Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sarcomatoid renal cell carcinoma: biology, natural history and management

Abstract

Sarcomatoid dedifferentiation is an uncommon feature that can occur in most histological subtypes of renal cell carcinomas (RCCs) and carries a decidedly poor prognosis. Historically, conventional treatments for sarcomatoid RCCs (sRCCs) have shown little efficacy, and median survival is commonly 6–13 months. Despite being first described in 1968, the mechanisms driving sarcomatoid dedifferentiation remain poorly understood, and information and treatment options available to physicians and patients are limited. When diagnosed at an early stage, surgical intervention remains the treatment of choice. However, preoperative identification through routine imaging or biopsy is unreliable and most patients present with advanced disease and systemic symptoms. For these patients, the role of cytoreductive nephrectomy is disputed. The expansion of immunotherapies approved for RCCs has generated a search for biomarkers that might be indicative of treatment response in sRCCs, although a proven effective systemic agent remains elusive. PDL1 expression is increased in sarcomatoid dedifferentiated renal tumours, which suggests that patients with sRCCs could benefit from PD1 and/or PDL1 immune checkpoint blockade therapy. Treatment outcomes for sarcomatoid tumours have remained relatively consistent compared with other RCCs, but further investigation of the tumour–immune cell microenvironment might yield insights into further therapeutic possibilities.

Key Points

  • Sarcomatoid dedifferentiation is not considered to be a unique histological subtype of renal cell carcinomas (RCCs); rather, it can be present within any subtype of RCCs.

  • Sarcomatoid dedifferentiation appears in ~4% of all RCCs, but is present in ~20% of all metastatic RCCs. According to WHO guidelines, any RCC with sarcomatoid dedifferentiation is a WHO–International Society of Urological Pathology grade 4 lesion.

  • Sarcomatoid dedifferentiation is often heterogeneously present within RCCs, making routine imaging and biopsy unreliable for preoperative detection. Surgical resection for localized disease is the standard of care, with subsequent close monitoring of patients following surgery.

  • In patients with metastatic disease, conventional therapies such as surgery and systemic agents have been ineffective and overall 5-year survival remains at 23.5–33%.

  • Previous genomic analyses have failed to identify definitive mutational drivers of disease. However, sarcomatoid RCCs (sRCCs) have been shown to have higher PD1 and PDL1 expression than other subtypes of RCCs. Newer combinations of immune checkpoint inhibitor immunotherapies could yield improved responses and outcomes.

  • Studies investigating sRCCs are limited by patient numbers owing to the low incidence of sRCCs and their advanced stage at presentation. Multi-institutional efforts to establish a consensus on treatment recommendations based on highly powered data are essential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gross sections of an sRCC after radical nephrectomy.
Fig. 2: Histopathology of sRCC.
Fig. 3: Signalling pathways involved in EMT reported in sRCC.
Fig. 4: PDL1 expression in sRCC.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019).

    PubMed  Google Scholar 

  2. Capitanio, U. et al. Epidemiology of renal cell carcinoma. Eur. Urol. 75, 74–84 (2019).

    PubMed  Google Scholar 

  3. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  4. Motzer, R. J. et al. Kidney cancer, version 2.2017, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 15, 804–834 (2017).

    PubMed  Google Scholar 

  5. Delahunt, B. Sarcomatoid renal carcinoma: the final common dedifferentiation pathway of renal epithelial malignancies. Pathology 31, 185–190 (1999).

    CAS  PubMed  Google Scholar 

  6. de Peralta-Venturina, M. et al. Sarcomatoid differentiation in renal cell carcinoma: a study of 101 cases. Am. J. Surg. Pathol. 25, 275–284 (2001).

    PubMed  Google Scholar 

  7. Mian, B. M. et al. Prognostic factors and survival of patients with sarcomatoid renal cell carcinoma. J. Urol. 167, 65–70 (2002).

    PubMed  Google Scholar 

  8. Shuch, B. et al. Quality of pathological reporting for renal cell cancer: implications for systemic therapy, prognostication and surveillance. BJU Int. 108, 343–348 (2011).

    PubMed  Google Scholar 

  9. Shuch, B. et al. Histologic evaluation of metastases in renal cell carcinoma with sarcomatoid transformation and its implications for systemic therapy. Cancer 116, 616–624 (2010).

    PubMed  Google Scholar 

  10. Cheville, J. C. et al. Sarcomatoid renal cell carcinoma: an examination of underlying histologic subtype and an analysis of associations with patient outcome. Am. J. Surg. Pathol. 28, 435–441 (2004).

    PubMed  Google Scholar 

  11. Kim, T. et al. Using percentage of sarcomatoid differentiation as a prognostic factor in renal cell carcinoma. Clin. Genitourin. Cancer 13, 225–230 (2015).

    PubMed  Google Scholar 

  12. Brookman-May, S. et al. Prognostic effect of sarcomatoid dedifferentiation in patients with surgically treated renal cell carcinoma: a matched-pair analysis. Clin. Genitourin. Cancer 11, 465–470 (2013).

    PubMed  Google Scholar 

  13. Gu, L. et al. Presence of sarcomatoid differentiation as a prognostic indicator for survival in surgically treated metastatic renal cell carcinoma. J. Cancer Res. Clin. Oncol. 143, 499–508 (2017).

    CAS  PubMed  Google Scholar 

  14. Alevizakos, M., Gaitanidis, A., Nasioudis, D., Msaouel, P. & Appleman, L. J. Sarcomatoid renal cell carcinoma: population-based study of 879 patients. Clin. Genitourin. Cancer 17, e447–e453 (2019).

    PubMed  Google Scholar 

  15. Shuch, B. et al. Cytoreductive nephrectomy for kidney cancer with sarcomatoid histology–is up-front resection indicated and, if not, is it avoidable? J. Urol. 182, 2164–2171 (2009).

    PubMed  PubMed Central  Google Scholar 

  16. Korenbaum, C. et al. Treatments, outcomes, and validity of prognostic scores in patients with sarcomatoid renal cell carcinoma: a 20-year single-institution experience. Clin. Genitourin. Cancer 16, e577–e586 (2018).

    PubMed  Google Scholar 

  17. Cangiano, T. et al. Sarcomatoid renal cell carcinoma: biologic behavior, prognosis, and response to combined surgical resection and immunotherapy. J. Clin. Oncol. 17, 523–528 (1999).

    CAS  PubMed  Google Scholar 

  18. Ro, J. Y., Ayala, A. G., Sella, A., Samuels, M. L. & Swanson, D. A. Sarcomatoid renal cell carcinoma: clinicopathologic. A study of 42 cases. Cancer 59, 516–526 (1987).

    CAS  PubMed  Google Scholar 

  19. Keskin, S. K. et al. Outcomes of patients with renal cell carcinoma and sarcomatoid dedifferentiation treated with nephrectomy and systemic therapies: comparison between the cytokine and targeted therapy eras. J. Urol. 198, 530–537 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Lucca, I., Klatte, T., Fajkovic, H., de Martino, M. & Shariat, S. F. Gender differences in incidence and outcomes of urothelial and kidney cancer. Nat. Rev. Urol. 12, 585–592 (2015).

    CAS  PubMed  Google Scholar 

  21. Zhang, B. Y. et al. A novel prognostic model for patients with sarcomatoid renal cell carcinoma. BJU Int. 115, 405–411 (2015).

    PubMed  Google Scholar 

  22. Adibi, M. et al. Percentage of sarcomatoid component as a prognostic indicator for survival in renal cell carcinoma with sarcomatoid dedifferentiation. Urol. Oncol. 33, 427.e417–423 (2015).

    Google Scholar 

  23. Trudeau, V. et al. Comparison of oncologic outcomes between sarcomatoid and clear cell renal cell carcinoma. World J. Urol. 34, 1429–1436 (2016).

    CAS  PubMed  Google Scholar 

  24. Merrill, M. M. et al. Clinically nonmetastatic renal cell carcinoma with sarcomatoid dedifferentiation: natural history and outcomes after surgical resection with curative intent. Urol. Oncol. 33, 166.e121–169 (2015).

    Google Scholar 

  25. Russo, P. et al. Survival rates after resection for localized kidney cancer: 1989 to 2004. Cancer 113, 84–96 (2008).

    PubMed  Google Scholar 

  26. Shuch, B. et al. Impact of pathological tumour characteristics in patients with sarcomatoid renal cell carcinoma. BJU Int. 109, 1600–1606 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. Weisel, W., Dockerty, M. B. & Priestley, J. T. Sarcoma of the kidney. J. Urol. 50, 564–573 (1943).

    Google Scholar 

  28. Lee-Tsün, H. & Willis, R. A. Renal carcino-sarcoma, true and false. J. Pathol. Bacteriol. 85, 139–144 (1963).

    Google Scholar 

  29. Farrow, G. M., Harrison, E. G. Jr & Utz, D. C. Sarcomas and sarcomatoid and mixed malignant tumors of the kidney in adults. 3. Cancer 22, 556–563 (1968).

    CAS  PubMed  Google Scholar 

  30. Thoenes, W., Storkel, S. & Rumpelt, H. J. Histopathology and classification of renal cell tumors (adenomas, oncocytomas and carcinomas). The basic cytological and histopathological elements and their use for diagnostics. Pathol. Res. Pract. 181, 125–143 (1986).

    CAS  PubMed  Google Scholar 

  31. Storkel, S. et al. Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer 80, 987–989 (1997).

    CAS  PubMed  Google Scholar 

  32. Kovacs, G. et al. The Heidelberg classification of renal cell tumours. J. Pathol. 183, 131–133 (1997).

    CAS  PubMed  Google Scholar 

  33. Delahunt, B. et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am. J. Surg. Pathol. 37, 1490–1504 (2013).

    PubMed  Google Scholar 

  34. Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO classification of tumours of the urinary system and male genital organs — part A: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016).

    PubMed  Google Scholar 

  35. Shuch, B., Bratslavsky, G., Linehan, W. M. & Srinivasan, R. Sarcomatoid renal cell carcinoma: a comprehensive review of the biology and current treatment strategies. Oncologist 17, 46–54 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sella, A., Logothetis, C. J., Ro, J. Y., Swanson, D. A. & Samuels, M. L. Sarcomatoid renal cell carcinoma. A treatable entity. Cancer 60, 1313–1318 (1987).

    CAS  PubMed  Google Scholar 

  37. Abel, E. J. et al. Limitations of preoperative biopsy in patients with metastatic renal cell carcinoma: comparison to surgical pathology in 405 cases. BJU Int. 110, 1742–1746 (2012).

    PubMed  Google Scholar 

  38. Schieda, N. et al. Diagnosis of sarcomatoid renal cell carcinoma with CT: evaluation by qualitative imaging features and texture analysis. AJR Am. J. Roentgenol 204, 1013–1023 (2015).

    PubMed  Google Scholar 

  39. Rosenkrantz, A. B., Chandarana, H. & Melamed, J. MRI findings of sarcomatoid renal cell carcinoma in nine cases. Clin. Imaging 35, 459–464 (2011).

    PubMed  Google Scholar 

  40. Takeuchi, M. et al. Characteristic MRI findings of sarcomatoid renal cell carcinoma dedifferentiated from clear cell renal carcinoma: radiological-pathological correlation. Clin. Imaging 37, 908–912 (2013).

    PubMed  Google Scholar 

  41. Takeuchi, M. et al. MRI for differentiation of renal cell carcinoma with sarcomatoid component from other renal tumor types. Abdom. Imaging 40, 112–119 (2015).

    PubMed  Google Scholar 

  42. Jeong, D. et al. Quantification of sarcomatoid differentiation in renal cell carcinoma on magnetic resonance imaging. Quant. Imaging Med. Surg. 8, 373–382 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Fuser, D., Hedberg, M. L., Dehner, L. P., Dehdashti, F. & Siegel, B. A. Extensive metastatic Sarcomatoid renal cell carcinoma evaluated by (18)F-FDG PET/CT: a case report and review of literature. J. Kidney Cancer VHL 5, 1–6 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Thambugala, G. M., Mohamed, A., O’Neill, G. F. & Fulham, M. J. Sarcomatoid renal cell carcinoma: rapid dissemination detected on FDG PET-CT. Australas. Radiol. 50, 604–606 (2006).

    CAS  PubMed  Google Scholar 

  45. Hyodo, T. et al. Widespread metastases from sarcomatoid renal cell carcinoma detected by 18F-FDG positron emission tomography/computed tomography. Japn. J. Radiol. 27, 111–114 (2009).

    Google Scholar 

  46. Nadebaum, D. P., Hofman, M. S., Mitchell, C. A., Siva, S. & Hicks, R. J. Oligometastatic renal cell carcinoma with sarcomatoid differentiation demonstrating variable imaging phenotypes on 68Ga-PSMA and 18F-FDG PET/CT: a case report and review of the literature. Clin. Genitourin. Cancer 16, 1–5 (2018).

    Google Scholar 

  47. Vogel, C. et al. Imaging in suspected renal-cell carcinoma: systematic review. Clin. Genitourin. Cancer 17, e345–e355 (2019).

    PubMed  Google Scholar 

  48. Donat, S. M. et al. Follow-up for clinically localized renal neoplasms: AUA guideline. J. Urol. 190, 407–416 (2013).

    PubMed  Google Scholar 

  49. Escudier, B. et al. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25, iii49–iii56 (2014).

    PubMed  Google Scholar 

  50. Ljungberg, B. et al. in European Association of Urology Guidelines. 2018 Edition. Vol. presented at the EAU Annual Congress Copenhagen 2018 (European Association of Urology Guidelines Office, 2018).

  51. Kuroda, N., Toi, M., Hiroi, M. & Enzan, H. Review of sarcomatoid renal cell carcinoma with focus on clinical and pathobiological aspects. Histol. Histopathol. 18, 551–555 (2003).

    CAS  PubMed  Google Scholar 

  52. Reuter, V. E. Sarcomatoid lesions of the urogenital tract. Semin. Diagn. Pathol. 10, 188–201 (1993).

    CAS  PubMed  Google Scholar 

  53. Kwak, C. et al. Sarcomatoid differentiation as a prognostic factor for immunotherapy in metastatic renal cell carcinoma. J. Surg. Oncol. 95, 317–323 (2007).

    PubMed  Google Scholar 

  54. Leibovich, B. C. et al. Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. J. Urol. 183, 1309–1315 (2010).

    PubMed  Google Scholar 

  55. Casuscelli, J. et al. Chromophobe renal cell carcinoma: results from a large single-institution series. Clin. Genitourin. Cancer 17, 373–379.e374 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Akhtar, M., Tulbah, A., Kardar, A. H. & Ali, M. A. Sarcomatoid renal cell carcinoma: the chromophobe connection. Am. J. Surg. Pathol. 21, 1188–1195 (1997).

    CAS  PubMed  Google Scholar 

  57. Kuroda, N. et al. Acquired cystic disease-associated renal cell carcinoma with sarcomatoid change and rhabdoid features. Ann. Diagn. Pathol. 15, 462–466 (2011).

    PubMed  Google Scholar 

  58. Chen, Y. B. et al. Hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cancer: recognition of the syndrome by pathologic features and the utility of detecting aberrant succination by immunohistochemistry. Am. J. Surg. Pathol. 38, 627–637 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Udager, A. M. et al. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC): a rapid autopsy report of metastatic renal cell carcinoma. Am. J. Surg. Pathol. 38, 567–577 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. He, H. & Magi-Galluzzi, C. Epithelial-to-mesenchymal transition in renal neoplasms. Adv. Anat. Pathol. 21, 174–180 (2014).

    CAS  PubMed  Google Scholar 

  61. Tong, G. X. et al. Expression of PAX8 in normal and neoplastic renal tissues: an immunohistochemical study. Mod. Pathol. 22, 1218–1227 (2009).

    CAS  PubMed  Google Scholar 

  62. Ozcan, A., de la Roza, G., Ro, J. Y., Shen, S. S. & Truong, L. D. PAX2 and PAX8 expression in primary and metastatic renal tumors: a comprehensive comparison. Arch. Pathol. Lab. Med. 136, 1541–1551 (2012).

    CAS  PubMed  Google Scholar 

  63. Tickoo, S. K. et al. Immunohistochemical expression of hypoxia inducible factor-1alpha and its downstream molecules in sarcomatoid renal cell carcinoma. J. Urol. 177, 1258–1263 (2007).

    CAS  PubMed  Google Scholar 

  64. Kutikov, A. et al. Renal mass biopsy: always, sometimes, or never? Eur. Urol. 70, 403–406 (2016).

    PubMed  Google Scholar 

  65. Auger, M. et al. Fine-needle aspiration cytology of sarcomatoid renal cell carcinoma: a morphologic and immunocytochemical study of 15 cases. Diagn. Cytopathol. 9, 46–51 (1993).

    CAS  PubMed  Google Scholar 

  66. Abel, E. J. et al. Multi-quadrant biopsy technique improves diagnostic ability in large heterogeneous renal masses. J. Urol. 194, 886–891 (2015).

    PubMed  Google Scholar 

  67. Manley, B. J. & Hsieh, J. J. Sarcomatoid renal cell carcinoma: genomic insights from sequencing of matched sarcomatous and carcinomatous components. Transl. Cancer Res. 5, S160–s165 (2016).

    PubMed  Google Scholar 

  68. Conant, J. L., Peng, Z., Evans, M. F., Naud, S. & Cooper, K. Sarcomatoid renal cell carcinoma is an example of epithelial–mesenchymal transition. J. Clin. Pathol. 64, 1088–1092 (2011).

    PubMed  Google Scholar 

  69. Jones, T. D. et al. Clonal divergence and genetic heterogeneity in clear cell renal cell carcinomas with sarcomatoid transformation. Cancer 104, 1195–1203 (2005).

    CAS  PubMed  Google Scholar 

  70. Wick, M. R. & Swanson, P. E. Carcinosarcomas: current perspectives and an historical review of nosological concepts. Semin. Diagn. Pathol. 10, 118–127 (1993).

    CAS  PubMed  Google Scholar 

  71. Kalluri, R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 119, 1417–1419 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zeisberg, M. & Neilson, E. G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119, 1429–1437 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Iwatsuki, M. et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 101, 293–299 (2010).

    CAS  PubMed  Google Scholar 

  74. De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97–110 (2013).

    PubMed  Google Scholar 

  75. Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    CAS  PubMed  Google Scholar 

  76. Cano, A. et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76–83 (2000).

    CAS  PubMed  Google Scholar 

  77. Guarino, M., Rubino, B. & Ballabio, G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39, 305–318 (2007).

    CAS  PubMed  Google Scholar 

  78. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Piloto, S. & Schilling, T. F. Ovo1 links Wnt signaling with N-cadherin localization during neural crest migration. Development 137, 1981–1990 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gumbiner, B. M. Regulation of cadherin adhesive activity. J. Cell Biol. 148, 399–404 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sircar, K. et al. Biphasic components of sarcomatoid clear cell renal cell carcinomas are molecularly similar to each other, but distinct from, non-sarcomatoid renal carcinomas. J. Pathol. 1, 212–224 (2015).

    CAS  Google Scholar 

  82. Hsieh, C. H. et al. Co-existence of epithelioid and fibroblastoid subsets in a sarcomatoid renal carcinoma cell line revealed by clonal studies. Anticancer. Res. 33, 4875–4889 (2013).

    CAS  PubMed  Google Scholar 

  83. Lopez-Lago, M. A. et al. Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression. Cancer Res. 70, 9682–9692 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Braga, E. A., Fridman, M. V., Loginov, V. I., Dmitriev, A. A. & Morozov, S. G. Molecular mechanisms in clear cell renal cell carcinoma: role of miRNAs and hypermethylated miRNA genes in crucial oncogenic pathways and processes. Front. Genet. 10, 320 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mann, J. et al. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death Differ. 14, 275–285 (2007).

    CAS  PubMed  Google Scholar 

  86. Dumont, N. et al. Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc. Natl Acad. Sci. USA 105, 14867–14872 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu, M. et al. miR-203 inhibition of renal cancer cell proliferation, migration and invasion by targeting of FGF2. Diagn. Pathol. 10, 24 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Schneider, M., Hansen, J. L. & Sheikh, S. P. S100A4: a common mediator of epithelial-mesenchymal transition, fibrosis and regeneration in diseases? J. Mol. Med. 86, 507–522 (2008).

    CAS  PubMed  Google Scholar 

  89. Helfman, D. M., Kim, E. J., Lukanidin, E. & Grigorian, M. The metastasis associated protein S100A4: role in tumour progression and metastasis. Br. J. Cancer 92, 1955–1958 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Oda, H., Nakatsuru, Y. & Ishikawa, T. Mutations of the p53 gene and p53 protein overexpression are associated with sarcomatoid transformation in renal cell carcinomas. Cancer Res. 55, 658–662 (1995).

    CAS  PubMed  Google Scholar 

  91. Linehan, W. M., Lerman, M. I. & Zbar, B. Identification of the von Hippel-Lindau (VHL) gene. Its role in renal cancer. JAMA 273, 564–570 (1995).

    CAS  PubMed  Google Scholar 

  92. Clark, P. E. The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int. 76, 939–945 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bi, M. et al. Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proc. Natl Acad. Sci. USA 113, 2170–2175 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Malouf, G. G. et al. Genomic characterization of renal cell carcinoma with sarcomatoid dedifferentiation pinpoints recurrent genomic alterations. Eur. Urol. 70, 348–357 (2016).

    CAS  PubMed  Google Scholar 

  95. Wei, S. & Al-Saleem, T. The pathology and molecular genetics of sarcomatoid renal cell carcinoma: a mini-review. J. Kidney Cancer VHL 4, 19–23 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Wang, Z. et al. Sarcomatoid renal cell carcinoma has a distinct molecular pathogenesis, driver mutation profile, and transcriptional landscape. Clin. Cancer Res. 23, 6686–6696 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bergerot, P., Agarwal, N., Pal, S. K. & Jones, J. Sarcomatoid renal cell carcinoma: the apple doesn’t fall far from the tree. Clin. Cancer Res. 23, 6381–6383 (2017).

    PubMed  Google Scholar 

  98. Creighton, C. J. et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    CAS  Google Scholar 

  99. Gupta, S. et al. JAK2/PD-L1/PD-L2 (9p24.1) amplifications in renal cell carcinomas with sarcomatoid transformation: implications for clinical management. Mod. Pathol. https://doi.org/10.1038/s41379-019-0269-x (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kawakami, F. et al. Programmed cell death ligand 1 and tumor-infiltrating lymphocyte status in patients with renal cell carcinoma and sarcomatoid dedifferentiation. Cancer 123, 4823–4831 (2017).

    CAS  PubMed  Google Scholar 

  101. Wasser, C. R. & Herz, J. Reelin: neurodevelopmental architect and homeostatic regulator of excitatory synapses. J. Biol. Chem. 292, 1330–1338 (2017).

    CAS  PubMed  Google Scholar 

  102. Yuan, Y., Chen, H., Ma, G., Cao, X. & Liu, Z. Reelin is involved in transforming growth factor-beta1-induced cell migration in esophageal carcinoma cells. PLoS One 7, e31802 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kulkarni, A., Chang, M. T., Vissers, J. H. A., Dey, A. & Harvey, K. F. The Hippo pathway as a driver of select human cancers. Trends Cancer 6, 781–796 (2020).

    CAS  PubMed  Google Scholar 

  104. Meng, Z., Moroishi, T. & Guan, K. L. Mechanisms of Hippo pathway regulation. Genes Dev. 30, 1–17 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, Y. B. et al. Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets. Nat. Commun. 7, 13131 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhao, B., Tumaneng, K. & Guan, K. L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat. Cell Biol. 13, 877–883 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Shao, Diane D. et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014).

    Google Scholar 

  108. Lamar, J. M. et al. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl Acad. Sci. USA 109, E2441–E2450 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, Y. et al. YAP modulates TGF-β1-induced simultaneous apoptosis and EMT through upregulation of the EGF receptor. Sci. Rep. 7, 45523 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, Z. et al. The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer. Mol. Oncol. 9, 1091–1105 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, Y., Liu, J., Ying, X., Lin, P. C. & Zhou, B. P. Twist-mediated epithelial-mesenchymal transition promotes breast tumor cell invasion via inhibition of hippo pathway. Sci. Rep. 6, 24606 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Malouf, G. G. et al. Molecular characterization of sarcomatoid clear cell renal cell carcinoma unveils new candidate oncogenic drivers. Sci. Rep. 10, 701 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Shin, S. J. et al. Clinicopathologic analysis of PD-L1 and PD-L2 expression in renal cell carcinoma: association with oncogenic proteins status. Ann. Surg. Oncol. 23, 694–702 (2016).

    PubMed  Google Scholar 

  115. Chen, L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat. Rev. Immunol. 4, 336–347 (2004).

    CAS  PubMed  Google Scholar 

  116. Weinstock, M. & McDermott, D. Targeting PD-1/PD-L1 in the treatment of metastatic renal cell carcinoma. Ther. Adv. Urol. 7, 365–377 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Thompson, R. H. et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 66, 3381–3385 (2006).

    CAS  PubMed  Google Scholar 

  118. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Thompson, R. H. et al. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin. Cancer Res. 13, 1757–1761 (2007).

    CAS  PubMed  Google Scholar 

  121. Choueiri, T. K. et al. PD-L1 expression in nonclear-cell renal cell carcinoma. Ann. Oncol. 25, 2178–2184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Joseph, R. W. et al. PD-1 and PD-L1 expression in renal cell carcinoma with sarcomatoid differentiation. Cancer Immunol. Res. 3, 1303–1307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mickisch, G. H., Garin, A., van Poppel, H., de Prijck, L. & Sylvester, R. Radical nephrectomy plus interferon-alfa-based immunotherapy compared with interferon alfa alone in metastatic renal-cell carcinoma: a randomised trial. Lancet 358, 966–970 (2001).

    CAS  PubMed  Google Scholar 

  124. Flanigan, R. C. et al. Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N. Engl. J. Med. 345, 1655–1659 (2001).

    CAS  PubMed  Google Scholar 

  125. Aslam, M. Z. & Matthews, P. N. Cytoreductive nephrectomy for metastatic renal cell carcinoma: a review of the historical literature and its role in the era of targeted molecular therapy. ISRN Urol. 2014, 717295 (2014).

    PubMed  PubMed Central  Google Scholar 

  126. Hanna, N. et al. Survival analyses of patients with metastatic renal cancer treated with targeted therapy with or without cytoreductive nephrectomy: a national cancer data base study. J. Clin. Oncol. 34, 3267–3275 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Petrelli, F. et al. Cytoreductive nephrectomy in metastatic renal cell carcinoma treated with targeted therapies: a systematic review with a meta-analysis. Clin. Genitourin. Cancer 14, 465–472 (2016).

    PubMed  Google Scholar 

  128. Heng, D. Y. et al. Cytoreductive nephrectomy in patients with synchronous metastases from renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Eur. Urol. 66, 704–710 (2014).

    PubMed  Google Scholar 

  129. Kutikov, A. et al. Use of systemic therapy and factors affecting survival for patients undergoing cytoreductive nephrectomy. BJU Int. 106, 218–223 (2010).

    PubMed  Google Scholar 

  130. Thomas, A. Z. et al. The role of metastasectomy in patients with renal cell carcinoma with sarcomatoid dedifferentiation: a matched controlled analysis. J. Urol. 196, 678–684 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Motzer, R. J. & Russo, P. Cytoreductive nephrectomy — patient selection is key. N. Engl. J. Med. 379, 481–482 (2018).

    PubMed  Google Scholar 

  132. Ljungberg, B. et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 67, 913–924 (2015).

    PubMed  Google Scholar 

  133. Deschavanne, P. J. & Fertil, B. A review of human cell radiosensitivity in vitro. Int. J. Radiat. Oncol. Biol. Phys. 34, 251–266 (1996).

    CAS  PubMed  Google Scholar 

  134. Tunio, M. A., Hashmi, A. & Rafi, M. Need for a new trial to evaluate postoperative radiotherapy in renal cell carcinoma: a meta-analysis of randomized controlled trials. Ann. Oncol. 21, 1839–1845 (2010).

    CAS  PubMed  Google Scholar 

  135. van der Werf-Messing, B. Proceedings: carcinoma of the kidney. Cancer 32, 1056–1061 (1973).

    PubMed  Google Scholar 

  136. Siva, S. et al. Radiotherapy for renal cell carcinoma: renaissance of an overlooked approach. Nat. Rev. Urol. 14, 549 (2017).

    PubMed  Google Scholar 

  137. Eminaga, O., Akbarov, I., Wille, S. & Engelmann, U. Does postoperative radiation therapy impact survival in non-metastatic sarcomatoid renal cell carcinoma? A SEER-based study. Int. Urol. Nephrol. 47, 1653–1663 (2015).

    CAS  PubMed  Google Scholar 

  138. Alt, A. L. et al. Survival after complete surgical resection of multiple metastases from renal cell carcinoma. Cancer 117, 2873–2882 (2011).

    PubMed  Google Scholar 

  139. Dabestani, S. et al. Local treatments for metastases of renal cell carcinoma: a systematic review. Lancet Oncol. 15, e549–e561 (2014).

    PubMed  Google Scholar 

  140. Correa, R. J. M. et al. The emerging role of stereotactic ablative radiotherapy for primary renal cell carcinoma: a systematic review and meta-analysis. Eur. Urol. Focus. (2019).

  141. Staehler, M. et al. Single fraction radiosurgery for the treatment of renal tumors. J. Urol. 193, 771–775 (2015).

    PubMed  Google Scholar 

  142. Frick, M. A., Chhabra, A. M., Lin, L. & Simone, C. B. II, First ever use of proton stereotactic body radiation therapy delivered with curative intent to bilateral synchronous primary renal cell carcinomas. Cureus 9, e1799 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. Golshayan, A. R. et al. Metastatic sarcomatoid renal cell carcinoma treated with vascular endothelial growth factor-targeted therapy. J. Clin. Oncol. 27, 235–241 (2009).

    PubMed  Google Scholar 

  144. Voss, M. H. et al. Treatment outcome with mTOR inhibitors for metastatic renal cell carcinoma with nonclear and sarcomatoid histologies. Ann. Oncol. 25, 663–668 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Pinedo, H. M. & Verweij, J. The treatment of soft tissue sarcomas with focus on chemotherapy: a review. Radiother. Oncol. 5, 193–205 (1986).

    CAS  PubMed  Google Scholar 

  146. Culine, S., Bekradda, M., Terrier-Lacombe, M. J. & Droz, J. P. Treatment of sarcomatoid renal cell carcinoma: is there a role for chemotherapy? Eur. Urol. 27, 138–141 (1995).

    CAS  PubMed  Google Scholar 

  147. Escudier, B. et al. Doxorubicin and ifosfamide in patients with metastatic sarcomatoid renal cell carcinoma: a phase II study of the Genitourinary Group of the French Federation of Cancer Centers. J. Urol. 168, 959–961 (2002).

    CAS  PubMed  Google Scholar 

  148. Nanus, D. M., Garino, A., Milowsky, M. I., Larkin, M. & Dutcher, J. P. Active chemotherapy for sarcomatoid and rapidly progressing renal cell carcinoma. Cancer 101, 1545–1551 (2004).

    CAS  PubMed  Google Scholar 

  149. Haas, N. B. et al. A phase II trial of doxorubicin and gemcitabine in renal cell carcinoma with sarcomatoid features: ECOG 8802. Med. Oncol. 29, 761–767 (2012).

    CAS  PubMed  Google Scholar 

  150. Dutcher, J. P. & Nanus, D. Long-term survival of patients with sarcomatoid renal cell cancer treated with chemotherapy. Med. Oncol. 28, 1530–1533 (2011).

    CAS  PubMed  Google Scholar 

  151. Staehler, M. et al. Sorafenib after combination therapy with gemcitabine plus doxorubicine in patients with sarcomatoid renal cell carcinoma: a prospective evaluation. Eur. J. Med. Res. 15, 287–291 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kyriakopoulos, C. E. et al. Outcome of patients with metastatic sarcomatoid renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Clin. Genitourin. Cancer 13, e79–e85 (2015).

    PubMed  Google Scholar 

  153. Molina, A. M. et al. Sarcomatoid-variant renal cell carcinoma: treatment outcome and survival in advanced disease. Am. J. Clin. Oncol. 34, 454–459 (2011).

    PubMed  PubMed Central  Google Scholar 

  154. Michaelson, M. D. et al. Phase 2 trial of sunitinib and gemcitabine in patients with sarcomatoid and/or poor-risk metastatic renal cell carcinoma. Cancer 121, 3435–3443 (2015).

    CAS  PubMed  Google Scholar 

  155. Maiti, A. et al. Phase 2 trial of capecitabine, gemcitabine, and bevacizumab in sarcomatoid renal-cell carcinoma. Clin. Genitourin. Cancer (2017).

  156. Jonasch, E. et al. Treatment of metastatic renal carcinoma patients with the combination of gemcitabine, capecitabine and bevacizumab at a tertiary cancer centre. BJU Int. 107, 741–747 (2011).

    PubMed  Google Scholar 

  157. Haas, N. B. et al. ECOG 1808: Randomized phase II trial of sunitinib with or without gemcitabine in advanced kidney cancer with sarcomatoid features. J. Clin. Oncol. 34, 4511–4511 (2016).

    Google Scholar 

  158. Achkar, T. et al. High-dose interleukin 2 in patients with metastatic renal cell carcinoma with sarcomatoid features. PLoS One 12, e0190084 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Figlin, R. et al. Interleukin-2-based immunotherapy for the treatment of metastatic renal cell carcinoma: an analysis of 203 consecutively treated patients. Cancer J. Sci. Am. 3, S92–S97 (1997).

    PubMed  Google Scholar 

  160. Rosenberg, S. A., Yang, J. C., White, D. E. & Steinberg, S. M. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann. Surg. 228, 307–319 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696 (1995).

    CAS  PubMed  Google Scholar 

  162. Coppin, C. et al. Immunotherapy for advanced renal cell cancer. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD001425.pub2 (2004).

    Article  Google Scholar 

  163. Derosa, L. et al. Safety of available treatment options for renal cell carcinoma. Expert Opin. Drug Saf. 15, 1097–1106 (2016).

    CAS  PubMed  Google Scholar 

  164. Negrier, S. et al. Recombinant human interleukin-2, recombinant human interferon Alfa-2a, or both in metastatic renal-cell carcinoma. N. Engl. J. Med. 338, 1272–1278 (1998).

    CAS  PubMed  Google Scholar 

  165. Amin, A. & White, R. L. Interleukin-2 in renal cell carcinoma: a has-been or a still-viable option? J. Kidney Cancer VHL 1, 74–83 (2014).

    PubMed  PubMed Central  Google Scholar 

  166. Taube, J. M. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20, 5064–5074 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. McGregor, B. A. et al. Results of a multicenter phase ii study of atezolizumab and bevacizumab for patients with metastatic renal cell carcinoma with variant histology and/or sarcomatoid features. J. Clin. Oncol. 38, 63–70 (2020).

    CAS  PubMed  Google Scholar 

  168. Rouvinov, K. et al. Rapid response to nivolumab in a patient with sarcomatoid transformation of chromophobe renal cell carcinoma. Clin. Genitourin. Cancer 15, e1127–e1130 (2017).

    PubMed  Google Scholar 

  169. Geynisman, D. M. Anti-programmed cell death protein 1 (PD-1) antibody nivolumab leads to a dramatic and rapid response in papillary rnal cell carcinoma with sarcomatoid and rhabdoid features. Eur. Urol. 68, 912–914 (2015).

    CAS  PubMed  Google Scholar 

  170. El Mouallem, N., Smith, S. C. & Paul, A. K. Complete response of a patient with metastatic sarcomatoid renal cell carcinoma to a programmed death-1 checkpoint inhibitor. J. Oncol. Pract. 14, 511–513 (2018).

    PubMed  Google Scholar 

  171. McDermott, D. F. et al. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase Ia study. J. Clin. Oncol. 34, 833–842 (2016).

    CAS  PubMed  Google Scholar 

  172. Motzer, R. J. et al. Nivolumab plus Ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Tannir, N. M. et al. Efficacy and safety of nivolumab plus ipilimumab versus sunitinib in first-line treatment of patients with advanced sarcomatoid renal cell carcinoma. Clin.Cancer Res. https://doi.org/10.1158/1078-0432.Ccr-20-2063 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. McDermott DF, M. R. et al. CheckMate 214 retrospective analyses of nivolumab plus ipilimumab or sunitinib in IMDC intermediate/poor-risk patients with previously untreated advanced renal cell carcinoma with sarcomatoid features. Abstract presented at: The Seventeenth International Kidney Cancer Symposium;2-3, 2018 (American Society of Clinical Oncology, Miami, Florida, 2018).

  175. Rini, B. I. et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of advanced renal cell carcinoma (RCC). J. ImmunoTherapy Cancer 7, 354 (2019).

    Google Scholar 

  176. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    CAS  PubMed  Google Scholar 

  177. Rini, B. I. et al. Pembrolizumab (pembro) plus axitinib (axi) versus sunitinib as first-line therapy for metastatic renal cell carcinoma (mRCC): outcomes in the combined IMDC intermediate/poor risk and sarcomatoid subgroups of the phase 3 KEYNOTE-426 study. J. Clin. Oncol. 37, 4500–4500 (2019).

    Google Scholar 

  178. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    CAS  PubMed  Google Scholar 

  179. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Choueiri, T. K. et al. 910PD — Efficacy and biomarker analysis of patients (pts) with advanced renal cell carcinoma (aRCC) with sarcomatoid histology (sRCC): subgroup analysis from the phase III JAVELIN renal 101 trial of first-line avelumab plus axitinib (A+Ax) vs sunitinib (S). Ann. Oncol. 30, v361 (2019).

    Google Scholar 

  181. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib for patients with untreated metastatic renal cell carcinoma and sarcomatoid features: a prespecified subgroup analysis of the IMmotion151 clinical trial. Eur. Urol. https://doi.org/10.1016/j.eururo.2020.06.021 (2020).

    Article  PubMed  Google Scholar 

  182. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393, 2404–2415 (2019).

    PubMed  Google Scholar 

  183. Iacovelli, R. et al. Patients with sarcomatoid renal cell carcinoma — re-defining the first-line of treatment: A meta-analysis of randomised clinical trials with immune checkpoint inhibitors. Eur. J. Cancer 136, 195–203 (2020).

    CAS  PubMed  Google Scholar 

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03483883 (2018).

  185. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03793166 (2019).

  186. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    CAS  PubMed  Google Scholar 

  187. Griffiths, R. W. et al. Frequency of regulatory T cells in renal cell carcinoma patients and investigation of correlation with survival. Cancer Immunol. Immunother. 56, 1743–1753 (2007).

    PubMed  Google Scholar 

  188. Kang, M. J. et al. Tumor-infiltrating PD1-positive lymphocytes and FoxP3-positive regulatory T cells predict distant metastatic relapse and survival of clear cell renal cell carcinoma. Transl. Oncol. 6, 282–289 (2013).

    PubMed  PubMed Central  Google Scholar 

  189. Liotta, F. et al. Frequency of regulatory T cells in peripheral blood and in tumour-infiltrating lymphocytes correlates with poor prognosis in renal cell carcinoma. BJU Int. 107, 1500–1506 (2011).

    CAS  PubMed  Google Scholar 

  190. Schvartsman, G., Carneiro, A., Filippi, R. Z., Rao, P. & Msaouel, P. Rapid deep responses with nivolumab plus ipilimumab in papillary renal cell carcinoma with sarcomatoid dedifferentiation. Clin. Genitourin. Cancer 17, 315–318 (2019).

    PubMed  Google Scholar 

  191. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Al-Ahmadie, H. A. et al. Carbonic anhydrase IX expression in clear cell renal cell carcinoma: an immunohistochemical study comparing 2 antibodies. Am. J. Surg. Pathol. 32, 377–382 (2008).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.A.B. researched data for the article. K.A.B., S.G., J.A.K. and A.A.H. wrote the article. All authors made substantial contributions to discussion of the content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to A. Ari Hakimi.

Ethics declarations

Competing interests

J.A.K. is a member of consulting or advisory boards for, and has received honoraria from, Merck, EMD Serono, Genentech, Novartis and Pfizer. J.A.K. has received institutional research funding from Merck, Genentech and Mirati. R.J.M. has received grants and paid consultancy from Eisai, Exelixis, Genentech, Roche, Novartis, Merck and Pfizer, paid consultancy from Astra Zeneca and grants from Bristol Myers Squibb. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks G. Malouf, M. Staehler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blum, K.A., Gupta, S., Tickoo, S.K. et al. Sarcomatoid renal cell carcinoma: biology, natural history and management. Nat Rev Urol 17, 659–678 (2020). https://doi.org/10.1038/s41585-020-00382-9

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41585-020-00382-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer