Abstract
Mobile organisms integrate multimodal self-motion signals — including motor commands, vestibular inputs, optic flow and proprioceptive feedback — to accurately perceive their heading and speed of traversal. These instantaneous cues are processed, via continuous temporal integration and progressive spatial transformations, to facilitate path-integration-based navigation. Recent cutting-edge neurophysiological recordings in animal models have revealed several ubiquitous cross-modal algorithms that contribute to this processing: vestibular–visual convergence to enhance self-motion perception, predictive coding integration to enable optimal dynamic state estimates, landmark-referenced error correction to mitigate path-integration drift and facilitate cognitive spatial map construction, and egocentric-to-allocentric conversion via integration with proprioceptive cues from the eyes, head, body or limbs. Thus, multisensory coding plays an important role in self-motion perception and self-localization during navigational behaviour.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Campbell, M. G. & Giocomo, L. M. Self-motion processing in visual and entorhinal cortices: inputs, integration, and implications for position coding. J. Neurophysiol. 120, 2091–2106 (2018).
Mittelstaedt, M. L. & Mittelstaedt, H. Homing by path integration in a mammal. Naturwissenschaften 67, 566–567 (1980).
Senkowski, D. & Engel, A. K. Multi-timescale neural dynamics for multisensory integration. Nat. Rev. Neurosci. 25, 625–642 (2024).
Stein, B. E. M, M. A. Multisensory Integration: The Merging of the Senses (MIT Press, 1993).
Parise, C. V. & Ernst, M. O. Correlation detection as a general mechanism for multisensory integration. Nat. Commun. 7, 11543 (2016).
Whittington, J. C. R., McCaffary, D., Bakermans, J. J. W. & Behrens, T. E. J. How to build a cognitive map. Nat. Neurosci. 25, 1257–1272 (2022).
Grabherr, L., Nicoucar, K., Mast, F. W. & Merfeld, D. M. Vestibular thresholds for yaw rotation about an Earth-vertical axis as a function of frequency. Exp. Brain Res. 186, 677–681 (2008).
MacNeilage, P. R., Turner, A. H. & Angelaki, D. E. Canal–otolith interactions and detection thresholds of linear and angular components during curved-path self-motion. J. Neurophysiol. 104, 765–773 (2010).
Valko, Y., Lewis, R. F., Priesol, A. J. & Merfeld, D. M. Vestibular labyrinth contributions to human whole-body motion discrimination. J. Neurosci. 32, 13537–13542 (2012).
Gu, Y., DeAngelis, G. C. & Angelaki, D. E. A functional link between area MSTd and heading perception based on vestibular signals. Nat. Neurosci. 10, 1038–1047 (2007).
Liu, S., Dickman, J. D., Newlands, S. D., DeAngelis, G. C. & Angelaki, D. E. Reduced choice-related activity and correlated noise accompany perceptual deficits following unilateral vestibular lesion. Proc. Natl Acad. Sci. USA 110, 17999–18004 (2013).
Cullen, K. E. & Taube, J. S. Our sense of direction: progress, controversies and challenges. Nat. Neurosci. 20, 1465–1473 (2017).
Liu, S., Gu, Y., DeAngelis, G. C. & Angelaki, D. E. Choice-related activity and correlated noise in subcortical vestibular neurons. Nat. Neurosci. 16, 89–97 (2013).
Liu, S., Yakusheva, T., Deangelis, G. C. & Angelaki, D. E. Direction discrimination thresholds of vestibular and cerebellar nuclei neurons. J. Neurosci. 30, 439–448 (2010).
Yakusheva, T. A., Blazquez, P. M., Chen, A. & Angelaki, D. E. Spatiotemporal properties of optic flow and vestibular tuning in the cerebellar nodulus and uvula. J. Neurosci. 33, 15145–151603 (2013).
Chen, A., DeAngelis, G. C. & Angelaki, D. E. Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow. J. Neurosci. 30, 3022–3042 (2010).
Chen, A., Zeng, F., DeAngelis, G. C. & Angelaki, D. E. Dynamics of heading and choice-related signals in the parieto-insular vestibular cortex of macaque monkeys. J. Neurosci. 41, 3254–3265 (2021).
Liu, B., Tian, Q. & Gu, Y. Robust vestibular self-motion signals in macaque posterior cingulate region. eLife 10, e64569 (2021).
Bremmer, F., Kubischik, M., Pekel, M., Lappe, M. & Hoffmann, K. P. Linear vestibular self-motion signals in monkey medial superior temporal area. Ann. N. Y. Acad. Sci. 871, 272–281 (1999).
Duffy, C. J. MST neurons respond to optic flow and translational movement. J. Neurophysiol. 80, 1816–1827 (1998).
Gu, Y., Watkins, P. V., Angelaki, D. E. & DeAngelis, G. C. Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area. J. Neurosci. 26, 73–85 (2006).
Sasaki, R., Angelaki, D. E. & DeAngelis, G. C. Processing of object motion and self-motion in the lateral subdivision of the medial superior temporal area in macaques. J. Neurophysiol. 121, 1207–1221 (2019).
Bremmer, F., Klam, F., Duhamel, J. R., Ben Hamed, S. & Graf, W. Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci. 16, 1569–1586 (2002).
Chen, A., DeAngelis, G. C. & Angelaki, D. E. Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex. J. Neurosci. 31, 12036–12052 (2011).
Chen, A., Deangelis, G. C. & Angelaki, D. E. Functional specializations of the ventral intraparietal area for multisensory heading discrimination. J. Neurosci. 33, 3567–3581 (2013).
Avila, E., Lakshminarasimhan, K. J., DeAngelis, G. C. & Angelaki, D. E. Visual and vestibular selectivity for self-motion in macaque posterior parietal area 7a. Cereb. Cortex 29, 3932–3947 (2019).
Chen, A., DeAngelis, G. C. & Angelaki, D. E. Convergence of vestibular and visual self-motion signals in an area of the posterior sylvian fissure. J. Neurosci. 31, 11617–11627 (2011).
Gu, Y., Cheng, Z., Yang, L., DeAngelis, G. C. & Angelaki, D. E. Multisensory convergence of visual and vestibular heading cues in the pursuit area of the frontal eye field. Cereb. Cortex 26, 3785–3801 (2016).
Zhao, B., Zhang, Y. & Chen, A. Encoding of vestibular and optic flow cues to self-motion in the posterior superior temporal polysensory area. J. Physiol. 599, 3937–3954 (2021).
Lappe, M., Bremmer, F., Pekel, M., Thiele, A. & Hoffmann, K. P. Optic flow processing in monkey STS: a theoretical and experimental approach. J. Neurosci. 16, 6265–6285 (1996).
Gu, Y., Fetsch, C. R., Adeyemo, B., Deangelis, G. C. & Angelaki, D. E. Decoding of MSTd population activity accounts for variations in the precision of heading perception. Neuron 66, 596–609 (2010).
Crowell, J. A. & Banks, M. S. Perceiving heading with different retinal regions and types of optic flow. Percept. Psychophys. 53, 325–337 (1993).
Chen, A., Gu, Y., Liu, S., DeAngelis, G. C. & Angelaki, D. E. Evidence for a causal contribution of macaque vestibular, but not intraparietal, cortex to heading perception. J. Neurosci. 36, 3789–3798 (2016).
Gu, Y., Deangelis, G. C. & Angelaki, D. E. Causal links between dorsal medial superior temporal area neurons and multisensory heading perception. J. Neurosci. 32, 2299–2313 (2012).
Schneider, A. D., Jamali, M., Carriot, J., Chacron, M. J. & Cullen, K. E. The increased sensitivity of irregular peripheral canal and otolith vestibular afferents optimizes their encoding of natural stimuli. J. Neurosci. 35, 5522–5536 (2015).
Goldberg, J. M. et al. The Vestibular System: A Sixth Sense (Oxford Univ. Press, 2012).
Cullen, K. E. Vestibular processing during natural self-motion: implications for perception and action. Nat. Rev. Neurosci. 20, 346–363 (2019).
Angelaki, D. E. & Dickman, J. D. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J. Neurophysiol. 84, 2113–2132 (2000).
Laurens, J. et al. Transformation of spatiotemporal dynamics in the macaque vestibular system from otolith afferents to cortex. eLife 6, e20787 (2017).
Gu, Y. Vestibular signals in primate cortex for self-motion perception. Curr. Opin. Neurobiol. 52, 10–17 (2018).
Hou, H., Zheng, Q., Zhao, Y., Pouget, A. & Gu, Y. Neural correlates of optimal multisensory decision making under time-varying reliabilities with an invariant linear probabilistic population code. Neuron 104, 1010–1021.e1010 (2019).
Zheng, Q., Zhou, L. & Gu, Y. Temporal synchrony effects of optic flow and vestibular inputs on multisensory heading perception. Cell Rep. 37, 109999 (2021).
Zeng, Z., Zhang, C., Xu, Y., He, H. & Gu, Y. Distinct population code and critical roles of the primate caudate nucleus in multisensory decision making. Nat. Commun. 16, 5253 (2025).
Drugowitsch, J., DeAngelis, G. C., Klier, E. M., Angelaki, D. E. & Pouget, A. Optimal multisensory decision-making in a reaction-time task. eLife 3, e03005 (2014).
Cheng, Z. & Gu, Y. Distributed representation of curvilinear self-motion in the macaque parietal cortex. Cell Rep. 15, 1013–1023 (2016).
Carriot, J., Jamali, M., Brooks, J. X. & Cullen, K. E. Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: implication for perception. J. Neurosci. 35, 3555–3565 (2015).
Newlands, S. D., Abbatematteo, B., Wei, M., Carney, L. H. & Luan, H. Convergence of linear acceleration and yaw rotation signals on non-eye movement neurons in the vestibular nucleus of macaques. J. Neurophysiol. 119, 73–83 (2018).
Massot, C., Chacron, M. J. & Cullen, K. E. Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding. J. Neurophysiol. 105, 1798–1814 (2011).
Sadeghi, S. G., Chacron, M. J., Taylor, M. C. & Cullen, K. E. Neural variability, detection thresholds, and information transmission in the vestibular system. J. Neurosci. 27, 771–781 (2007).
Haburcakova, C., Lewis, R. F. & Merfeld, D. M. Frequency dependence of vestibuloocular reflex thresholds. J. Neurophysiol. 107, 973–983 (2012).
Gibson, J. J. The Perception of the Visual World (Houghton Mifflin, 1950).
Warren, W. H. The dynamics of perception and action. Psychol. Rev. 113, 358–389 (2006).
Matthis, J. S., Muller, K. S., Bonnen, K. L. & Hayhoe, M. M. Retinal optic flow during natural locomotion. PLoS Comput. Biol. 18, e1009575 (2022).
Burlingham, C. S. & Heeger, D. J. Heading perception depends on time-varying evolution of optic flow. Proc. Natl Acad. Sci. USA 117, 33161–33169 (2020).
Lappe, M., Bremmer, F. & van den Berg, A. V. Perception of self-motion from visual flow. Trends Cogn. Sci. 3, 329–336 (1999).
Li, L., Sweet, B. T. & Stone, L. S. Humans can perceive heading without visual path information. J. Vis. 6, 874–881 (2006).
Banks, M. S., Ehrlich, S. M., Backus, B. T. & Crowell, J. A. Estimating heading during real and simulated eye movements. Vis. Res. 36, 431–443 (1996).
Dash, S., Baliga, V. B., Lapsansky, A. B., Wylie, D. R. & Altshuler, D. L. Encoding of global visual motion in the avian pretectum shifts from a bias for temporal-to-nasal selectivity to omnidirectional excitation across speeds. eNeuro 11, ENEURO.0301-24.2024 (2024).
Gutierrez-Ibanez, C., Wylie, D. R. & Altshuler, D. L. From the eye to the wing: neural circuits for transforming optic flow into motor output in avian flight. J. Comp. Physiol. A 209, 839–854 (2023).
Meng, H. & Angelaki, D. E. Responses of ventral posterior thalamus neurons to three-dimensional vestibular and optic flow stimulation. J. Neurophysiol. 103, 817–826 (2010).
Britten, K. H. Mechanisms of self-motion perception. Annu. Rev. Neurosci. 31, 389–410 (2008).
Chowdhury, S. A., Takahashi, K., DeAngelis, G. C. & Angelaki, D. E. Does the middle temporal area carry vestibular signals related to self-motion? J. Neurosci. 29, 12020–12030 (2009).
Duffy, C. J. & Wurtz, R. H. Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci. 15, 5192–5208 (1995).
Bremmer, F., Kubischik, M., Pekel, M., Hoffmann, K. P. & Lappe, M. Visual selectivity for heading in monkey area MST. Exp. Brain Res. 200, 51–60 (2010).
Li, W., Lu, J., Zhu, Z. & Gu, Y. Causal contribution of optic flow signal in macaque extrastriate visual cortex for roll perception. Nat. Commun. 13, 5479 (2022).
Zhang, T. & Britten, K. H. The responses of VIP neurons are sufficiently sensitive to support heading judgments. J. Neurophysiol. 103, 1865–1873 (2010).
Zhang, T., Heuer, H. W. & Britten, K. H. Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron 42, 993–1001 (2004).
Kaminiarz, A., Schlack, A., Hoffmann, K. P., Lappe, M. & Bremmer, F. Visual selectivity for heading in the macaque ventral intraparietal area. J. Neurophysiol. 112, 2470–2480 (2014).
Anderson, K. C. & Siegel, R. M. Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. J. Neurosci. 19, 2681–2692 (1999).
Galletti, C., Fattori, P., Gamberini, M. & Kutz, D. F. The cortical visual area V6: brain location and visual topography. Eur. J. Neurosci. 11, 3922–3936 (1999).
Fan, R. H., Liu, S., DeAngelis, G. C. & Angelaki, D. E. Heading tuning in macaque area V6. J. Neurosci. 35, 16303–16314 (2015).
Wall, M. B. & Smith, A. T. The representation of egomotion in the human brain. Curr. Biol. 18, 191–194 (2008).
Britten, K. H. & van Wezel, R. J. Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat. Neurosci. 1, 59–63 (1998).
Yu, X. & Gu, Y. Probing sensory readout via combined choice-correlation measures and microstimulation perturbation. Neuron 100, 715–727.e715 (2018).
Schmitt, C., Baltaretu, B. R., Crawford, J. D. & Bremmer, F. A causal role of area hMST for self-motion perception in humans. Cereb. Cortex Commun. 1, tgaa042 (2020).
Jeurissen, D., Shushruth, S., El-Shamayleh, Y., Horwitz, G. D. & Shadlen, M. N. Deficits in decision-making induced by parietal cortex inactivation are compensated at two timescales. Neuron 110, 1924–1931.e1925 (2022).
Duhamel, J. R., Bremmer, F., Ben Hamed, S. & Graf, W. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389, 845–848 (1997).
Cooke, D. F., Taylor, C. S., Moore, T. & Graziano, M. S. Complex movements evoked by microstimulation of the ventral intraparietal area. Proc. Natl Acad. Sci. USA 100, 6163–6168 (2003).
Viswanathan, P. & Nieder, A. Differential impact of behavioral relevance on quantity coding in primate frontal and parietal neurons. Curr. Biol. 25, 1259–1269 (2015).
Zhang, T. & Britten, K. H. Parietal area VIP causally influences heading perception during pursuit eye movements. J. Neurosci. 31, 2569–2575 (2011).
Telford, L., Howard, I. P. & Ohmi, M. Heading judgments during active and passive self-motion. Exp. Brain Res. 104, 502–510 (1995).
Ohmi, M. Egocentric perception through interaction among many sensory systems. Brain Res. Cogn. Brain Res. 5, 87–96 (1996).
Harris, L. R., Jenkin, M. & Zikovitz, D. C. Visual and non-visual cues in the perception of linear self-motion. Exp. Brain Res. 135, 12–21 (2000).
Bertin, R. J. & Berthoz, A. Visuo-vestibular interaction in the reconstruction of travelled trajectories. Exp. Brain Res. 154, 11–21 (2004).
Butler, J. S., Smith, S. T., Campos, J. L. & Bulthoff, H. H. Bayesian integration of visual and vestibular signals for heading. J. Vis. 10, 23 (2010).
Crane, B. T. Effect of eye position during human visual-vestibular integration of heading perception. J. Neurophysiol. 118, 1609–1621 (2017).
Gu, Y., Angelaki, D. E. & Deangelis, G. C. Neural correlates of multisensory cue integration in macaque MSTd. Nat. Neurosci. 11, 1201–1210 (2008).
Fetsch, C. R., Pouget, A., DeAngelis, G. C. & Angelaki, D. E. Neural correlates of reliability-based cue weighting during multisensory integration. Nat. Neurosci. 15, 146–154 (2011).
Keshavarzi, S. et al. Multisensory coding of angular head velocity in the retrosplenial cortex. Neuron 110, 532–543.e539 (2022).
Fetsch, C. R., DeAngelis, G. C. & Angelaki, D. E. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat. Rev. Neurosci. 14, 429–442 (2013).
Morgan, M. L., Deangelis, G. C. & Angelaki, D. E. Multisensory integration in macaque visual cortex depends on cue reliability. Neuron 59, 662–673 (2008).
Gu, Y., Angelaki, D. E. & DeAngelis, G. C. Contribution of correlated noise and selective decoding to choice probability measurements in extrastriate visual cortex. eLife 3, e02670 (2014).
Hennestad, E., Witoelar, A., Chambers, A. R. & Vervaeke, K. Mapping vestibular and visual contributions to angular head velocity tuning in the cortex. Cell Rep. 37, 110134 (2021).
Sun, H. et al. Conjunctive processing of spatial border and locomotion in retrosplenial cortex during spatial navigation. J. Physiol. 602, 5017–5038 (2024).
Velez-Fort, M. et al. A circuit for integration of head- and visual-motion signals in layer 6 of mouse primary visual cortex. Neuron 98, 179–191.e176 (2018).
Zhang, W. H. et al. Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation. eLife 8, e43753 (2019).
Kim, H. R., Angelaki, D. E. & DeAngelis, G. C. A neural mechanism for detecting object motion during self-motion. eLife 11, e74971 (2022).
Sasaki, R., Angelaki, D. E. & DeAngelis, G. C. Dissociation of self-motion and object motion by linear population decoding that approximates marginalization. J. Neurosci. 37, 11204–11219 (2017).
Dicke, P. W., Chakraborty, S. & Thier, P. Neuronal correlates of perceptual stability during eye movements. Eur. J. Neurosci. 27, 991–1002 (2008).
Lisberger, S. G. & Movshon, J. A. Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J. Neurosci. 19, 2224–2246 (1999).
Baden, T. et al. A synaptic mechanism for temporal filtering of visual signals. PLoS Biol. 12, e1001972 (2014).
Bizley, J. K., Jones, G. P. & Town, S. M. Where are multisensory signals combined for perceptual decision-making? Curr. Opin. Neurobiol. 40, 31–37 (2016).
Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 32–45 (1960).
Sperry, R. W. Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol. 43, 482–489 (1950).
Young, L. R. Optimal estimator models for spatial orientation and vestibular nystagmus. Exp. Brain Res. 210, 465–476 (2011).
Laurens, J. & Angelaki, D. E. A unified internal model theory to resolve the paradox of active versus passive self-motion sensation. eLife 6, e28074 (2017).
Von holst, E. & Mittelstaedt, H. The reafference principle: interaction between the central nervous system and the periphery. Naturwissenschaften 37, 464–476 (1950).
Cullen, K. E. & Minor, L. B. Semicircular canal afferents similarly encode active and passive head-on-body rotations: implications for the role of vestibular efference. J. Neurosci. 22, RC226 (2002).
Jamali, M., Sadeghi, S. G. & Cullen, K. E. Response of vestibular nerve afferents innervating utricle and saccule during passive and active translations. J. Neurophysiol. 101, 141–149 (2009).
Mackrous, I., Carriot, J. & Cullen, K. E. Context-independent encoding of passive and active self-motion in vestibular afferent fibers during locomotion in primates. Nat. Commun. 13, 120 (2022).
Roy, J. E. & Cullen, K. E. Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei. J. Neurosci. 24, 2102–2111 (2004).
Carriot, J., Brooks, J. X. & Cullen, K. E. Multimodal integration of self-motion cues in the vestibular system: active versus passive translations. J. Neurosci. 33, 19555–19566 (2013).
Medrea, I. & Cullen, K. E. Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion. J. Neurophysiol. 110, 2704–2717 (2013).
Marlinski, V. & McCrea, R. A. Coding of self-motion signals in ventro-posterior thalamus neurons in the alert squirrel monkey. Exp. Brain Res. 189, 463–472 (2008).
Dale, A. & Cullen, K. E. The ventral posterior lateral thalamus preferentially encodes externally applied versus active movement: implications for self-motion perception. Cereb. Cortex 29, 305–318 (2019).
Brooks, J. X. & Cullen, K. E. The primate cerebellum selectively encodes unexpected self-motion. Curr. Biol. 23, 947–955 (2013).
Klam, F. & Graf, W. Discrimination between active and passive head movements by macaque ventral and medial intraparietal cortex neurons. J. Physiol. 574, 367–386 (2006).
Zobeiri, O. A. & Cullen, K. E. Cerebellar Purkinje cells in male macaques combine sensory and motor information to predict the sensory consequences of active self-motion. Nat. Commun. 15, 4003 (2024).
Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A. & Keller, G. B. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95, 1420–1432.e1425 (2017).
Zmarz, P. & Keller, G. B. Mismatch receptive fields in mouse visual cortex. Neuron 92, 766–772 (2016).
Velez-Fort, M., Cossell, L., Porta, L., Clopath, C. & Margrie, T. W. Motor and vestibular signals in the visual cortex permit the separation of self versus externally generated visual motion. Cell 188, 2175–2189.e2115 (2025).
Shinder, M. E. & Taube, J. S. Resolving the active versus passive conundrum for head direction cells. Neuroscience 270, 123–138 (2014).
Shinder, M. E. & Newlands, S. D. Sensory convergence in the parieto-insular vestibular cortex. J. Neurophysiol. 111, 2445–2464 (2014).
Graham, J. A. et al. Angular head velocity cells within brainstem nuclei projecting to the head direction circuit. J. Neurosci. 43, 8403–8424 (2023).
Blair, H. T. & Sharp, P. E. Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J. Neurosci. 15, 6260–6270 (1995).
Colgin, L. L. Five decades of hippocampal place cells and EEG rhythms in behaving rats. J. Neurosci. 40, 54–60 (2020).
Song, E. Y., Kim, Y. B., Kim, Y. H. & Jung, M. W. Role of active movement in place-specific firing of hippocampal neurons. Hippocampus 15, 8–17 (2005).
Terrazas, A. et al. Self-motion and the hippocampal spatial metric. J. Neurosci. 25, 8085–8096 (2005).
Winter, S. S., Mehlman, M. L., Clark, B. J. & Taube, J. S. Passive transport disrupts grid signals in the parahippocampal cortex. Curr. Biol. 25, 2493–2502 (2015).
Shinder, M. E. & Taube, J. S. Active and passive movement are encoded equally by head direction cells in the anterodorsal thalamus. J. Neurophysiol. 106, 788–800 (2011).
Shinder, M. E. & Taube, J. S. Self-motion improves head direction cell tuning. J. Neurophysiol. 111, 2479–2492 (2014).
Blanco-Hernandez, E., Balsamo, G., Preston-Ferrer, P. & Burgalossi, A. Sensory and behavioral modulation of thalamic head-direction cells. Nat. Neurosci. 27, 28–33 (2024).
Lakshminarasimhan, K. J. et al. Tracking the mind’s eye: primate gaze behavior during virtual visuomotor navigation reflects belief dynamics. Neuron 106, 662–674.e665 (2020).
Alefantis, P. et al. Sensory evidence accumulation using optic flow in a naturalistic navigation task. J. Neurosci. 42, 5451–5462 (2022).
Stavropoulos, A., Lakshminarasimhan, K. J. & Angelaki, D. E. Belief embodiment through eye movements facilitates memory-guided navigation. Preprint at bioRxiv https://doi.org/10.1101/2023.08.21.554107 (2023).
Zhu, S. L., Lakshminarasimhan, K. J. & Angelaki, D. E. Computational cross-species views of the hippocampal formation. Hippocampus 33, 586–599 (2023).
Kaplan, R. & Friston, K. J. Planning and navigation as active inference. Biol. Cybern. 112, 323–343 (2018).
Vericel, M. E., Baraduc, P., Duhamel, J. R. & Wirth, S. Organizing space through saccades and fixations between primate posterior parietal cortex and hippocampus. Nat. Commun. 15, 10448 (2024).
Zhu, S., Lakshminarasimhan, K. J., Arfaei, N. & Angelaki, D. E. Eye movements reveal spatiotemporal dynamics of visually-informed planning in navigation. eLife 11, e73097 (2022).
Jacob, P. Y., Poucet, B., Liberge, M., Save, E. & Sargolini, F. Vestibular control of entorhinal cortex activity in spatial navigation. Front. Integr. Neurosci. 8, 38 (2014).
Brandt, T. et al. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128, 2732–2741 (2005).
McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M. B. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7, 663–678 (2006).
Laurens, J. & Angelaki, D. E. The brain compass: a perspective on how self-motion updates the head direction cell attractor. Neuron 97, 275–289 (2018).
Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the Drosophila central brain. Science 356, 849–853 (2017).
Yoder, R. M., Clark, B. J. & Taube, J. S. Origins of landmark encoding in the brain. Trends Neurosci. 34, 561–571 (2011).
Stackman, R. W., Clark, A. S. & Taube, J. S. Hippocampal spatial representations require vestibular input. Hippocampus 12, 291–303 (2002).
Stackman, R. W. & Taube, J. S. Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input. J. Neurosci. 17, 4349–4358 (1997).
Muir, G. M. et al. Disruption of the head direction cell signal after occlusion of the semicircular canals in the freely moving chinchilla. J. Neurosci. 29, 14521–14533 (2009).
Valerio, S. & Taube, J. S. Head direction cell activity is absent in mice without the horizontal semicircular canals. J. Neurosci. 36, 741–754 (2016).
Aghajan, Z. M. et al. Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality. Nat. Neurosci. 18, 121–128 (2015).
Ravassard, P. et al. Multisensory control of hippocampal spatiotemporal selectivity. Science 340, 1342–1346 (2013).
Sharp, P. E., Blair, H. T. & Cho, J. The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci. 24, 289–294 (2001).
Butler, W. N., Smith, K. S., van der Meer, M. A. A. & Taube, J. S. The head-direction signal plays a functional role as a neural compass during navigation. Curr. Biol. 27, 1259–1267 (2017).
Clark, B. J., Brown, J. E. & Taube, J. S. Head direction cell activity in the anterodorsal thalamus requires intact supragenual nuclei. J. Neurophysiol. 108, 2767–2784 (2012).
LaChance, P. A. & Taube, J. S. The anterior thalamus preferentially drives allocentric but not egocentric orientation tuning in postrhinal cortex. J. Neurosci. 44, e0861232024 (2024).
Laurens, J. & Angelaki, D. E. A model-based reassessment of the three-dimensional tuning of head direction cells in rats. J. Neurophysiol. 122, 1274–1287 (2019).
Page, H. J. I., Wilson, J. J. & Jeffery, K. J. A dual-axis rotation rule for updating the head direction cell reference frame during movement in three dimensions. J. Neurophysiol. 119, 192–208 (2018).
Angelaki, D. E. et al. A gravity-based three-dimensional compass in the mouse brain. Nat. Commun. 11, 1855 (2020).
Laurens, J., Kim, B., Dickman, J. D. & Angelaki, D. E. Gravity orientation tuning in macaque anterior thalamus. Nat. Neurosci. 19, 1566–1568 (2016).
Laurens, J., Meng, H. & Angelaki, D. E. Neural representation of orientation relative to gravity in the macaque cerebellum. Neuron 80, 1508–1518 (2013).
Laurens, J., Meng, H. & Angelaki, D. E. Computation of linear acceleration through an internal model in the macaque cerebellum. Nat. Neurosci. 16, 1701–1708 (2013).
LaChance, P. A., Dumont, J. R., Ozel, P., Marcroft, J. L. & Taube, J. S. Commutative properties of head direction cells during locomotion in 3D: are all routes equal? J. Neurosci. 40, 3035–3051 (2020).
O’Mara, S. M., Rolls, E. T., Berthoz, A. & Kesner, R. P. Neurons responding to whole-body motion in the primate hippocampus. J. Neurosci. 14, 6511–6523 (1994).
Kropff, E., Carmichael, J. E., Moser, E. I. & Moser, M. B. Frequency of theta rhythm is controlled by acceleration, but not speed, in running rats. Neuron 109, 1029–1039.e1028 (2021).
Srinivasan, M., Zhang, S., Lehrer, M. & Collett, T. Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199, 237–244 (1996).
Esch, H. E., Zhang, S., Srinivasan, M. V. & Tautz, J. Honeybee dances communicate distances measured by optic flow. Nature 411, 581–583 (2001).
Srinivasan, M. V., Zhang, S., Altwein, M. & Tautz, J. Honeybee navigation: nature and calibration of the “odometer”. Science 287, 851–853 (2000).
Heinze, S., Narendra, A. & Cheung, A. Principles of insect path integration. Curr. Biol. 28, R1043–R1058 (2018).
Pfeffer, S. E. & Wittlinger, M. Optic flow odometry operates independently of stride integration in carried ants. Science 353, 1155–1157 (2016).
Ellmore, T. M. & McNaughton, B. L. Human path integration by optic flow. Spatial Cognit. Comput. 4, 255–272 (2004).
Frenz, H. & Lappe, M. Absolute travel distance from optic flow. Vis. Res. 45, 1679–1692 (2005).
Kearns, M. J., Warren, W. H., Duchon, A. P. & Tarr, M. J. Path integration from optic flow and body senses in a homing task. Perception 31, 349–374 (2002).
Petzschner, F. H. & Glasauer, S. Iterative Bayesian estimation as an explanation for range and regression effects: a study on human path integration. J. Neurosci. 31, 17220–17229 (2011).
Redlick, F. P., Jenkin, M. & Harris, L. R. Humans can use optic flow to estimate distance of travel. Vis. Res. 41, 213–219 (2001).
Campbell, M. G. et al. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nat. Neurosci. 21, 1096–1106 (2018).
Kautzky, M. & Thurley, K. Estimation of self-motion duration and distance in rodents. R. Soc. Open Sci. 3, 160118 (2016).
Thurley, K. & Ayaz, A. Virtual reality systems for rodents. Curr. Zool. 63, 109–119 (2017).
Sherrill, K. R. et al. Functional connections between optic flow areas and navigationally responsive brain regions during goal-directed navigation. Neuroimage 118, 386–396 (2015).
Arleo, A. et al. Optic flow stimuli update anterodorsal thalamus head direction neuronal activity in rats. J. Neurosci. 33, 16790–16795 (2013).
Chen, G., King, J. A., Burgess, N. & O’Keefe, J. How vision and movement combine in the hippocampal place code. Proc. Natl Acad. Sci. USA 110, 378–383 (2013).
Mao, D., Molina, L. A., Bonin, V. & McNaughton, B. L. Vision and locomotion combine to drive path integration sequences in mouse retrosplenial cortex. Curr. Biol. 30, 1680–1688.e1684 (2020).
Madhav, M. S. et al. Control and recalibration of path integration in place cells using optic flow. Nat. Neurosci. 27, 1599–1608 (2024).
Foo, P., Warren, W. H., Duchon, A. & Tarr, M. J. Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. J. Exp. Psychol. Learn. Mem. Cogn. 31, 195–215 (2005).
Collett, M. & Collett, T. S. How do insects use path integration for their navigation? Biol. Cybern. 83, 245–259 (2000).
Sommer, S., von Beeren, C. & Wehner, R. Multiroute memories in desert ants. Proc. Natl Acad. Sci. USA 105, 317–322 (2008).
Etienne, A. S., Maurer, R., Boulens, V., Levy, A. & Rowe, T. Resetting the path integrator: a basic condition for route-based navigation. J. Exp. Biol. 207, 1491–1508 (2004).
Etienne, A. S., Maurer, R. & Seguinot, V. Path integration in mammals and its interaction with visual landmarks. J. Exp. Biol. 199, 201–209 (1996).
Tcheang, L., Bulthoff, H. H. & Burgess, N. Visual influence on path integration in darkness indicates a multimodal representation of large-scale space. Proc. Natl Acad. Sci. USA 108, 1152–1157 (2011).
Nardini, M., Jones, P., Bedford, R. & Braddick, O. Development of cue integration in human navigation. Curr. Biol. 18, 689–693 (2008).
Jayakumar, R. P. et al. Recalibration of path integration in hippocampal place cells. Nature 566, 533–537 (2019).
Secer, G., Knierim, J. J. & Cowan, N. J. Continuous bump attractor networks require explicit error coding for gain recalibration. Preprint at bioRxiv https://doi.org/10.1101/2024.02.12.579874 (2024).
Yang, C. et al. A population code for spatial representation in the zebrafish telencephalon. Nature 634, 397–406 (2024).
Noppeney, U. Perceptual inference, learning, and attention in a multisensory world. Annu. Rev. Neurosci. 44, 449–473 (2021).
Byrne, P., Becker, S. & Burgess, N. Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375 (2007).
Rolls, E. T. A theory and model of scene representations with hippocampal spatial view cells. Hippocampus 35, e70013 (2025).
Andersen, R. A. & Mountcastle, V. B. The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci. 3, 532–548 (1983).
Andersen, R. A., Essick, G. K. & Siegel, R. M. Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985).
Chen, X., Deangelis, G. C. & Angelaki, D. E. Diverse spatial reference frames of vestibular signals in parietal cortex. Neuron 80, 1310–1321 (2013).
Martin, C. Z., Brooks, J. X. & Green, A. M. Role of rostral fastigial neurons in encoding a body-centered representation of translation in three dimensions. J. Neurosci. 38, 3584–3602 (2018).
Brooks, J. X. & Cullen, K. E. Multimodal integration in rostral fastigial nucleus provides an estimate of body movement. J. Neurosci. 29, 10499–10511 (2009).
Bicanski, A. & Burgess, N. A neural-level model of spatial memory and imagery. eLife 7, e33752 (2018).
Alexander, A. S. & Nitz, D. A. Retrosplenial cortex maps the conjunction of internal and external spaces. Nat. Neurosci. 18, 1143–1151 (2015).
Cho, J. & Sharp, P. E. Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav. Neurosci. 115, 3–25 (2001).
Wang, C. et al. Egocentric coding of external items in the lateral entorhinal cortex. Science 362, 945–949 (2018).
Cheng, N. et al. Egocentric processing of items in spines, dendrites, and somas in the retrosplenial cortex. Neuron 112, 646–660.e648 (2024).
Shine, J. P., Valdes-Herrera, J. P., Hegarty, M. & Wolbers, T. The human retrosplenial cortex and thalamus code head direction in a global reference frame. J. Neurosci. 36, 6371–6381 (2016).
Chen, L. L., Lin, L. H., Green, E. J., Barnes, C. A. & McNaughton, B. L. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp. Brain Res. 101, 8–23 (1994).
Rolls, E. T. Neurons including hippocampal spatial view cells, and navigation in primates including humans. Hippocampus 31, 593–611 (2021).
McNaughton, B. L., Knierim, J. J., & Wilson, M. A. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 585–595 (MIT Press, 1995).
Mao, D. et al. Spatial modulation of hippocampal activity in freely moving macaques. Neuron 109, 3521–3534.e3526 (2021).
Xu, X., Du, K. & Mao, D. Spatial dissociation between recognition and navigation in the primate hippocampus. Sci. Adv. 10, eado7392 (2024).
Pouget, A. & Sejnowski, T. J. Spatial transformations in the parietal cortex using basis functions. J. Cogn. Neurosci. 9, 222–237 (1997).
Pouget, A., Deneve, S. & Duhamel, J. R. A computational perspective on the neural basis of multisensory spatial representations. Nat. Rev. Neurosci. 3, 741–747 (2002).
Sasaki, R., Anzai, A., Angelaki, D. E. & DeAngelis, G. C. Flexible coding of object motion in multiple reference frames by parietal cortex neurons. Nat. Neurosci. 23, 1004–1015 (2020).
Chen, X., DeAngelis, G. C. & Angelaki, D. E. Flexible egocentric and allocentric representations of heading signals in parietal cortex. Proc. Natl Acad. Sci. USA 115, E3305–E3312 (2018).
Wang, C., Chen, X. & Knierim, J. J. Egocentric and allocentric representations of space in the rodent brain. Curr. Opin. Neurobiol. 60, 12–20 (2020).
Nau, M., Julian, J. B. & Doeller, C. F. How the brain’s navigation system shapes our visual experience. Trends Cogn. Sci. 22, 810–825 (2018).
Angelaki, D. E. & Cullen, K. E. Vestibular system: the many facets of a multimodal sense. Annu. Rev. Neurosci. 31, 125–150 (2008).
Li, L. Visual perception of self-motion. Annu. Rev. Vis. Sci. 11, 20.1–20.28 (2025). In press.
Nadler, J. W. et al. Joint representation of depth from motion parallax and binocular disparity cues in macaque area MT. J. Neurosci. 33, 14061–14074 (2013).
Kropff, E., Carmichael, J. E., Moser, M. B. & Moser, E. I. Speed cells in the medial entorhinal cortex. Nature 523, 419–424 (2015).
Casali, G., Bush, D. & Jeffery, K. Altered neural odometry in the vertical dimension. Proc. Natl Acad. Sci. USA 116, 4631–4636 (2019).
Qiu, S. et al. Whole-brain spatial organization of hippocampal single-neuron projectomes. Science 383, eadj9198 (2024).
Guldin, W. O. & Grusser, O. J. Is there a vestibular cortex? Trends Neurosci. 21, 254–259 (1998).
Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
Shinder, M. E. & Taube, J. S. Differentiating ascending vestibular pathways to the cortex involved in spatial cognition. J. Vestib. Res. 20, 3–23 (2010).
Ebata, S., Sugiuchi, Y., Izawa, Y., Shinomiya, K. & Shinoda, Y. Vestibular projection to the periarcuate cortex in the monkey. Neurosci. Res. 49, 55–68 (2004).
Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: II. Cortical afferents. J. Comp. Neurol. 466, 48–79 (2003).
Morecraft, R. J., Geula, C. & Mesulam, M. M. Architecture of connectivity within a cingulo-fronto-parietal neurocognitive network for directed attention. Arch. Neurol. 50, 279–284 (1993).
Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533 (1994).
Ding, S. L., Van Hoesen, G. & Rockland, K. S. Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J. Comp. Neurol. 425, 510–530 (2000).
Noel, J. P. & Angelaki, D. E. Cognitive, systems, and computational neurosciences of the self in motion. Annu. Rev. Psychol. 73, 103–129 (2022).
Lewis, J. W. & Van Essen, D. C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).
Akbarian, S., Grusser, O. J. & Guldin, W. O. Thalamic connections of the vestibular cortical fields in the squirrel monkey (Saimiri sciureus). J. Comp. Neurol. 326, 423–441 (1992).
Boussaoud, D., Ungerleider, L. G. & Desimone, R. Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J. Comp. Neurol. 296, 462–495 (1990).
Baizer, J. S., Ungerleider, L. G. & Desimone, R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J. Neurosci. 11, 168–190 (1991).
Lynch, J. C. & Tian, J. R. Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog. Brain Res. 151, 461–501 (2006).
Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: III. Cortical efferents. J. Comp. Neurol. 502, 810–833 (2007).
Clark, B. J., Simmons, C. M., Berkowitz, L. E. & Wilber, A. A. The retrosplenial–parietal network and reference frame coordination for spatial navigation. Behav. Neurosci. 132, 416–429 (2018).
Salinas, E. & Sejnowski, T. J. Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7, 430–440 (2001).
Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).
Kording, K. P. et al. Causal inference in multisensory perception. PLoS ONE 2, e943 (2007).
Acerbi, L., Dokka, K., Angelaki, D. E. & Ma, W. J. Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception. PLoS Comput. Biol. 14, e1006110 (2018).
Brotchie, P. R., Andersen, R. A., Snyder, L. H. & Goodman, S. J. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375, 232–235 (1995).
Salinas, E. & Abbott, L. F. Transfer of coded information from sensory to motor networks. J. Neurosci. 15, 6461–6474 (1995).
Acknowledgements
The authors thank K. Du for his conscientious assistance in drafting the figures. This work was supported by grants from the National Science and Technology Innovation 2030 Major Program (no. 2022ZD0205000).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Neuroscience thanks Kate Jeffery and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Cognitive map
-
A mental representation of explored space that allows individuals to flexibly plan routes from any starting location and head direction to goals within this map.
- Conjunctive tuning
-
The capacity of some neurons to simultaneously encode multiple stimulus features, for example, head direction and moving speed.
- Inertial motion
-
A tendency to maintain the current motion state of an object (for example, constant speed) until an extra force is applied that is large enough to change the state of the object (for example, by accelerating it).
- Landmark cues
-
Physical markers in the environment, such as a lighthouse, that can be reliably used by individuals to identify their location and orientation relative to the outside world.
- Otoliths
-
A specific part of the vestibular end organs in the inner ears of vertebrates. The otoliths are composed of calcium-based crystals and are responsible for detecting linear acceleration of the head in 3D space, including gravity.
- Path integration
-
A neural process that relies upon and integrates self-motion cues to continuously update one’s position and head direction during locomotion in the environment under conditions without external landmark cues.
- Phase-lead
-
A situation in which two waveforms share a similar oscillating frequency, yet one reaches its maximum value earlier than the other.
- Prior
-
The brain’s pre-existing belief or stored knowledge learned from past experiences, which may shape current perception of incoming sensory inputs.
- Rotation
-
A change in the orientation of an object in space as a result of it spinning around its own axis without its rotary axis being physically displaced.
- Semicircular canals
-
A specific part of the vestibular end organs composed of three ring-shaped organs distributed orthogonal to each other in each side of the inner ear. The semicircular canals are responsible for detecting the angular acceleration of the head in three dimensions.
- Sensory–motor transformation areas
-
Specific brain regions that convert sensory information into planned motor commands, acting as a bridge between perception and action.
- Smooth pursuit
-
A type of eye movement in which the eyes closely track a moving object to keep its image centred on the fovea.
- Translation
-
Movement of an entire object in space, leading to a changed location but with maintained spatial orientation.
- Vestibular organs
-
Specialized sensory structures located within each side of the inner ear. The vestibular organs consist of the otoliths and semicircular canals, which are responsible for detecting linear acceleration and angular acceleration of the head, respectively.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mao, D., Gu, Y. Multisensory coding of self-motion and its contribution to navigation. Nat. Rev. Neurosci. 26, 715–732 (2025). https://doi.org/10.1038/s41583-025-00970-x
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41583-025-00970-x


