Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glycobiology of rheumatic diseases

An Author Correction to this article was published on 23 February 2023

This article has been updated

Abstract

Glycosylation has a profound influence on protein activity and cell biology through a variety of mechanisms, such as protein stability, receptor interactions and signal transduction. In many rheumatic diseases, a shift in protein glycosylation occurs, and is associated with inflammatory processes and disease progression. For example, the Fc-glycan composition on (auto)antibodies is associated with disease activity, and the presence of additional glycans in the antigen-binding domains of some autoreactive B cell receptors can affect B cell activation. In addition, changes in synovial fibroblast cell-surface glycosylation can alter the synovial microenvironment and are associated with an altered inflammatory state and disease activity in rheumatoid arthritis. The development of our understanding of the role of glycosylation of plasma proteins (particularly (auto)antibodies), cells and tissues in rheumatic pathological conditions suggests that glycosylation-based interventions could be used in the treatment of these diseases.

Key points

  • Autoantigen-specific IgG in patients with rheumatic diseases has a distinct N-glycosylation signature in the fragment crystallizable (Fc) domain, characterized by fucosylation without sialylation or galactosylation.

  • In rheumatoid arthritis (RA) and anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, autoantigen-specific IgG, as well as autoreactive B cell receptors, are extensively N-glycosylated in the fragment antigen-binding (Fab) domain.

  • Specific Fc and Fab IgG glycan signatures are associated with RA disease activity and remission.

  • Mechanistic evidence is lacking on how fucosylated, agalactosylated IgG Fc glycans possibly cause a pro-inflammatory phenotype in humans.

  • RA is associated with reduction of cell-surface sialylation of synovial fibroblasts, affecting their interactions with galectin-3 and resulting in a cytokine-induced switch towards a pro-inflammatory phenotype.

  • Glycan-based therapies could intervene in inflammatory processes by alteration of glycosylation, or by specific targeting and depletion of autoreactive B cells and autoantibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biosynthesis of protein glycans and the IgG-specific glycan signatures in rheumatoid arthritis.
Fig. 2: Functional effects of disease-specific Fc and Fab glycosylation in humans.
Fig. 3: Disease-specific tissue glycosylation.
Fig. 4: Therapeutic potential of glycosylation.

Similar content being viewed by others

Change history

References

  1. Jefferis, R. Recombinant proteins and monoclonal antibodies. Adv. Biochem. Eng. Biotechnol. 175, 281–318 (2021).

    PubMed  Google Scholar 

  2. Haan, N. et al. Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobiology 32, 651–663 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marshall, R. D. Glycoproteins. Ann. Rev. Biochem. 41, 673–702 (1972).

    Article  CAS  PubMed  Google Scholar 

  4. Zielinska, D. F., Gnad, F., Wisniewski, J. R. & Mann, M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141, 897–907 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Bause, E. & Legler, G. The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem. J. 195, 639–644 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Varki, A. Essentials of Glycobiology 4th edn (ed. Inglis, J.) (Cold Spring Harbor Laboratory Press, 2022).

  7. Lis, H. & Sharon, N. Protein glycosylation. Struct. Funct. Asp. Eur. J. Biochem. 218, 1–27 (1993).

    Article  CAS  Google Scholar 

  8. Parekh, R. B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Reiding, K. R. et al. Serum protein N-glycosylation changes with rheumatoid arthritis disease activity during and after pregnancy. Front. Med. 4, 241 (2017).

    Article  Google Scholar 

  10. Albrecht, S., Unwin, L., Muniyappa, M. & Rudd, P. M. Glycosylation as a marker for inflammatory arthritis. Cancer Biomark. 14, 17–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. de Haan, N., Falck, D. & Wuhrer, M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 30, 226–240 (2020).

    Article  PubMed  Google Scholar 

  12. Bakovic, M. P. et al. High-throughput IgG Fc N-glycosylation profiling by mass spectrometry of glycopeptides. J. Proteome Res. 12, 821–831 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Bondt, A. et al. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol. Cell. Proteom. 13, 3029–3039 (2014).

    Article  CAS  Google Scholar 

  14. Bond, A. et al. A detailed lectin analysis of IgG glycosylation, demonstrating disease specific changes in terminal galactose and N-acetylglucosamine. J. Autoimmun. 10, 77–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Kristic, J. et al. Glycans are a novel biomarker of chronological and biological ages. J. Gerontol. A Biol. Sci. Med. Sci. 69, 779–789 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Keusch, J., Levy, Y., Shoenfeld, Y. & Youinou, P. Analysis of different glycosylation states in IgG subclasses. Clin. Chim. Acta 252, 147–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, G. et al. Human IgG Fc-glycosylation profiling reveals associations with age, sex, female sex hormones and thyroid cancer. J. Proteom. 75, 2824–2834 (2012).

    Article  CAS  Google Scholar 

  18. Watson, M., Rudd, P. M., Bland, M., Dwek, R. A. & Axford, J. S. Sugar printing rheumatic diseases: a potential method for disease differentiation using immunoglobulin G oligosaccharides. Arthritis Rheum. 42, 1682–1690 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Ercan, A. et al. Multiple juvenile idiopathic arthritis subtypes demonstrate proinflammatory IgG glycosylation. Arthritis Rheum. 64, 3025–3033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vuckovic, F. et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol. 67, 2978–2989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leirisalo-Repo, M., Hernandez-Munoz, H. E. & Rook, G. A. Agalactosyl IgG is elevated in patients with active spondyloarthropathy. Rheumatol. Int. 18, 171–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Holland, M. et al. Hypogalactosylation of serum IgG in patients with ANCA-associated systemic vasculitis. Clin. Exp. Immunol. 129, 183–190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parekh, R. et al. A comparative analysis of disease-associated changes in the galactosylation of serum IgG. J. Autoimmun. 2, 101–114 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Trbojevic Akmacic, I. et al. Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm. Bowel Dis. 21, 1237–1247 (2015).

    PubMed  Google Scholar 

  25. Tomana, M., Schrohenloher, R. E., Koopman, W. J., Alarcon, G. S. & Paul, W. A. Abnormal glycosylation of serum IgG from patients with chronic inflammatory diseases. Arthritis Rheum. 31, 333–338 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Wuhrer, M. et al. Pro-inflammatory pattern of IgG1 Fc glycosylation in multiple sclerosis cerebrospinal fluid. J. Neuroinflammation 12, 235 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Selman, M. H. et al. IgG fc N-glycosylation changes in Lambert-Eaton myasthenic syndrome and myasthenia gravis. J. Proteome Res. 10, 143–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Ercan, A. et al. Aberrant IgG galactosylation precedes disease onset, correlates with disease activity, and is prevalent in autoantibodies in rheumatoid arthritis. Arthritis Rheum. 62, 2239–2248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rook, G. A. et al. Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. J. Autoimmun. 4, 779–794 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. van de Geijn, F. E. et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res. Ther. 11, R193 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rombouts, Y. et al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann. Rheum. Dis. 74, 234–241 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Espy, C. et al. Sialylation levels of anti-proteinase 3 antibodies are associated with the activity of granulomatosis with polyangiitis (Wegener’s). Arthritis Rheum. 63, 2105–2115 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Wuhrer, M. et al. Skewed Fc glycosylation profiles of anti-proteinase 3 immunoglobulin G1 autoantibodies from granulomatosis with polyangiitis patients show low levels of bisection, galactosylation, and sialylation. J. Proteome Res. 14, 1657–1665 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Fickentscher, C. et al. The pathogenicity of anti-beta2GP1-IgG autoantibodies depends on Fc glycosylation. J. Immunol. Res. 2015, 638129 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pasek, M. et al. Galactosylation of IgG from rheumatoid arthritis (RA) patients–changes during therapy. Glycoconj. J. 23, 463–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Gindzienska-Sieskiewicz, E. et al. Changes of glycosylation of IgG in rheumatoid arthritis patients treated with methotrexate. Adv. Med. Sci. 61, 193–197 (2016).

    Article  PubMed  Google Scholar 

  37. Selman, M. H. et al. Changes in antigen-specific IgG1 Fc N-glycosylation upon influenza and tetanus vaccination. Mol. Cell. Proteom. 11, M111 014563 (2012).

    Article  Google Scholar 

  38. Kemna, M. J. et al. Galactosylation and sialylation levels of IgG predict relapse in patients with PR3-ANCA associated vasculitis. EBioMedicine 17, 108–118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bondt, A. et al. IgA N- and O-glycosylation profiling reveals no association with the pregnancy-related improvement in rheumatoid arthritis. Arthritis Res. Ther. 19, 160 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bondt, A. et al. Longitudinal monitoring of immunoglobulin A glycosylation during pregnancy by simultaneous MALDI-FTICR-MS analysis of N- and O-glycopeptides. Sci. Rep. 6, 27955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steffen, U. et al. IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat. Commun. 11, 120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scherer, H. U. et al. Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum. 62, 1620–1629 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Lardinois, O. M. et al. Immunoglobulins G from patients with ANCA-associated vasculitis are atypically glycosylated in both the Fc and Fab regions and the relation to disease activity. PLoS ONE 14, e0213215 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kiyoshi, M., Tsumoto, K., Ishii-Watabe, A. & Caaveiro, J. M. M. Glycosylation of IgG-Fc: a molecular perspective. Int. Immunol. 29, 311–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Shinkawa, T. et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Ferrara, C., Stuart, F., Sondermann, P., Brunker, P. & Umana, P. The carbohydrate at FcγRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J. Biol. Chem. 281, 5032–5036 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Larsen, M. D. et al. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science 371, eabc8378 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Pongracz, T., Vidarsson, G. & Wuhrer, M. Antibody glycosylation in COVID-19. Glycoconj. J. 39, 335–344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karsten, C. M. et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat. Med. 18, 1401–1406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heyl, K. A., Karsten, C. M. & Slevogt, H. Galectin-3 binds highly galactosylated IgG1 and is crucial for the IgG1 complex mediated inhibition of C5aReceptor induced immune responses. Biochem. Biophys. Res. Commun. 479, 86–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Ohmi, Y. et al. Sialylation converts arthritogenic IgG into inhibitors of collagen-induced arthritis. Nat. Commun. 7, 11205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Anthony, R. M., Kobayashi, T., Wermeling, F. & Ravetch, J. V. Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature 475, 110–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sondermann, P., Pincetic, A., Maamary, J., Lammens, K. & Ravetch, J. V. General mechanism for modulating immunoglobulin effector function. Proc. Natl Acad. Sci. USA 110, 9868–9872 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rademacher, T. W., Williams, P. & Dwek, R. A. Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc. Natl Acad. Sci. USA 91, 6123–6127 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dekkers, G. et al. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front. Immunol. 8, 877 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Peschke, B., Keller, C. W., Weber, P., Quast, I. & Lunemann, J. D. Fc-galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front. Immunol. 8, 646 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. van Osch, T. L. J. et al. Fc galactosylation promotes hexamerization of human IgG1, leading to enhanced classical complement activation. J. Immunol. 207, 1545–1554 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yu, X., Vasiljevic, S., Mitchell, D. A., Crispin, M. & Scanlan, C. N. Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J. Mol. Biol. 425, 1253–1258 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Crispin, M., Yu, X. & Bowden, T. A. Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc. Natl Acad. Sci. USA 110, E3544–E3546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ahmed, A. A. et al. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. J. Mol. Biol. 426, 3166–3179 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Campbell, I. K. et al. Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils. J. Immunol. 192, 5031–5038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leontyev, D. et al. Sialylation-independent mechanism involved in the amelioration of murine immune thrombocytopenia using intravenous gammaglobulin. Transfusion 52, 1799–1805 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Tjon, A. S. et al. Intravenous immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL-13 production. J. Immunol. 192, 5625–5634 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Bayry, J., Bansal, K., Kazatchkine, M. D. & Kaveri, S. V. DC-SIGN and alpha2,6-sialylated IgG Fc interaction is dispensable for the anti-inflammatory activity of IVIg on human dendritic cells. Proc. Natl Acad. Sci. USA 106, E24 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guhr, T. et al. Enrichment of sialylated IgG by lectin fractionation does not enhance the efficacy of immunoglobulin G in a murine model of immune thrombocytopenia. PLoS ONE 6, e21246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Malhotra, R. et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med. 1, 237–243 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Nimmerjahn, F., Anthony, R. M. & Ravetch, J. V. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc. Natl Acad. Sci. USA 104, 8433–8437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van de Geijn, F. E. et al. Mannose-binding lectin does not explain the course and outcome of pregnancy in rheumatoid arthritis. Arthritis Res. Ther. 13, R10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. van de Geijn, F. E. et al. Mannose-binding lectin polymorphisms are not associated with rheumatoid arthritis–confirmation in two large cohorts. Rheumatology 47, 1168–1171 (2008).

    Article  PubMed  Google Scholar 

  71. Lippold, S., Nicolardi, S., Wuhrer, M. & Falck, D. Proteoform-resolved FcRIIIa binding assay for Fab glycosylated monoclonal antibodies achieved by affinity chromatography mass spectrometry of Fc moieties. Front. Chem. 7, 698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Quast, I. et al. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J. Clin. Invest. 125, 4160–4170 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wei, B. et al. Fc galactosylation follows consecutive reaction kinetics and enhances immunoglobulin G hexamerization for complement activation. mAbs 13, 1893427 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bartsch, Y. C. et al. IgG Fc sialylation is regulated during the germinal center reaction following immunization with different adjuvants. J. Allergy Clin. Immunol. 146, 652–666.e11 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat. Immunol. 18, 104–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Jones, M. B. et al. B-cell-independent sialylation of IgG. Proc. Natl Acad. Sci. USA 113, 7207–7212 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Glendenning, L. M., Zhou, J. Y., Reynero, K. M. & Cobb, B. A. Divergent Golgi trafficking limits B cell-mediated IgG sialylation. J. Leukoc. Biol. https://doi.org/10.1002/JLB.3MA0522-731R (2022).

    Article  PubMed  Google Scholar 

  78. Axford, J. S. et al. Reduced B-cell galactosyltransferase activity in rheumatoid arthritis. Lancet 2, 1486–1488 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, J. et al. Fc-glycosylation of IgG1 is modulated by B-cell stimuli. Mol. Cell. Proteom. 10, M110 004655 (2011).

    Article  Google Scholar 

  80. Engdahl, C. et al. Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Res. Ther. 20, 84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mijakovac, A. et al. Effects of estradiol on immunoglobulin G glycosylation: mapping of the downstream signaling mechanism. Front. Immunol. 12, 680227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ercan, A. et al. Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2, e89703 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lagattuta, K. A. & Nigrovic, P. A. Estrogen-driven changes in immunoglobulin G Fc glycosylation. Exp. Suppl. 112, 341–361 (2021).

    CAS  PubMed  Google Scholar 

  84. van de Bovenkamp, F. S., Hafkenscheid, L., Rispens, T. & Rombouts, Y. The emerging importance of IgG Fab glycosylation in immunity. J. Immunol. 196, 1435–1441 (2016).

    Article  PubMed  Google Scholar 

  85. Anumula, K. R. Quantitative glycan profiling of normal human plasma derived immunoglobulin and its fragments Fab and Fc. J. Immunol. Methods 382, 167–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Endo, T., Wright, A., Morrison, S. L. & Kobata, A. Glycosylation of the variable region of immunoglobulin G — site specific maturation of the sugar chains. Mol. Immunol. 32, 931–940 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Dunn-Walters, D., Boursier, L. & Spencer, J. Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol. Immunol. 37, 107–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Koers, J. et al. Biased N-glycosylation site distribution and acquisition across the antibody V region during B cell maturation. J. Immunol. 202, 2220–2228 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. van de Bovenkamp, F. S. et al. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc. Natl Acad. Sci. USA 115, 1901–1906 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. van de Bovenkamp, F. S. et al. Variable domain N-linked glycans acquired during antigen-specific immune responses can contribute to Immunoglobulin G antibody stability. Front. Immunol. 9, 740 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Courtois, F., Agrawal, N. J., Lauer, T. M. & Trout, B. L. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab. mAbs 8, 99–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Leibiger, H., Wustner, D., Stigler, R. D. & Marx, U. Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding. Biochem. J. 338, 529–538 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tachibana, H., Kim, J. Y. & Shirahata, S. Building high affinity human antibodies by altering the glycosylation on the light chain variable region in N-acetylglucosamine-supplemented hybridoma cultures. Cytotechnology 23, 151–159 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Coloma, M. J., Trinh, R. K., Martinez, A. R. & Morrison, S. L. Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(1→6) dextran antibody. J. Immunol. 162, 2162–2170 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Sabouri, Z. et al. Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity. Proc. Natl Acad. Sci. USA 111, E2567–E2575 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hafkenscheid, L. et al. Structural analysis of variable domain glycosylation of anti-citrullinated protein antibodies in rheumatoid arthritis reveals the presence of highly sialylated glycans. Mol. Cell. Proteom. 16, 278–287 (2017).

    Article  CAS  Google Scholar 

  97. Rombouts, Y. et al. Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis. Ann. Rheum. Dis. 75, 578–585 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Vergroesen, R. D. et al. B-cell receptor sequencing of anti-citrullinated protein antibody (ACPA) IgG-expressing B cells indicates a selective advantage for the introduction of N-glycosylation sites during somatic hypermutation. Ann. Rheum. Dis. 77, 956–958 (2018).

    PubMed  Google Scholar 

  99. Vergroesen, R. D. et al. N-Glycosylation site analysis of citrullinated antigen-specific B-cell receptors indicates alternative selection pathways during autoreactive B-cell development. Front. Immunol. 10, 2092 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kissel, T. et al. IgG anti-citrullinated protein antibody variable domain glycosylation increases before the onset of rheumatoid arthritis and stabilizes thereafter: a cross-sectional study encompassing ~1,500 samples. Arthritis Rheumatol. 74, 1147–1158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hafkenscheid, L. et al. N-Linked glycans in the variable domain of IgG anti-citrullinated protein antibodies predict the development of rheumatoid arthritis. Arthritis Rheumatol. 71, 1626–1633 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kissel, T. et al. On the presence of HLA-SE alleles and ACPA-IgG variable domain glycosylation in the phase preceding the development of rheumatoid arthritis. Ann. Rheum. Dis. 78, 1616–1620 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Kissel, T. et al. Genetic predisposition (HLA-SE) is associated with ACPA-IgG variable domain glycosylation in the predisease phase of RA. Ann. Rheum. Dis. 81, 141–143 (2022).

    Article  PubMed  Google Scholar 

  104. Suwannalai, P. et al. Anti-citrullinated protein antibodies have a low avidity compared with antibodies against recall antigens. Ann. Rheum. Dis. 70, 373–379 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Kissel, T. et al. Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. Sci. Adv. 8, eabm1759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rizzuto, G. et al. Establishment of fetomaternal tolerance through glycan-mediated B cell suppression. Nature 603, 497–502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cao, A. et al. Galectin-9 binds IgM-BCR to regulate B cell signaling. Nat. Commun. 9, 3288 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Meyer, S. J., Linder, A. T., Brandl, C. & Nitschke, L. B cell Siglecs — news on signaling and its interplay with ligand binding. Front. Immunol. 9, 2820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Marth, J. D. & Grewal, P. K. Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874–887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dias, A. M. et al. Metabolic control of T cell immune response through glycans in inflammatory bowel disease. Proc. Natl Acad. Sci. USA 115, E4651–E4660 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhu, D. et al. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 99, 2562–2568 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Linley, A. et al. Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells. Blood 126, 1902–1910 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Radcliffe, C. M. et al. Human follicular lymphoma cells contain oligomannose glycans in the antigen-binding site of the B-cell receptor. J. Biol. Chem. 282, 7405–7415 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Coelho, V. et al. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc. Natl Acad. Sci. USA 107, 18587–18592 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu, P. C. et al. Influence of variable domain glycosylation on anti-neutrophil cytoplasmic autoantibodies and anti-glomerular basement membrane autoantibodies. BMC Immunol. 13, 10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hamza, N. et al. Ig gene analysis reveals altered selective pressures on Ig-producing cells in parotid glands of primary Sjogren’s syndrome patients. J. Immunol. 194, 514–521 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Visser, A., Hamza, N., Kroese, F. G. M. & Bos, N. A. Acquiring new N-glycosylation sites in variable regions of immunoglobulin genes by somatic hypermutation is a common feature of autoimmune diseases. Ann. Rheum. Dis. 77, e69 (2018).

    Article  PubMed  Google Scholar 

  119. Huijbers, M. G. et al. MuSK myasthenia gravis monoclonal antibodies: valency dictates pathogenicity. Neurol. Neuroimmunol. Neuroinflamm. 6, e547 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mandel-Brehm, C. et al. Elevated N-linked glycosylation of IgG V regions in myasthenia gravis disease subtypes. J. Immunol. 207, 2005–2014 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Pereira, M. S. et al. Glycans as key checkpoints of T cell activity and function. Front. Immunol. 9, 2754 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kanyo, N. et al. Glycocalyx regulates the strength and kinetics of cancer cell adhesion revealed by biophysical models based on high resolution label-free optical data. Sci. Rep. 10, 22422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shurer, C. R. et al. Physical principles of membrane shape regulation by the glycocalyx. Cell 177, 1757–1770.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Paszek, M. J. et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511, 319–325 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Alves, I., Fernandes, A., Santos-Pereira, B., Azevedo, C. M. & Pinho, S. S. Glycans as a key factor in self and nonself discrimination: impact on the breach of immune tolerance. FEBS Lett. 596, 1485–1502 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Wang, Y. et al. Loss of α2-6 sialylation promotes the transformation of synovial fibroblasts into a pro-inflammatory phenotype in arthritis. Nat. Commun. 12, 2343 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Yang, X., Lehotay, M., Anastassiades, T., Harrison, M. & Brockhausen, I. The effect of TNF-α on glycosylation pathways in bovine synoviocytes. Biochem. Cell Biol. 82, 559–568 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Filer, A. et al. Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum. 60, 1604–1614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pearson, M. J. et al. Endogenous galectin-9 suppresses apoptosis in human rheumatoid arthritis synovial fibroblasts. Sci. Rep. 8, 12887 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Forsman, H. et al. Galectin 3 aggravates joint inflammation and destruction in antigen-induced arthritis. Arthritis Rheum. 63, 445–454 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Ohshima, S. et al. Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum. 48, 2788–2795 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Pichler, K. M. et al. Galectin network in osteoarthritis: galectin-4 programs a pathogenic signature of gene and effector expression in human chondrocytes in vitro. Histochem. Cell Biol. 157, 139–151 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Isozaki, T. et al. Fucosyltransferase 1 mediates angiogenesis, cell adhesion and rheumatoid arthritis synovial tissue fibroblast proliferation. Arthritis Res. Ther. 16, R28 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Xu, D. et al. Tumor necrosis factor-alpha up-regulates the expression of beta1,4-galactosyltransferase-I in human fibroblast-like synoviocytes. Inflammation 34, 531–538 (2011).

    Article  PubMed  Google Scholar 

  135. Przybysz, M., Maszczak, D., Borysewicz, K., Szechinski, J. & Katnik-Prastowska, I. Relative sialylation and fucosylation of synovial and plasma fibronectins in relation to the progression and activity of rheumatoid arthritis. Glycoconj. J. 24, 543–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Flowers, S. A. et al. Lubricin binds cartilage proteins, cartilage oligomeric matrix protein, fibronectin and collagen II at the cartilage surface. Sci. Rep. 7, 13149 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Estrella, R. P., Whitelock, J. M., Packer, N. H. & Karlsson, N. G. The glycosylation of human synovial lubricin: implications for its role in inflammation. Biochem. J. 429, 359–367 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Alves, I. et al. Protein mannosylation as a diagnostic and prognostic biomarker of lupus nephritis: an unusual glycan neoepitope in systemic lupus erythematosus. Arthritis Rheumatol. 73, 2069–2077 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Urushihara, M. et al. Sisters with α-mannosidosis and systemic lupus erythematosus. Eur. J. Pediatr. 163, 192–195 (2004).

    Article  PubMed  Google Scholar 

  140. Chui, D. et al. Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc. Natl Acad. Sci. USA 98, 1142–1147 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. van Kooyk, Y. & Rabinovich, G. A. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601 (2008).

    Article  PubMed  Google Scholar 

  142. Cai, M. et al. DC-SIGN expression on podocytes and its role in inflammatory immune response of lupus nephritis. Clin. Exp. Immunol. 183, 317–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Noguchi, S. et al. Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. J. Biol. Chem. 279, 11402–11407 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Malicdan, M. C., Noguchi, S., Hayashi, Y. K., Nonaka, I. & Nishino, I. Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat. Med. 15, 690–695 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Carrillo, N. et al. Safety and efficacy of N-acetylmannosamine (ManNAc) in patients with GNE myopathy: an open-label phase 2 study. Genet. Med. 23, 2067–2075 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. McGovern, D. P. et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum. Mol. Genet. 19, 3468–3476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Morosi, L. G. et al. Control of intestinal inflammation by glycosylation-dependent lectin-driven immunoregulatory circuits. Sci. Adv. 7, eabf8630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Costa, A. F., Campos, D., Reis, C. A. & Gomes, C. Targeting glycosylation: a new road for cancer drug discovery. Trends Cancer 6, 757–766 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Dube, D. H. & Bertozzi, C. R. Glycans in cancer and inflammation — potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Nandakumar, K. S. et al. Endoglycosidase treatment abrogates IgG arthritogenicity: importance of IgG glycosylation in arthritis. Eur. J. Immunol. 37, 2973–2982 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Albert, H., Collin, M., Dudziak, D., Ravetch, J. V. & Nimmerjahn, F. In vivo enzymatic modulation of IgG glycosylation inhibits autoimmune disease in an IgG subclass-dependent manner. Proc. Natl Acad. Sci. USA 105, 15005–15009 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Collin, M., Shannon, O. & Bjorck, L. IgG glycan hydrolysis by a bacterial enzyme as a therapy against autoimmune conditions. Proc. Natl Acad. Sci. USA 105, 4265–4270 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Nandakumar, K. S. et al. Dominant suppression of inflammation by glycan-hydrolyzed IgG. Proc. Natl Acad. Sci. USA 111, 15851 (2014).

    Article  Google Scholar 

  155. Trastoy, B. et al. Structural basis for the recognition of complex-type N-glycans by Endoglycosidase S. Nat. Commun. 9, 1874 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Bartsch, Y. C. et al. Sialylated autoantigen-reactive IgG antibodies attenuate disease development in autoimmune mouse models of lupus nephritis and rheumatoid arthritis. Front. Immunol. 9, 1183 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Verhelst, X. et al. Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases. Gastroenterology 158, 95–110 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Araujo, L., Khim, P., Mkhikian, H., Mortales, C. L. & Demetriou, M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife 6, e21330 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Salvatore, S. et al. A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease. Aliment. Pharmacol. Ther. 14, 1567–1579 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Mkhikian, H. et al. Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat. Commun. 2, 334 (2011).

    Article  PubMed  Google Scholar 

  161. Brandt, A. U. et al. Association of a marker of N-acetylglucosamine with progressive multiple sclerosis and neurodegeneration. JAMA Neurol. 78, 842–852 (2021).

    Article  PubMed  Google Scholar 

  162. Pereira, N. A., Chan, K. F., Lin, P. C. & Song, Z. The “less-is-more” in therapeutic antibodies: afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. mAbs 10, 693–711 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kristyanto, H. et al. Multifunctional, multivalent PIC polymer scaffolds for targeting antigen-specific, autoreactive B cells. ACS Biomater. Sci. Eng. 8, 1486–1493 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Caianiello, D. F. et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 17, 947–953 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Manfred Wuhrer.

Ethics declarations

Competing interests

R.E.M.T. and T.W.J.H. are mentioned inventors on a patent application on ACPA-IgG V-domain glycosylation. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Salomé Pinho, Mattias Collin and Peter Nigrovic for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kissel, T., Toes, R.E.M., Huizinga, T.W.J. et al. Glycobiology of rheumatic diseases. Nat Rev Rheumatol 19, 28–43 (2023). https://doi.org/10.1038/s41584-022-00867-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-022-00867-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research