Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early adversity alters brain architecture and increases susceptibility to mental health disorders

Abstract

Each year, millions of children around the world are exposed to a host of adverse experiences early in life. These include various forms of maltreatment, growing up in unsafe neighbourhoods, and witnessing intimate partner violence. These experiences exact a toll on the brain development and mental health of children. In this Review, we attempt to explain how brain architecture and circuitry are affected by exposure to such early adversity, which in turn increases susceptibility to mental health disorders later in life. We begin defining what we mean by early adversity and then summarize the experience-dependent nature of postnatal brain development. Within this context, we discuss times in development when the brain is particularly receptive to experience (critical periods) and, thus, is more vulnerable to adverse experiences. Drawing from studies with both rodent and non-human primate models and neuroimaging research with humans, we next discuss how the circuitry of the brain is affected by early-life adversity, with a focus on the subsequent effects upon neural network development. We then review the mental health consequences of adverse experiences in early life across mental health disorders and within specific dimensions of psychopathology. We conclude by offering a conceptual model of the pathway that links exposure to adversity early in life to these mental health outcomes later in life, and we provide suggestions for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptualization of early adverse experiences.
Fig. 2: Sensitive periods across sensory, language, socioemotional, executive and self-referential systems.
Fig. 3: Key neural mechanisms linked to early adversity.
Fig. 4: Key neural networks linked to dimensions of psychopathology.
Fig. 5: Conceptual framework: from early adversity to psychopathology.

Similar content being viewed by others

References

  1. Berens, A. E., Jensen, S. K. G. & Nelson, C. A. 3rd Biological embedding of childhood adversity: from physiological mechanisms to clinical implications. BMC Med. 15, 135 (2017). A review that offers a conceptual model for how early childhood adversity may drive physiological changes that biologically embed experiences of adversity, resulting in a predisposition to common diseases across the life course.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mueller, I. & Tronick, E. Early life exposure to violence: developmental consequences on brain and behavior. Front. Behav. Neurosci. 13, 156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Galler, J. R. et al. Neurodevelopmental effects of childhood malnutrition: a neuroimaging perspective. Neuroimage 231, 117828 (2021).

    Article  PubMed  Google Scholar 

  4. Zundel, C. G. et al. Air pollution, depressive and anxiety disorders, and brain effects: a systematic review. Neurotoxicology 93, 272–300 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hillis, S., Mercy, J., Amobi, A. & Kress, H. Global prevalence of past-year violence against children: a systematic review and minimum estimates. Pediatrics 137, e20154079 (2016).

    Article  PubMed  Google Scholar 

  6. Pinheiro, P. S. World Report on Violence Against Children (ATAR Roto Presse SA, 2006).

  7. Hillis, S. D. et al. Global minimum estimates of children affected by COVID-19-associated orphanhood and deaths of caregivers: a modelling study. Lancet 398, 391–402 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Unwin, H. J. T. et al. Global, regional, and national minimum estimates of children affected by COVID-19-associated orphanhood and caregiver death, by age and family circumstance up to Oct 31, 2021: an updated modelling study. Lancet Child Adolesc. Health 6, 249–259 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jones, C. M. et al. Estimated number of children who lost a parent to drug overdose in the US from 2011 to 2021. JAMA Psychiatry 81, 789–796 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Giano, Z., Wheeler, D. L. & Hubach, R. D. The frequencies and disparities of adverse childhood experiences in the US. BMC Public Health 20, 1–12 (2020).

    Article  Google Scholar 

  11. Juwariah, T. et al. Childhood adversities and mental health problems: a systematic review. J. Public Health Res. 11, 22799036221106613 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim, B. & Royle, M. Annual research review: mapping the multifaceted approaches and impacts of adverse childhood experiences — an umbrella review of meta‐analyses. J. Child Psychol. Psychiatry 66, 399–416 (2024).

    Article  PubMed  Google Scholar 

  13. Wade, M., Wright, L. & Finegold, K. E. The effects of early life adversity on children’s mental health and cognitive functioning. Transl. Psychiatry 12, 244 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carr, C. P., Martins, C. M., Stingel, A. M., Lemgruber, V. B. & Juruena, M. F. The role of early life stress in adult psychiatric disorders: a systematic review according to childhood trauma subtypes. J. Nerv. Ment. Dis. 201, 1007–1020 (2013).

    Article  PubMed  Google Scholar 

  15. Hakamata, Y., Suzuki, Y., Kobashikawa, H. & Hori, H. Neurobiology of early life adversity: a systematic review of meta-analyses towards an integrative account of its neurobiological trajectories to mental disorders. Front. Neuroendocrinol. 65, 100994 (2022).

    Article  PubMed  Google Scholar 

  16. Kessler, R. C., Davis, C. G. & Kendler, K. S. Childhood adversity and adult psychiatric disorder in the US National Comorbidity Survey. Psychol. Med. 27, 1101–1119 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. Luby, J. L., Barch, D., Whalen, D., Tillman, R. & Belden, A. Association between early life adversity and risk for poor emotional and physical health in adolescence: a putative mechanistic neurodevelopmental pathway. JAMA Pediatr. 171, 1168–1175 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Najman, J. M. et al. Do adversities experienced over the early life course predict mental illness and substance use behaviour in adulthood: a birth cohort study. J. Psychiatr. Res. 155, 542–549 (2022).

    Article  PubMed  Google Scholar 

  19. Nakama, N., Usui, N., Doi, M. & Shimada, S. Early life stress impairs brain and mental development during childhood increasing the risk of developing psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 126, 110783 (2023).

    Article  PubMed  Google Scholar 

  20. Gunnar, M. R. & Vazquez, D. in Developmental Psychopathology: Volume Two: Developmental Neuroscience 533–577 (Wiley, 2015).

  21. Juruena, M. F., Eror, F., Cleare, A. J. & Young, A. H. The role of early life stress in HPA axis and anxiety. Adv. Exp. Med. Biol. 1191, 141–153 (2020).

    Article  PubMed  CAS  Google Scholar 

  22. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445 (2009).

    Article  PubMed  CAS  Google Scholar 

  23. Ishikawa, Y. & Furuyashiki, T. The impact of stress on immune systems and its relevance to mental illness. Neurosci. Res. 175, 16–24 (2022).

    Article  PubMed  CAS  Google Scholar 

  24. Miller, A. H., Haroon, E. & Felger, J. C. The immunology of behavior — exploring the role of the immune system in brain health and illness. Neuropsychopharmacology 42, 1–4 (2017).

    Article  PubMed  Google Scholar 

  25. Nelson, C. A. 3rd & Gabard-Durnam, L. J. Early adversity and critical periods: neurodevelopmental consequences of violating the expectable environment. Trends Neurosci. 43, 133–143 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Knudsen, E. I. Sensitive periods in the development of the brain and behavior. J. Cogn. Neurosci. 16, 1412–1425 (2004).

    Article  PubMed  Google Scholar 

  27. Black, J. E., Jones, T. A., Nelson, C. A. & Greenough, W. T. Neuronal plasticity and the developing brain. Handb. Child Adolesc. Psychiatry 6, 31–53 (1998).

    Google Scholar 

  28. Greenough, W. T., Black, J. E. & Wallace, C. S. Experience and brain development. Child Dev. 58, 539–559 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. Gervain, J. et al. Valproate reopens critical-period learning of absolute pitch. Front. Syst. Neurosci. 7, 102 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Iwai, Y., Fagiolini, M., Obata, K. & Hensch, T. K. Rapid critical period induction by tonic inhibition in visual cortex. J. Neurosci. 23, 6695–6702 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lee, H. H. C. et al. Genetic Otx2 mis-localization delays critical period plasticity across brain regions. Mol. Psychiatry 22, 680–688 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Takesian, A. E. & Hensch, T. K. Balancing plasticity/stability across brain development. Prog. Brain Res. 207, 3–34 (2013).

    Article  PubMed  Google Scholar 

  33. Lorenz, K. Z. The evolution of behavior. Sci. Am. 199, 67–74 (1958).

    Article  PubMed  CAS  Google Scholar 

  34. Nelson, C. A. III, Zeanah, C. H. & Fox, N. A. How early experience shapes human development: the case of psychosocial deprivation. Neural Plast. 2019, 1676285 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Choi, D., Black, A. K. & Werker, J. F. Cascading and multisensory influences on speech perception development. Mind Brain Educ. 12, 212–223 (2018).

    Article  Google Scholar 

  36. Hensch, T. K. Critical period regulation. Annu. Rev. Neurosci. 27, 549–579 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. Werker, J. F. & Hensch, T. K. Critical periods in speech perception: new directions. Annu. Rev. Psychol. 66, 173–196 (2015).

    Article  PubMed  Google Scholar 

  38. McLaughlin, K. A., Sheridan, M. A. & Nelson, C. A. Neglect as a violation of species-expectant experience: neurodevelopmental consequences. Biol. Psychiatry 82, 462–471 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pinto, R. Q., Soares, I., Carvalho-Correia, E. & Mesquita, A. R. Gene-environment interactions in psychopathology throughout early childhood: a systematic review. Psychiatr. Genet. 25, 223–233 (2015).

    Article  PubMed  Google Scholar 

  40. Taylor, A. & Kim-Cohen, J. Meta-analysis of gene-environment interactions in developmental psychopathology. Dev. Psychopathol. 19, 1029–1037 (2007).

    Article  PubMed  Google Scholar 

  41. Thapar, A., Harold, G., Rice, F., Langley, K. & O’Donovan, M. The contribution of gene-environment interaction to psychopathology. Dev. Psychopathol. 19, 989–1004 (2007).

    Article  PubMed  Google Scholar 

  42. Schaefer, J. D., Cheng, T. W. & Dunn, E. C. Sensitive periods in development and risk for psychiatric disorders and related endpoints: a systematic review of child maltreatment findings. Lancet Psychiatry 9, 978–991 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, Q., Timberlake, M. A. 2nd, Prall, K. & Dwivedi, Y. The recent progress in animal models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 77, 99–109 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bonapersona, V. et al. The behavioral phenotype of early life adversity: a 3-level meta-analysis of rodent studies. Neurosci. Biobehav. Rev. 102, 299–307 (2019).

    Article  PubMed  CAS  Google Scholar 

  45. Packard, K. & Opendak, M. Rodent models of early adversity: impacts on developing social behavior circuitry and clinical implications. Front. Behav. Neurosci. 16, 918862 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Raineki, C. et al. During infant maltreatment, stress targets hippocampus, but stress with mother present targets amygdala and social behavior. Proc. Natl Acad. Sci. USA 116, 22821–22832 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Walker, C. D. et al. Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress 20, 421–448 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao, M. et al. Effects of traumatic stress in adolescence on PTSD-like behaviors, dendrite development, and H3K9me2/BDNF expression in the amygdala of male rats. J. Affect. Disord. 296, 388–399 (2022).

    Article  PubMed  CAS  Google Scholar 

  49. Opendak, M. et al. Bidirectional control of infant rat social behavior via dopaminergic innervation of the basolateral amygdala. Neuron 109, 4018–4035.e7 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Nishi, M. Effects of early-life stress on the brain and behaviors: implications of early maternal separation in rodents. Int. J. Mol. Sci. 21, 7212 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Orso, R. et al. How early life stress impact maternal care: a systematic review of rodent studies. Front. Behav. Neurosci. 13, 197 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Barr, G. A., Opendak, M., Perry, R. E., Sarro, E. & Sullivan, R. M. Infant pain vs. pain with parental suppression: immediate and enduring impact on brain, pain and affect. PLoS ONE 18, e0290871 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Shupe, E. A. & Clinton, S. M. Neonatal resource scarcity alters maternal care and impacts offspring core temperature and growth in rats. Dev. Psychobiol. 63, e22144 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rincon-Cortes, M. & Grace, A. A. Postpartum scarcity-adversity disrupts maternal behavior and induces a hypodopaminergic state in the rat dam and adult female offspring. Neuropsychopharmacology 47, 488–496 (2022).

    Article  PubMed  CAS  Google Scholar 

  55. Rosenbaum, S. & Kuzawa, C. W. The promise of great apes as model organisms for understanding the downstream consequences of early life experiences. Neurosci. Biobehav. Rev. 152, 105240 (2023).

    Article  PubMed  Google Scholar 

  56. Sanchez, M. M., Ladd, C. O. & Plotsky, P. M. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev. Psychopathol. 13, 419–449 (2001).

    Article  PubMed  CAS  Google Scholar 

  57. Harlow, H. F. The nature of love. Am. Psychol. 13, 673 (1958).

    Article  Google Scholar 

  58. Harlow, H. F., Harlow, M. K., Dodsworth, R. O. & Arling, G. Maternal behavior of rhesus monkeys deprived of mothering and peer associations in infancy. Proc. Am. Philos. Soc. 110, 58–66 (1966).

    Google Scholar 

  59. Suomi, S. J., Harlow, H. F. & Kimball, S. D. Behavioral effects of prolonged partial social isolation in the rhesus monkey. Psychol. Rep. 29, 1171–1177 (1971).

    Article  PubMed  CAS  Google Scholar 

  60. McCormack, K. M. et al. The developmental consequences of early adverse care on infant macaques: a cross-fostering study. Psychoneuroendocrinology 146, 105947 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Tromp, D. P. M. et al. Early life adversity in primates: behavioral, endocrine, and neural effects. Psychoneuroendocrinology 162, 106953 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sabatini, M. J. et al. Amygdala gene expression correlates of social behavior in monkeys experiencing maternal separation. J. Neurosci. 27, 3295–3304 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Maestripieri, D. & Carroll, K. A. Child abuse and neglect: usefulness of the animal data. Psychol. Bull. 123, 211–223 (1998).

    Article  PubMed  CAS  Google Scholar 

  64. Morin, E. L. et al. Developmental outcomes of early adverse care on amygdala functional connectivity in nonhuman primates. Dev. Psychopathol. 32, 1579–1596 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lyons, D. M., Parker, K. J., Katz, M. & Schatzberg, A. F. Developmental cascades linking stress inoculation, arousal regulation, and resilience. Front. Behav. Neurosci. 3, 32 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gabard-Durnam, L. J. & McLaughlin, K. A. Do sensitive periods exist for exposure to adversity? Biol. Psychiatry 85, 789–791 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ho, T. C. & King, L. S. Mechanisms of neuroplasticity linking early adversity to depression: developmental considerations. Transl. Psychiatry 11, 517 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Smith, K. E. & Pollak, S. D. Rethinking concepts and categories for understanding the neurodevelopmental effects of childhood adversity. Perspect. Psychol. Sci. 16, 67–93 (2021).

    Article  PubMed  Google Scholar 

  69. Sripada, R. K., Swain, J. E., Evans, G. W., Welsh, R. C. & Liberzon, I. Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network. Neuropsychopharmacology 39, 2244–2251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hanson, J. L. et al. Early neglect is associated with alterations in white matter integrity and cognitive functioning. Child Dev. 84, 1566–1578 (2013).

    Article  PubMed  Google Scholar 

  71. Rakesh, D., Whittle, S., Sheridan, M. A. & McLaughlin, K. A. Childhood socioeconomic status and the pace of structural neurodevelopment: accelerated, delayed, or simply different? Trends Cogn. Sci. 27, 833–851 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mehta, M. A. et al. Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: the English and Romanian Adoptees study pilot. J. Child Psychol. Psychiatry 50, 943–951 (2009).

    Article  PubMed  Google Scholar 

  73. Beck, D. et al. Dimensions of early-life adversity are differentially associated with patterns of delayed and accelerated brain maturation. Biol. Psychiatry 97, 64–72 (2025).

    Article  PubMed  CAS  Google Scholar 

  74. Gee, D. G. et al. Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc. Natl Acad. Sci. USA 110, 15638–15643 (2013). A resting-state fMRI study that finds evidence for accelerated maturation of connections between the amygdala and medial prefrontal cortex in previously institutionalized youth, conferring some emotion regulation benefits (decreasing their anxiety levels) despite overall higher levels of anxiety in this group than in children raised in foster care placements.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sheridan, M. A. et al. Early deprivation alters structural brain development from middle childhood to adolescence. Sci. Adv. 8, eabn4316 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Debnath, R., Tang, A., Zeanah, C. H., Nelson, C. A. & Fox, N. A. The long-term effects of institutional rearing, foster care intervention and disruptions in care on brain electrical activity in adolescence. Dev. Sci. 23, e12872 (2020).

    Article  PubMed  Google Scholar 

  77. Marshall, P. J., Fox, N. A. & Bucharest Early Intervention Project Core Group. A comparison of the electroencephalogram between institutionalized and community children in Romania. J. Cogn. Neurosci. 16, 1327–1338 (2004).

    Article  PubMed  Google Scholar 

  78. Vanderwert, R. E., Marshall, P. J., Nelson, C. A. 3rd, Zeanah, C. H. & Fox, N. A. Timing of intervention affects brain electrical activity in children exposed to severe psychosocial neglect. PLoS ONE 5, e11415 (2010). EEG findings from the BEIP demonstrating that children removed from institutional care before 2 years of age show a more typical EEG profile than those fostered after 2 years of age, highlighting that there may be a sensitive period to ameliorate the effects of psychosocial deprivation on the brain.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tottenham, N. et al. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev. Sci. 13, 46–61 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Joseph, J. et al. Greater maltreatment severity is associated with smaller brain volume with implication for intellectual ability in young children. Neurobiol. Stress 27, 100576 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Teicher, M. H., Samson, J. A., Anderson, C. M. & Ohashi, K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 17, 652–666 (2016).

    Article  PubMed  CAS  Google Scholar 

  82. McLaughlin, K. A., Weissman, D. & Bitran, D. Childhood adversity and neural development: a systematic review. Annu. Rev. Dev. Psychol. 1, 277–312 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gerin, M. I., Viding, E., Herringa, R. J., Russell, J. D. & McCrory, E. J. A systematic review of childhood maltreatment and resting state functional connectivity. Dev. Cogn. Neurosci. 64, 101322 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Teicher, M. H. & Samson, J. A. Annual research review: enduring neurobiological effects of childhood abuse and neglect. J. Child Psychol. Psychiatry 57, 241–266 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Holz, N. E. et al. A stable and replicable neural signature of lifespan adversity in the adult brain. Nat. Neurosci. 26, 1603–1612 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gehred, M. Z. et al. Long-term neural embedding of childhood adversity in a population-representative birth cohort followed for 5 decades. Biol. Psychiatry 90, 182–193 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. McLaughlin, K. A. & Sheridan, M. A. Beyond cumulative risk: a dimensional approach to childhood adversity. Curr. Dir. Psychol. Sci. 25, 239–245 (2016). A study that provides a framework for the conceptualization of adversity in early life, proposing a dimensional approach along the axis of threat versus deprivation and highlighting how different forms of adversity might differentially influence learning mechanisms.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Schafer, J. L. et al. Threat and deprivation are associated with distinct aspects of cognition, emotional processing, and psychopathology in children and adolescents. Dev. Sci. 26, e13267 (2023).

    Article  PubMed  Google Scholar 

  89. Usacheva, M., Choe, D., Liu, S., Timmer, S. & Belsky, J. Testing the empirical integration of threat-deprivation and harshness-unpredictability dimensional models of adversity. Dev. Psychopathol. 34, 513–526 (2022).

    Article  PubMed  Google Scholar 

  90. Ellis, B. J., Sheridan, M. A., Belsky, J. & McLaughlin, K. A. Why and how does early adversity influence development? Toward an integrated model of dimensions of environmental experience. Dev. Psychopathol. 34, 447–471 (2022).

    Article  PubMed  Google Scholar 

  91. Davis, E. P. et al. Early life exposure to unpredictable parental sensory signals shapes cognitive development across three species. Front. Behav. Neurosci. 16, 960262 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pollak, S. D. & Smith, K. E. Thinking clearly about biology and childhood adversity: next steps for continued progress. Perspect. Psychol. Sci. 16, 1473–1477 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gee, D. G. Early adversity and development: parsing heterogeneity and identifying pathways of risk and resilience. Am. J. Psychiatry 178, 998–1013 (2021).

    Article  PubMed  Google Scholar 

  94. Durham, E. L. et al. Association of gray matter volumes with general and specific dimensions of psychopathology in children. Neuropsychopharmacology 46, 1333–1339 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Neumann, A. et al. White matter microstructure and the general psychopathology factor in children. J. Am. Acad. Child Adolesc. Psychiatry 59, 1285–1296 (2020).

    Article  PubMed  Google Scholar 

  96. Qiu, A. & Liu, C. Pathways link environmental and genetic factors with structural brain networks and psychopathology in youth. Neuropsychopharmacology 48, 1042–1051 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Vanes, L. D. & Dolan, R. J. Transdiagnostic neuroimaging markers of psychiatric risk: a narrative review. Neuroimage Clin. 30, 102634 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vanes, L. D. et al. White matter tract myelin maturation and its association with general psychopathology in adolescence and early adulthood. Hum. Brain Mapp. 41, 827–839 (2020).

    Article  PubMed  Google Scholar 

  99. Woodward, N. D. & Cascio, C. J. Resting-state functional connectivity in psychiatric disorders. JAMA Psychiatry 72, 743–744 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Xia, C. H. et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat. Commun. 9, 3003 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sha, Z., Wager, T. D., Mechelli, A. & He, Y. Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol. Psychiatry 85, 379–388 (2019).

    Article  PubMed  Google Scholar 

  102. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hamilton, J. P. et al. Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of base line activation and neural response data. Am. J. Psychiatry 169, 693–703 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chang, X. et al. Altered default mode and fronto-parietal network subsystems in patients with schizophrenia and their unaffected siblings. Brain Res. 1562, 87–99 (2014).

    Article  PubMed  CAS  Google Scholar 

  105. Menon, V., Palaniyappan, L. & Supekar, K. Integrative brain network and salience models of psychopathology and cognitive dysfunction in schizophrenia. Biol. Psychiatry 94, 108–120 (2023).

    Article  PubMed  Google Scholar 

  106. Sylvester, C. M. et al. Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci. 35, 527–535 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Konrad, K. & Eickhoff, S. B. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum. Brain Mapp. 31, 904–916 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Castellanos, F. X. et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 63, 332–337 (2008).

    Article  PubMed  Google Scholar 

  109. Casey, B. J., Tottenham, N., Liston, C. & Durston, S. Imaging the developing brain: what have we learned about cognitive development? Trends Cogn. Sci. 9, 104–110 (2005).

    Article  PubMed  CAS  Google Scholar 

  110. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  111. Casey, B. J., Getz, S. & Galvan, A. The adolescent brain. Dev. Rev. 28, 62–77 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Crone, E. A. & Dahl, R. E. Understanding adolescence as a period of social-affective engagement and goal flexibility. Nat. Rev. Neurosci. 13, 636–650 (2012).

    Article  PubMed  CAS  Google Scholar 

  113. Somerville, L. H. & Casey, B. J. Developmental neurobiology of cognitive control and motivational systems. Curr. Opin. Neurobiol. 20, 236–241 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72, 603–611 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Eaton, S., Cornwell, H., Hamilton-Giachritsis, C. & Fairchild, G. Resilience and young people’s brain structure, function and connectivity: a systematic review. Neurosci. Biobehav. Rev. 132, 936–956 (2022).

    Article  PubMed  Google Scholar 

  116. Bolsinger, J., Seifritz, E., Kleim, B. & Manoliu, A. Neuroimaging correlates of resilience to traumatic events — a comprehensive review. Front. Psychiatry 9, 693 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sheridan, M. A., Fox, N. A., Zeanah, C. H., McLaughlin, K. A. & Nelson, C. A. 3rd Variation in neural development as a result of exposure to institutionalization early in childhood. Proc. Natl Acad. Sci. USA 109, 12927–12932 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Bick, J. et al. Effect of early institutionalization and foster care on long-term white matter development: a randomized clinical trial. JAMA Pediatr. 169, 211–219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Marshall, P. J., Reeb, B. C., Fox, N. A., Nelson, C. A. 3rd & Zeanah, C. H. Effects of early intervention on EEG power and coherence in previously institutionalized children in Romania. Dev. Psychopathol. 20, 861–880 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Humphreys, K. et al. Effects of early deprivation on psychopathology at age 12 years: follow-up of a randomized controlled trial. Lancet Psychiatry 2, 625–634 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Nelson, C. A. III et al. Cognitive recovery in socially deprived young children: the Bucharest Early Intervention Project. Science 318, 1937–1940 (2007).

    Article  PubMed  CAS  Google Scholar 

  122. Wade, M., Fox, N. A., Zeanah, C. H. & Nelson, C. A. 3rd Long-term effects of institutional rearing, foster care, and brain activity on memory and executive functioning. Proc. Natl Acad. Sci. USA 116, 1808–1813 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Zeanah, C. H. et al. Institutional rearing and psychiatric disorders in Romanian preschool children. Am. J. Psychiatry 166, 777–785 (2009).

    Article  PubMed  Google Scholar 

  124. Drury, S. S. et al. Telomere length and early severe social deprivation: linking early adversity and cellular aging. Mol. Psychiatry 17, 719–727 (2012).

    Article  PubMed  CAS  Google Scholar 

  125. Humphreys, K. L. et al. Accelerated telomere shortening: tracking the lasting impact of early institutional care at the cellular level. Psychiatry Res. 246, 95–100 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Mandela, N. R. Speech by President Nelson Mandela at the launch of the Nelson Mandela Children’s Fund (1995-05-08). The Nelson Mandela Foundation Archive https://archive.nelsonmandela.org/index.php/za-com-mr-s-250 (2018).

  127. Ellis, B. J. et al. Hidden talents in harsh environments. Dev. Psychopathol. 34, 95–113 (2022).

    Article  PubMed  Google Scholar 

  128. Frankenhuis, W. E. & Gopnik, A. Early adversity and the development of explore-exploit tradeoffs. Trends Cogn. Sci. 27, 616–630 (2023).

    Article  PubMed  Google Scholar 

  129. Pollak, S. D. & Sinha, P. Effects of early experience on children’s recognition of facial displays of emotion. Dev. Psychol. 38, 784–791 (2002).

    Article  PubMed  Google Scholar 

  130. Gleason, M. M. et al. Validity of evidence-derived criteria for reactive attachment disorder: indiscriminately social/disinhibited and emotionally withdrawn/inhibited types. J. Am. Acad. Child Adolesc. Psychiatry 50, 216–231.e3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Masten, A. S., Best, K. M. & Garmezy, N. Resilience and development: contributions from the study of children who overcome adversity. Dev. Psychopathol. 2, 425–444 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the members of Charles Nelson’s Harvard College first year student seminar who graciously offered comments on an earlier version of this paper (A. Ashaye, A. Holtey, J. Lane, M. Morrow, M. Unger and C. Wu). The authors also extend their gratitude to S. Odabashian for proofing and editing the manuscript. The writing of this paper was made possible by the Jacobs Foundation (Klaus J. Jacobs award) and the National Institutes of Health (1U24 DA055325 and MH091363 to C.A.N. and T32MH112510 to E.F.S.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Charles A. Nelson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurosciences thanks Maya Opendak, Christine Heim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Adolescent Brain and Child Development Study: https://abcdstudy.org/

Bucharest Early Intervention Project: https://bucharestearlyinterventionproject.org/

Glossary

Experience-expectant development

Situations in which a species-typical experience (one common and typical for all members of the species) has a requisite role in the development and ultimate organization of the nervous system. For instance, the visual cortex relies on exposure to patterned light for typical visual development, and deviations from these expected inputs can lead to atypical developmental trajectories.

Gene × environment interactions

The effects of the genetic background of individuals on their developmental outcomes can differ depending on the modulating influences of their environment and experiences (experience ‘writes’ against the genetic background of an individual).

Mental health disorder

Conditions that influence the emotional, psychological and/or behavioural well-being of an individual, in which the symptoms must lead to marked distress or impairment in daily functioning; commonly classified according to standardized diagnostic criteria in the Diagnostic and Statistical Manual of Mental Disorders (DSM) and International Classification of Diseases (ICD).

Neural network dysconnectivity

Abnormal or disrupted communication patterns within or between neural networks, which can be characterized by decreased and/or heightened structural or functional connectivity.

Neurobiological embedding

The processes by which early experiences, especially adversity and stressors, affect brain development and can result in lasting changes to brain structure and function via mechanisms such as neural plasticity.

Protective factors

Experiences or environmental features that can mitigate the effects of risk factors (such as high-quality caregiving in the face of adversity) and may contribute to resilience.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, C.A., Sullivan, E.F. & Valdes, V. Early adversity alters brain architecture and increases susceptibility to mental health disorders. Nat. Rev. Neurosci. 26, 642–656 (2025). https://doi.org/10.1038/s41583-025-00948-9

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00948-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing