23, 1299–1316 (2013).
Murata, Y. & Colonnese, M. T. Thalamus controls development and expression of arousal states in visual cortex. J. Neurosci. 38, 8772–8786 (2018).
Golshani, P. et al. Internally mediated developmental desynchronization of neocortical network activity. J. Neurosci. 29, 10890–10899 (2009).
Mizuno, H. et al. Patchwork-type spontaneous activity in neonatal barrel cortex layer 4 transmitted via thalamocortical projections. Cell Rep. 22, 123–135 (2018).
Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).
Gribizis, A. et al. Visual cortex gains independence from peripheral drive before eye opening. Neuron 104, 711–723 (2019). The authors show that at the beginning of the second postnatal week in mice — just before eye opening — the cortex becomes progressively less sensitive to retinal input, while retinal signal transfer to superior colliculus and thalamus remains unchanged. This suggests that intrinsic cortical activity overrides signals from the periphery as the cortex matures, allowing for a more complex processing of visual information.
Chatterjee, M. et al. Gbx2 regulates thalamocortical axon guidance by modifying the LIM and Robo codes. Development 139, 4633–4643 (2012).
Marcos-Mondéjar, P. et al. The lhx2 transcription factor controls thalamocortical axonal guidance by specific regulation of robo1 and robo2 receptors. J. Neurosci. 32, 4372–4385 (2012).
Mallika, C., Guo, Q. & Li, J. Y. Gbx2 is essential for maintaining thalamic neuron identity and repressing habenular characters in the developing thalamus. Dev. Biol. 407, 26–39 (2015).
Ebisu, H., Iwai-Takekoshi, L., Fujita-Jimbo, E., Momoi, T. & Kawasaki, H. Foxp2 regulates identities and projection patterns of thalamic nuclei during development. Cereb. Cortex 27, 3648–3659 (2017).
Gao, P. P. et al. Regulation of thalamic neurite outgrowth by the Eph ligand ephrin-A5: implications in the development of thalamocortical projections. Proc. Natl Acad. Sci. USA 95, 5329–5334 (1998).
Mackarehtschian, K., Lau, C. K., Caras, I. & McConnell, S. K. Regional differences in the developing cerebral cortex revealed by ephrin-A5 expression. Cereb. Cortex 9, 601–610 (1999).
Uziel, D. et al. Miswiring of limbic thalamocortical projections in the absence of ephrin-A5. J. Neurosci. 22, 9352–9357 (2002).
Vanderhaeghen, P. et al. A mapping label required for normal scale of body representation in the cortex. Nat. Neurosci. 3, 358–365 (2000).
Takemoto, M. et al. Ephrin–B3–EphA4 interactions regulate the growth of specific thalamocortical axon populations in vitro. Eur. J. Neurosci. 16, 1168–1172 (2002).
Dufour, A. et al. Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39, 453–465 (2003).
Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).
Cabelli, R. J., Shelton, D. L., Segal, R. A. & Shatz, C. J. Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns. Neuron 19, 63–76 (1997).
Xu, B. et al. Cortical degeneration in the absence of neurotrophin signaling: dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron 26, 233–245 (2000).
Jiao, Y. et al. A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo. Proc. Natl Acad. Sci. USA 108, 12131–12136 (2011).
Lu, B., Nagappan, G. & Lu, Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 220, 223–250 (2014).
Park, H. & Poo, M. M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7–23 (2013).
Bortolotto, Z. A., Fitzjohn, S. M. & Collingridge, G. L. Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr. Opin. Neurobiol. 9, 299–304 (1999).
Hannan, A. J. et al. PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat. Neurosci. 4, 282–288 (2001).
Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).
Salichon, N. et al. Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J. Neurosci. 21, 884–896 (2001).
Matsumoto, N., Hoshiko, M., Sugo, N., Fukazawa, Y. & Yamamoto, N. Synapse-dependent and independent mechanisms of thalamocortical axon branching are regulated by neuronal activity. Dev. Neurobiol. 76, 323–336 (2016).
Kim, J. I. et al. Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway. Neuron 112, 4048–4059 (2024).
Golshani, P., Hutnick, L., Schweizer, F. & Fan, G. Conditional Dnmt1 deletion in dorsal forebrain disrupts development of somatosensory barrel cortex and thalamocortical long-term potentiation. Thalamus Relat. Syst. 3, 227–233 (2005).
Pumo, G. M., Kitazawa, T. & Rijli, F. M. Epigenetic and transcriptional regulation of spontaneous and sensory activity dependent programs during neuronal circuit development. Front. Neural Circuits 16, 911023 (2022).
Fetter-Pruneda, I. et al. Shifts in developmental timing, and not increased levels of experience-dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth. PLoS ONE 8, e54940 (2013).
Alchini, R. et al. Nucleocytoplasmic shuttling of histone deacetylase 9 controls activity-dependent thalamocortical axon branching. Sci. Rep. 7, 6024 (2017).
Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).
Mitrofanis, J. & Guillery, R. W. New views of the thalamic reticular nucleus in the adult and the developing brain. Trends Neurosci. 16, 240–245 (1993).
Métin, C. & Godement, P. The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons. J. Neurosci. 16, 3219–3235 (1996).
Molnár, Z., Adams, R. & Blakemore, C. Mechanisms underlying the early establishment of thalamocortical connections in the rat. J. Neurosci. 18, 5723–5745 (1998).
Braisted, J. E., Tuttle, R. & O’leary, D. D. Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. Dev. Biol. 208, 430–440 (1999).
Braisted, J. E. et al. Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection. J. Neurosci. 20, 5792–5801 (2000).
Tuttle, R., Nakagawa, Y., Johnson, J. E. & O’Leary, D. D. Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. Development 126, 1903–1916 (1999).
Garel, S., Marín, F., Grosschedl, R. & Charnay, P. Ebf1 controls early cell differentiation in the embryonic striatum. Development 126, 5285–5294 (1999).
Garel, S., Yun, K., Grosschedl, R. & Rubenstein, J. L. The early topography of thalamocortical projections is shifted in Ebf1 and Dlx1/2 mutant mice. Development 129, 5621–5634 (2002).
Marín, O., Baker, J., Puelles, L. & Rubenstein, J. L. Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development 129, 761–773 (2002).
López-Bendito, G. et al. Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125, 127–142 (2006).
Edwards, M. A., Yamamoto, M. & Caviness, V. S. Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience 36, 121–144 (1990).
Stoykova, A., Götz, M., Gruss, P. & Price, J. Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 124, 3765–3777 (1997).
Hartfuss, E., Galli, R., Heins, N. & Götz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30 (2001).
Carney, R. S. et al. Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system. J. Neurosci. 26, 11562–11574 (2006).
Molnár, Z. & Cordery, P. Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat. J. Comp. Neurol. 413, 1–25 (1999).
Chen, Y., Magnani, D., Theil, T., Pratt, T. & Price, D. J. Evidence that descending cortical axons are essential for thalamocortical axons to cross the pallial–subpallial boundary in the embryonic forebrain. PLoS ONE 7, e33105 (2012).
Molnár, Z. & Blakemore, C. How do thalamic axons find their way to the cortex? Trends Neurosci. 18, 389–397 (1995).
Hevner, R. F., Miyashita-Lin, E. & Rubenstein, J. L. Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other. J. Comp. Neurol. 447, 8–17 (2002).
Jones, L., López-Bendito, G., Gruss, P., Stoykova, A. & Molnár, Z. Pax6 is required for the normal development of the forebrain axonal connections. Development 129, 5041–5052 (2002).
López-Bendito, G., Chan, C. H., Mallamaci, A., Parnavelas, J. & Molnár, Z. Role of Emx2 in the development of the reciprocal connectivity between cortex and thalamus. J. Comp. Neurol. 451, 153–169 (2002).
Kanold, P. O. & Luhmann, H. J. The subplate and early cortical circuits. Annu. Rev. Neurosci. 33, 23–48 (2010).
Price, D. J., Aslam, S., Tasker, L. & Gillies, K. Fates of the earliest generated cells in the developing murine neocortex. J. Comp. Neurol. 377, 414–422 (1997).
Ghosh, A., Antonini, A., McConnell, S. K. & Shatz, C. J. Requirement for subplate neurons in the formation of thalamocortical connections. Nature 347, 179–181 (1990).
Ghosh, A. & Shatz, C. J. Involvement of subplate neurons in the formation of ocular dominance columns. Science 255, 1441–1443 (1992).
Kanold, P. O., Kara, P., Reid, R. C. & Shatz, C. J. Role of subplate neurons in functional maturation of visual cortical columns. Science 301, 521–525 (2003).
Ghosh, A. & Shatz, C. J. Pathfinding and target selection by developing geniculocortical axons. J. Neurosci. 12, 39–55 (1992).
Naegele, J. R., Jhaveri, S. & Schneider, G. E. Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster. J. Comp. Neurol. 277, 593–607 (1988).
Hanganu, I. L., Kilb, W. & Luhmann, H. J. Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J. Neurosci. 22, 7165–7176 (2002).
Herrmann, K., Antonini, A. & Shatz, C. J. Ultrastructural evidence for synaptic interactions between thalamocortical axons and subplate neurons. Eur. J. Neurosci. 6, 1729–1742 (1994).
Higashi, S., Molnár, Z., Kurotani, T. & Toyama, K. Prenatal development of neural excitation in rat thalamocortical projections studied by optical recording. Neuroscience 115, 1231–1246 (2002).
Hirsch, S. & Luhmann, H. J. Pathway-specificity in N-methyl-d-aspartate receptor-mediated synaptic inputs onto subplate neurons. Neuroscience 153, 1092–1102 (2008).
Catalano, S. M. & Shatz, C. J. Activity-dependent cortical target selection by thalamic axons. Science 281, 559–562 (1998). Using intracranial infusion of tetrodotoxin, the authors demonstrate for the first time that neuronal activity is required for thalamic axons to reach the visual cortex and become topographically organized.
Doyle, D. Z. et al. Chromatin remodeler Arid1a regulates subplate neuron identity and wiring of cortical connectivity. Proc. Natl Acad. Sci. USA 118, e2100686118 (2021).
Yamamoto, N., Higashi, S. & Toyama, K. Stop and branch behaviors of geniculocortical axons: a time-lapse study in organotypic cocultures. J. Neurosci. 17, 3653–3663 (1997).
Yamamoto, N. et al. Characterization of factors regulating lamina-specific growth of thalamocortical axons. J. Neurobiol. 42, 56–68 (2000).
Yamamoto, N. Cellular and molecular basis for the formation of lamina-specific thalamocortical projections. Neurosci. Res. 42, 167–173 (2002).
Donoghue, M. J. & Rakic, P. Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J. Neurosci. 19, 5967–5979 (1999).
Donoghue, M. J. & Rakic, P. Molecular gradients and compartments in the embryonic primate cerebral cortex. Cereb. Cortex 9, 586–600 (1999).
Nakagawa, Y., Johnson, J. E. & O’Leary, D. D. Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J. Neurosci. 19, 10877–10885 (1999).
Miyashita-Lin, E. M., Hevner, R., Wassarman, K. M., Martinez, S. & Rubenstein, J. L. Early neocortical regionalization in the absence of thalamic innervation. Science 285, 906–909 (1999).
Gulisano, M., Broccoli, V., Pardini, C. & Boncinelli, E. Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur. J. Neurosci. 8, 1037–1050 (1996).
Stoykova, A. & Gruss, P. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J. Neurosci. 14, 1395–1412 (1994).
Bishop, K. M., Goudreau, G. & O’Leary, D. D. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–349 (2000).
Mallamaci, A., Muzio, L., Chan, C. H., Parnavelas, J. & Boncinelli, E. Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nat. Neurosci. 3, 679–686 (2000).
Clegg, J. M. et al. Pax6 is required intrinsically by thalamic progenitors for the normal molecular patterning of thalamic neurons but not the growth and guidance of their axons. Neural Dev. 10, 26 (2015).
Georgala, P. A., Carr, C. B. & Price, D. J. The role of Pax6 in forebrain development. Dev. Neurobiol. 71, 690–709 (2011).
Quintana-Urzainqui, I. et al. The role of the diencephalon in the guidance of thalamocortical axons in mice. Development 147, dev184523 (2020).
Liu, Q., Dwyer, N. D. & O’Leary, D. D. Differential expression of COUP-TFI, CHL1, and two novel genes in developing neocortex identified by differential display PCR. J. Neurosci. 20, 7682–7690 (2000).
Zhou, C., Tsai, S. Y. & Tsai, M. J. COUP-TFI: an intrinsic factor for early regionalization of the neocortex. Genes Dev. 15, 2054–2059 (2001).
Qiu, Y. et al. Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon. Proc. Natl Acad. Sci. USA 91, 4451–4455 (1994).
Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995).
Crossley, P. H., Martinez, S., Ohkubo, Y. & Rubenstein, J. L. Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 108, 183–206 (2001).
Grove, E. A., Tole, S., Limon, J., Yip, L. & Ragsdale, C. W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).
Furuta, Y., Piston, D. W. & Hogan, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).
Shimamura, K., Hartigan, D. J., Martinez, S., Puelles, L. & Rubenstein, J. L. Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933 (1995).
Callejas-Marin, A. et al. Gli2-mediated Shh signaling is required for thalamocortical projection guidance. Front. Neuroanat. 16, 830758 (2022).
Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001).
Shimogori, T. & Grove, E. A. Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation. J. Neurosci. 25, 6550–6560 (2005).
Abe, P. et al. Intermediate progenitors facilitate intracortical progression of thalamocortical axons and interneurons through CXCL12 chemokine signaling. J. Neurosci. 35, 13053–13063 (2015).
Wagener, R. J. et al. Thalamocortical connections drive intracortical activation of functional columns in the mislaminated reeler somatosensory cortex. Cereb. Cortex 26, 820–837 (2016).
Guillamón-Vivancos, T. et al. Input-dependent segregation of visual and somatosensory circuits in the mouse superior colliculus. Science 377, 845–850 (2022). This study uncovers a developmental role for perinatal retinal waves in the segregation of visual and somatosensory thalamocortical circuits, which initially emerge intermingled in the embryo. The earliest form of retinal waves induces a reconfiguration of superior colliculus circuits, ultimately leading to modality-specific cortical responses to peripheral stimuli.
Dupont, E., Hanganu, I. L., Kilb, W., Hirsch, S. & Luhmann, H. J. Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439, 79–83 (2006).
Singh, M. B., White, J. A., McKimm, E. J., Milosevic, M. M. & Antic, S. D. Mechanisms of spontaneous electrical activity in the developing cerebral cortex-mouse subplate zone. Cereb. Cortex 29, 3363–3379 (2019).
Luhmann, H. J., Kilb, W. & Hanganu-Opatz, I. L. Subplate cells: amplifiers of neuronal activity in the developing cerebral cortex. Front. Neuroanat. 3, 19 (2009).
Tolner, E. A., Sheikh, A., Yukin, A. Y., Kaila, K. & Kanold, P. O. Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J. Neurosci. 32, 692–702 (2012).
Kanold, P. O. & Shatz, C. J. Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron 51, 627–638 (2006).
Tuncdemir, S. N. et al. Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits. Neuron 89, 521–535 (2016).
Marques-Smith, A. et al. A transient translaminar GABAergic interneuron circuit connects thalamocortical recipient layers in neonatal somatosensory cortex. Neuron 89, 536–549 (2016). This study provides evidence that thalamic-recipient layer 5b somatostatin-positive interneurons establish early, transient reciprocal connections with layer 4 spiny stellate neurons, a process critical for proper thalamic engagement and the functional maturation of layer 4.
Dwivedi, D. et al. Metabotropic signaling within somatostatin interneurons controls transient thalamocortical inputs during development. Nat. Commun. 15, 5421 (2024).
Mizuno, H. et al. NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates. Neuron 82, 365–379 (2014).
De León Reyes, N. S. et al. Transient callosal projections of L4 neurons are eliminated for the acquisition of local connectivity. Nat. Commun. 10, 4549 (2019).
Ibrahim, L. A. et al. Bottom-up inputs are required for establishment of top-down connectivity onto cortical layer 1 neurogliaform cells. Neuron 109, 3473–3485 (2021).
Chou, S. J. et al. Geniculocortical input drives genetic distinctions between primary and higher-order visual areas. Science 340, 1239–1242 (2013).
Vue, T. Y. et al. Thalamic control of neocortical area formation in mice. J. Neurosci. 33, 8442–8453 (2013).
Pouchelon, G. et al. Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature 511, 471–474 (2014).
Li, H. et al. Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron 79, 970–986 (2013).
Matsui, A. et al. BTBD3 controls dendrite orientation toward active axons in mammalian neocortex. Science 342, 1114–1118 (2013).
Young, T. R. et al. Thalamocortical control of cell-type specificity drives circuits for processing whisker-related information in mouse barrel cortex. Nat. Commun. 14, 6077 (2023).
Guillamon-Vivancos, T. et al. Distinct neocortical progenitor lineages fine-tune neuronal diversity in a layer-specific manner. Cereb. Cortex 29, 1121–1138 (2019).
Buchan, M. J. et al. Higher-order thalamocortical circuits are specified by embryonic cortical progenitor types in the mouse brain. Cell Rep. 43, 114157 (2024).
Blumberg, M. S., Coleman, C. M., Gerth, A. I. & McMurray, B. Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies. Curr. Biol. 23, 2100–2109 (2013).
Inácio, A. R., Nasretdinov, A., Lebedeva, J. & Khazipov, R. Sensory feedback synchronizes motor and sensory neuronal networks in the neonatal rat spinal cord. Nat. Commun. 7, 13060 (2016).
Kennedy, H. J. New developments in understanding the mechanisms and function of spontaneous electrical activity in the developing mammalian auditory system. J. Assoc. Res. Otolaryngol. 13, 437–445 (2012).
Leighton, A. H. & Lohmann, C. The wiring of developing sensory circuits — from patterned spontaneous activity to synaptic plasticity mechanisms. Front. Neural Circuits 10, 71 (2016).
Wang, H. C. & Bergles, D. E. Spontaneous activity in the developing auditory system. Cell Tissue Res. 361, 65–75 (2015).
Geal-Dor, M., Freeman, S., Li, G. & Sohmer, H. Development of hearing in neonatal rats: air and bone conducted ABR thresholds. Hear. Res. 69, 236–242 (1993).
Blankenship, A. G. & Feller, M. B. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11, 18–29 (2010). This work provides a comparative study of patterned, spontaneous activity across several developing neural circuits and demonstrates that, despite differences in adult function and architecture, the activity patterns and the mechanisms generating them are remarkably similar across these circuits. The robustness of this conserved activity suggests that it has a crucial role in shaping neuronal connections during early development.
López-Bendito, G., Aníbal-Martínez, M. & Martini, F. J. Cross-modal plasticity in brains deprived of visual input before vision. Annu. Rev. Neurosci. 45, 471–489 (2022).
Cang, J. et al. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48, 797–809 (2005).
Burbridge, T. J. et al. Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors. Neuron 84, 1049–1064 (2014).
Dooley, J. C. & Krubitzer, L. A. Alterations in cortical and thalamic connections of somatosensory cortex following early loss of vision. J. Comp. Neurol. 527, 1675–1688 (2019).
Dye, C. A., Abbott, C. W. & Huffman, K. J. Bilateral enucleation alters gene expression and intraneocortical connections in the mouse. Neural Dev. 7, 5 (2012).
Izraeli, R. et al. Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour. Eur. J. Neurosci. 15, 693–712 (2002).
Karlen, S. J. & Krubitzer, L. Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain. Cereb. Cortex 19, 1360–1371 (2009).
Rhoades, R. W., Mooney, R. D. & Fish, S. E. A comparison of visual callosal organization in normal, bilaterally enucleated and congenitally anophthalmic mice. Exp. Brain Res. 56, 92–105 (1984).
Williams, A. L., Reese, B. E. & Jeffery, G. Role of retinal afferents in regulating growth and shape of the lateral geniculate nucleus. J. Comp. Neurol. 445, 269–277 (2002).
Dehay, C., Giroud, P., Berland, M., Killackey, H. & Kennedy, H. Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J. Comp. Neurol. 367, 70–89 (1996).
Sur, M., Garraghty, P. E. & Roe, A. W. Experimentally induced visual projections into auditory thalamus and cortex. Science 242, 1437–1441 (1988).
Hensch, T. K. Critical period mechanisms in developing visual cortex. Curr. Top. Dev. Biol. 69, 215–237 (2005).
Hooks, B. M. & Chen, C. Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron 56, 312–326 (2007).
Reh, R. K. et al. Critical period regulation across multiple timescales. Proc. Natl Acad. Sci. USA 117, 23242–23251 (2020).
Barkat, T. R., Polley, D. B. & Hensch, T. K. A critical period for auditory thalamocortical connectivity. Nat. Neurosci. 14, 1189–1194 (2011).
Erzurumlu, R. S. & Gaspar, P. Development and critical period plasticity of the barrel cortex. Eur. J. Neurosci. 35, 1540–1553 (2012).
Aníbal-Martínez, M. et al. A prenatal window for enhancing spatial resolution of cortical barrel maps. Nat. Commun. 16, 1955 (2025).
Sadato, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 (1996).
Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).
Belford, G. R. & Killackey, H. P. The development of vibrissae representation in subcortical trigeminal centers of the neonatal rat. J. Comp. Neurol. 188, 63–74 (1979).
Killackey, H. P. & Dawson, D. R. Expansion of the central Hindpaw representation following fetal forelimb removal in the rat. Eur. J. Neurosci. 1, 210–221 (1989).
Woolsey, T. A., Anderson, J. R., Wann, J. R. & Stanfield, B. B. Effects of early vibrissae damage on neurons in the ventrobasal (VB) thalamus of the mouse. J. Comp. Neurol. 184, 363–380 (1979).
Killackey, H. P., Belford, G., Ryugo, R. & Ryugo, D. K. Anomalous organization of thalamocortical projections consequent to vibrissae removal in the newborn rat and mouse. Brain Res. 104, 309–315 (1976).
Renier, N. et al. A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex. eLife 6, e23494 (2017).
Woolsey, T. A. & Wann, J. R. Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages. J. Comp. Neurol. 170, 53–66 (1976).
Hubel, D. H. & Wiesel, T. N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994–1002 (1963).
Craddock, R., Vasalauskaite, A., Ranson, A. & Sengpiel, F. Experience dependent plasticity of higher visual cortical areas in the mouse. Cereb. Cortex 33, 9303–9312 (2023).
Takahata, T. Development of ocular dominance columns across rodents and other species: revisiting the concept of critical period plasticity. Front. Neural Circuits 18, 1402700 (2024).
Allen, C. B., Celikel, T. & Feldman, D. E. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat. Neurosci. 6, 291–299 (2003).
Feldman, D. E. & Brecht, M. Map plasticity in somatosensory cortex. Science 310, 810–815 (2005). This study provides an overview of how somatosensory maps adapt to experience and injury, revealing that plasticity involves changes across multiple circuit levels, not just at individual synapses. The authors review evidence that cortical reorganization following sensory deprivation or stimulation entails rewiring across layers and columns, highlighting the distributed and dynamic mechanisms that underlie map refinement in the somatosensory cortex.
Petersen, C. C. The functional organization of the barrel cortex. Neuron 56, 339–355 (2007).
Foeller, E. & Feldman, D. E. Synaptic basis for developmental plasticity in somatosensory cortex. Curr. Opin. Neurobiol. 14, 89–95 (2004).
Goldreich, D. & Kanics, I. M. Performance of blind and sighted humans on a tactile grating detection task. Percept. Psychophys. 68, 1363–1371 (2006).
Renier, L. et al. Right occipital cortex activation correlates with superior odor processing performance in the early blind. PLoS ONE 8, e71907 (2013).
Röder, B. et al. Improved auditory spatial tuning in blind humans. Nature 400, 162–166 (1999).
Bavelier, D. & Neville, H. J. Cross-modal plasticity: where and how? Nat. Rev. Neurosci. 3, 443–452 (2002).
Lomber, S. G., Meredith, M. A. & Kral, A. Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat. Neurosci. 13, 1421–1427 (2010).
Zimmermann, M., Cusack, R., Bedny, M. & Szwed, M. Auditory areas are recruited for naturalistic visual meaning in early deaf people. Nat. Commun. 15, 8035 (2024).
Auer, E. T., Bernstein, L. E., Sungkarat, W. & Singh, M. Vibrotactile activation of the auditory cortices in deaf versus hearing adults. Neuroreport 18, 645–648 (2007).
Cardon, G. & Sharma, A. Somatosensory cross-modal reorganization in adults with age-related, early-stage hearing loss. Front. Hum. Neurosci. 12, 172 (2018).
Kozanian, O. O., Abbott, C. W. & Huffman, K. J. Rapid changes in cortical and subcortical brain regions after early bilateral enucleation in the mouse. PLoS ONE 10, e0140391 (2015).
Mezzera, C. & López-Bendito, G. Cross-modal plasticity in sensory deprived animal models: from the thalamocortical development point of view. J. Chem. Neuroanat. 75, 32–40 (2016).
Chabot, N. et al. Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants. Eur. J. Neurosci. 26, 2334–2348 (2007).
Rauschecker, J. P. & Korte, M. Auditory compensation for early blindness in cat cerebral cortex. J. Neurosci. 13, 4538–4548 (1993).
Abbott, C. W., Kozanian, O. O. & Huffman, K. J. The effects of lifelong blindness on murine neuroanatomy and gene expression. Front. Aging Neurosci. 7, 144 (2015).
Toldi, J., Farkas, T. & Völgyi, B. Neonatal enucleation induces cross-modal changes in the barrel cortex of rat. A behavioural and electrophysiological study. Neurosci. Lett. 167, 1–4 (1994).
Bronchti, G. et al. Auditory activation of ‘visual’ cortical areas in the blind mole rat (Spalax ehrenbergi). Eur. J. Neurosci. 16, 311–329 (2002).
Chabot, N. et al. Subcortical auditory input to the primary visual cortex in anophthalmic mice. Neurosci. Lett. 433, 129–134 (2008).
Karlen, S. J., Kahn, D. M. & Krubitzer, L. Early blindness results in abnormal corticocortical and thalamocortical connections. Neuroscience 142, 843–858 (2006).
Charbonneau, V., Laramée, M. E., Boucher, V., Bronchti, G. & Boire, D. Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice. Eur. J. Neurosci. 36, 2949–2963 (2012).
Olcese, U., Iurilli, G. & Medini, P. Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79, 579–593 (2013).
Sur, M. & Leamey, C. A. Development and plasticity of cortical areas and networks. Nat. Rev. Neurosci. 2, 251–262 (2001).
Lyckman, A. W. et al. Enhanced plasticity of retinothalamic projections in an ephrin-A2/A5 double mutant. J. Neurosci. 21, 7684–7690 (2001).
Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364, eaav2522 (2019). Using single-cell transcriptomics and lineage tracing, the authors show that apical progenitors in the developing cortex produce distinct neuron types in a temporally regulated sequence, driven by intrinsic gene expression programmes and epigenetic mechanisms. This temporal patterning is essential for generating the neuronal diversity required for proper cortical circuit formation.
Badia-I-Mompel, P. et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 24, 739–754 (2023).
Haghverdi, L. & Ludwig, L. S. Single-cell multi-omics and lineage tracing to dissect cell fate decision-making. Stem Cell Rep. 18, 13–25 (2023).
Cadwell, C. R. et al. Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq. Nat. Protoc. 12, 2531–2553 (2017).
Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).
Dooley, J. C. & van der Heijden, M. E. More than a small brain: the importance of studying neural function during development. J. Neurosci. 44, e1367242024 (2024).
O’Leary, D. D., Yates, P. A. & McLaughlin, T. Molecular development of sensory maps: representing sights and smells in the brain. Cell 96, 255–269 (1999).
Korematsu, K. & Redies, C. Restricted expression of cadherin-8 in segmental and functional subdivisions of the embryonic mouse brain. Dev. Dyn. 208, 178–189 (1997).
Inoue, T., Chisaka, O., Matsunami, H. & Takeichi, M. Cadherin-6 expression transiently delineates specific rhombomeres, other neural tube subdivisions, and neural crest subpopulations in mouse embryos. Dev. Biol. 183, 183–194 (1997).
Suzuki, S. C., Inoue, T., Kimura, Y., Tanaka, T. & Takeichi, M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell. Neurosci. 9, 433–447 (1997).
Nakagawa, Y. & O’Leary, D. D. Combinatorial expression patterns of LIM-homeodomain and other regulatory genes parcellate developing thalamus. J. Neurosci. 21, 2711–2725 (2001).
Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
Engmann, A. K. et al. Neuronal subtype-specific growth cone and soma purification from mammalian CNS via fractionation and fluorescent sorting for subcellular analyses and spatial mapping of local transcriptomes and proteomes. Nat. Protoc. 17, 222–251 (2022).
Sherman, S. M. & Usrey, W. M. Transthalamic pathways for cortical function. J. Neurosci. 44, e0909242024 (2024).
Acknowledgements
This work was supported by grants from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-2021-ADG-101054313 SPONTSENSE), PID2021-127112NBI00 from the MCIN/AEI/10.13039/501100011033/ and ERDF ‘A way to make Europe’ and Generalitat Valenciana, Conselleria d’Educació, Universitats, i Ocupació (PROMETEO 2021/052) to G.L.-B. This work was also funded by the Spanish State Research Agency (AEI/10.13039/501100011033), through the ‘Severo Ochoa’ Center of Excellence grant to the IN (CEX2021-001165-S). T.G.-V. was supported by the ‘la Caixa’ Foundation (LCF/BQ/PR23/11980050).
Author information
Authors and Affiliations
Contributions
All authors researched data for article, made substantial contributions to discussion of content and wrote, reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Neuroscience thanks C. Lohmann, who co-reviewed with D. Cabrera Garcia; Y. Nakagawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Guillamón-Vivancos, T., Aníbal-Martínez, M., Puche-Aroca, L. et al. Sensory modality-specific wiring of thalamocortical circuits. Nat. Rev. Neurosci. 26, 623–641 (2025). https://doi.org/10.1038/s41583-025-00945-y
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41583-025-00945-y