Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal mass biopsy — a practical and clinicopathologically relevant approach to diagnosis

Abstract

Advancements in imaging modalities have increased the frequency of renal mass discovery. Imaging has typically been considered sufficient to guide management for a large proportion of these tumours, but renal mass biopsies (RMBs) have an increasing role in determining malignancy and can be a valuable tool for preventing unnecessary surgery in patients with benign tumours. A structured approach should be used to help to navigate the expanding repertoire of renal tumours, many of which are molecularly defined. In terms of tumour subtyping, the pathologist’s strategy should focus on stratifying patients into clinically different prognostic groups according to our current knowledge of tumour behaviour, including benign, low-grade or indolent, intermediate malignant or highly aggressive. Crucial pathological features and morphological mimicry of tumours can alter the tumour’s prognostic group. Thus, pathologists and urologists can use RMB to select patients with tumours at a reduced risk of progression, which can be safely managed with active surveillance within a tailored imaging schedule, versus tumours for which ablation or surgical intervention is indicated. RMB is also crucial in the oncological setting to distinguish between different high-grade tumours and guide tailored management strategies.

Key points

  • Renal mass biopsy (RMB) is a safe procedure that has a valuable role in the management of patients with small renal masses (cT1), as well as those with hereditary, advanced or metastatic disease.

  • RMB yields accurate pathological information that can reduce unnecessary surgical interventions for benign or indolent renal tumours, favour nephron-sparing surgery for tumours with malignant behaviour and guide patients with highly aggressive renal neoplasms to radical surgery or neoadjuvant therapy.

  • The increasing complexity of renal tumour classification is challenging to apply in clinical practice when tumours are classified according to their morphological and molecular features alone, without incorporation of prognostic outcomes.

  • A definitive diagnosis might not be absolutely crucial in RMB, but a diagnostic approach to stratifying renal neoplasms into the correct prognostic group is pivotal in ensuring correct management.

  • Pathologists need to be aware of overlapping features between well-recognized types of renal tumours and some of the rare and newly recognized renal cell carcinoma entities to avoid misdiagnosis and mismanagement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Benign renal tumours and malignant morphological mimics.
Fig. 2: Oncocytic renal tumours.
Fig. 3: Main immunohistochemical markers that would help to differentiate oncocytic tumours within the various prognostic groups.
Fig. 4: High-grade morphology in renal mass biopsy.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Cancer Research UK. Kidney cancer incidence statistics. Cancer Research UK https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/kidney-cancer/incidence (2015).

  3. Smittenaar, C. R., Petersen, K. A., Stewart, K. & Moitt, N. Cancer incidence and mortality projections in the UK until 2035. Br. J. Cancer 115, 1147–1155 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Leppert, J. T. et al. Utilization of renal mass biopsy in patients with renal cell carcinoma. Urology 83, 774–780 (2014).

    Article  PubMed  Google Scholar 

  5. Chan, V. W.-S. et al. The changing trends of image-guided biopsy of small renal masses before intervention — an analysis of European multinational prospective EuRECA registry. Eur. Radiol. 32, 4667–4678 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kutikov, A. et al. Renal mass biopsy: always, sometimes, or never? Eur. Urol. 70, 403–406 (2016).

    Article  PubMed  Google Scholar 

  7. Kim, J. H. et al. Association of prevalence of benign pathologic findings after partial nephrectomy with preoperative imaging patterns in the United States from 2007 to 2014. JAMA Surg. 154, 225–231 (2019).

    Article  PubMed  Google Scholar 

  8. Neves, J. B. et al. Contemporary surgical management of renal oncocytoma: a nation’s outcome. BJU Int. 121, 893–899 (2018).

    Article  PubMed  Google Scholar 

  9. Campbell, S. C. et al. Renal mass and localized renal cancer: evaluation, management, and follow-up: AUA guideline: part I. J. Urol. 206, 199–208 (2021).

    Article  PubMed  Google Scholar 

  10. Campbell, S. C. et al. Renal mass and localized renal cancer: evaluation, management, and follow-up: AUA guideline: part II. J. Urol. 206, 209–218 (2021).

    Article  PubMed  Google Scholar 

  11. Ljungberg, B. et al. European Association of Urology guidelines on renal cell carcinoma: the 2022 update. Eur. Urol. 82, 399–410 (2022).

    Article  PubMed  Google Scholar 

  12. Finelli, A. et al. Management of small renal masses: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 35, 668–680 (2017).

    Article  PubMed  Google Scholar 

  13. Iguchi, T. et al. Image-guided core biopsy of 2-cm or smaller renal tumors. Diagn. Interv. Imaging 101, 715–720 (2020).

    Article  PubMed  CAS  Google Scholar 

  14. Widdershoven, C. V. et al. Renal biopsies performed before versus during ablation of T1 renal tumors: implications for prevention of overtreatment and follow-up. Abdom. Radiol. 46, 373–379 (2021).

    Article  Google Scholar 

  15. Wells, S. A. et al. Renal mass biopsy and thermal ablation: should biopsy be performed before or during the ablation procedure? Abdom. Radiol. 42, 1773–1780 (2017).

    Article  Google Scholar 

  16. Lay, A. H. et al. Oncologic efficacy of radio frequency ablation for small renal masses: clear cell vs papillary subtype. J. Urol. 194, 653–657 (2015).

    Article  PubMed  Google Scholar 

  17. Danzig, M. R. et al. Active surveillance for small renal masses: a review of the aims and preliminary results of the DISSRM registry. Curr. Urol. Rep. 17, 4 (2016).

    Article  PubMed  Google Scholar 

  18. Rybicki, F. J. et al. Percutaneous biopsy of renal masses: sensitivity and negative predictive value stratified by clinical setting and size of masses. AJR Am. J. Roentgenol. 180, 1281–1287 (2003).

    Article  PubMed  Google Scholar 

  19. Davidson, J. C. et al. Society of Interventional Radiology consensus guidelines for the periprocedural management of thrombotic and bleeding risk in patients undergoing percutaneous image-guided interventions-part I: review of anticoagulation agents and clinical considerations: endorsed by the Canadian Association for Interventional Radiology and the Cardiovascular and Interventional Radiological Society of Europe. J. Vasc. Interv. Radiol. 30, 1155–1167 (2019).

    Article  PubMed  Google Scholar 

  20. Maturen, K. E. et al. Renal mass core biopsy: accuracy and impact on clinical management. AJR Am. J. Roentgenol. 188, 563–570 (2007).

    Article  PubMed  Google Scholar 

  21. Sinks, A. et al. Renal mass biopsy mandate is associated with change in treatment decisions. J. Urol. 210, 72–78 (2023).

    Article  PubMed  Google Scholar 

  22. Marconi, L. et al. Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur. Urol. 69, 660–673 (2016).

    Article  PubMed  Google Scholar 

  23. Richard, P. O. et al. Renal tumor biopsy for small renal masses: a single-center 13-year experience. Eur. Urol. 68, 1007–1013 (2015).

    Article  PubMed  Google Scholar 

  24. Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173, 595–610.e11 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Samplaski, M. K., Zhou, M., Lane, B. R., Herts, B. & Campbell, S. C. Renal mass sampling: an enlightened perspective. Int. J. Urol. 18, 5–19 (2011).

    Article  PubMed  Google Scholar 

  26. Leveridge, M. J. et al. Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy. Eur. Urol. 60, 578–584 (2011).

    Article  PubMed  Google Scholar 

  27. Patel, H. D. et al. Diagnostic accuracy and risks of biopsy in the diagnosis of a renal mass suspicious for localized renal cell carcinoma: systematic review of the literature. J. Urol. 195, 1340–1347 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Renshaw, A. A., Powell, A., Caso, J. & Gould, E. W. Needle track seeding in renal mass biopsies. Cancer Cytopathol. 127, 358–361 (2019).

    Article  PubMed  Google Scholar 

  29. Smith, E. H. Complications of percutaneous abdominal fine-needle biopsy. Rev. Radiol. 178, 253–258 (1991).

    Article  CAS  Google Scholar 

  30. Herts, B. R. & Baker, M. E. The current role of percutaneous biopsy in the evaluation of renal masses. Semin. Urol. Oncol. 13, 254–261 (1995).

    PubMed  CAS  Google Scholar 

  31. Macklin, P. S. et al. Tumour seeding in the tract of percutaneous renal tumour biopsy: a report on seven cases from a UK tertiary referral centre. Eur. Urol. 75, 861–867 (2019).

    Article  PubMed  Google Scholar 

  32. Tyagi, R. & Dey, P. Needle tract seeding: an avoidable complication. Diagn. Cytopathol. 42, 636–640 (2014).

    Article  PubMed  Google Scholar 

  33. Valencia-Guerrero, A. et al. To stage or not to stage: determining the true clinical significance of the biopsy tract through perinephric fat in assessing renal cell carcinoma. Histopathology 78, 951–962 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Khan, A. A. et al. Percutaneous needle biopsy for indeterminate renal masses: a national survey of UK consultant urologists. BMC Urol. 7, 10 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Trpkov, K. & Hes, O. New and emerging renal entities: a perspective post-WHO 2016 classification. Histopathology 74, 31–59 (2019).

    Article  PubMed  Google Scholar 

  36. Delahunt, B. et al. Dataset for the reporting of renal biopsy for tumour: recommendations from the International Collaboration on Cancer Reporting (ICCR). J. Clin. Pathol. 72, 573–578 (2019).

    Article  PubMed  Google Scholar 

  37. Reuter, V. E., Argani, P., Zhou, M., Delahunt, B. & Members of the ISUP Immunohistochemistry in Diagnostic Urologic Pathology Group. Best practices recommendations in the application of immunohistochemistry in the kidney tumors: report from the International Society of Urologic Pathology consensus conference. Am. J. Surg. Pathol. 38, e35–e49 (2014).

    Article  PubMed  Google Scholar 

  38. International Agency for Research on Cancer. in WHO Classification of Tumours: Urinary and Male Genital Tumours 5th edn Vol. 8 (eds WHO Classification of Tumours Editorial Board) 31–110 (IARC, 2022).

  39. Caliò, A., Segala, D., Munari, E., Brunelli, M. & Martignoni, G. MiT family translocation renal cell carcinoma: from the early descriptions to the current knowledge. Cancers 11, 1110 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang, A.-X. et al. TFEB rearranged renal cell carcinoma: pathological and molecular characterization of 10 cases, with novel clinical implications: a single center 10-year experience. Biomedicines 11, 245 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Johnson, D. C. et al. Preoperatively misclassified, surgically removed benign renal masses: a systematic review of surgical series and United States population level burden estimate. J. Urol. 193, 30–35 (2015).

    Article  PubMed  Google Scholar 

  42. Henske, E. P., Jóźwiak, S., Kingswood, J. C., Sampson, J. R. & Thiele, E. A. Tuberous sclerosis complex. Nat. Rev. Dis. Primers 2, 16035 (2016).

    Article  PubMed  Google Scholar 

  43. Flum, A. S. et al. Update on the diagnosis and management of renal angiomyolipoma. J. Urol. 195, 834–846 (2016).

    Article  PubMed  Google Scholar 

  44. Milner, J. et al. Fat poor renal angiomyolipoma: patient, computerized tomography and histological findings. J. Urol. 176, 905–909 (2006).

    Article  PubMed  Google Scholar 

  45. Aquilina, J. et al. Epithelioid angiomyolipomas of the kidney: rare renal tumours associated with poor prognoses. Urology 176, 102–105 (2023).

    Article  PubMed  Google Scholar 

  46. Kuroda, N. et al. Renal leiomyoma: an immunohistochemical, ultrastructural and comparative genomic hybridization study. Histol. Histopathol. 22, 883–888 (2007).

    PubMed  CAS  Google Scholar 

  47. Kinney, S. N. et al. Metanephric adenoma: the utility of immunohistochemical and cytogenetic analyses in differential diagnosis, including solid variant papillary renal cell carcinoma and epithelial-predominant nephroblastoma. Mod. Pathol. 28, 1236–1248 (2015).

    Article  PubMed  CAS  Google Scholar 

  48. Yin, X. et al. Atypical metanephric adenoma: shares similar histopathological features and molecular changes of metanephric adenoma and epithelial-predominant Wilms’ tumor. Front. Oncol. 12, 1020456 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cancer Genome Atlas Research Network. et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

    Article  Google Scholar 

  50. Kuroda, N. et al. ALK rearranged renal cell carcinoma (ALK-RCC): a multi-institutional study of twelve cases with identification of novel partner genes CLIP1, KIF5B and KIAA1217. Mod. Pathol. 33, 2564–2579 (2020).

    Article  PubMed  CAS  Google Scholar 

  51. World Health Organization. International Classification of Diseases for Oncology (ICD-O) (WHO, 2013).

  52. Warren, H., Neves, J. B. & Tran, M. G. B. Renal oncocytoma: landscape of diagnosis and management. BJU Int. 128, 685–687 (2021).

    Article  PubMed  Google Scholar 

  53. Moch, H. et al. The 2022 World Health Organization classification of tumours of the urinary system and male genital organs — part a: renal, penile, and testicular tumours. Eur. Urol. 82, 458–468 (2022).

    Article  PubMed  Google Scholar 

  54. Neves, J. B. et al. Growth and renal function dynamics of renal oncocytomas in patients on active surveillance. BJU Int. 128, 722–727 (2021).

    Article  PubMed  Google Scholar 

  55. Abdessater, M. et al. Renal oncocytoma: an algorithm for diagnosis and management. Urology 143, 173–180 (2020).

    Article  PubMed  Google Scholar 

  56. Deledalle, F.-X. et al. Active surveillance for biopsy proven renal oncocytomas: outcomes and feasibility. Urology 156, 185–190 (2021).

    Article  PubMed  Google Scholar 

  57. Williamson, S. R. et al. Diagnostic criteria for oncocytic renal neoplasms: a survey of urologic pathologists. Hum. Pathol. 63, 149–156 (2017).

    Article  PubMed  Google Scholar 

  58. Branger, N. et al. Oncocytoma on renal mass biopsy: is it still the same histology when surgery is performed? Results from UroCCR-104 study. World J. Urol. 41, 483–489 (2023).

    Article  PubMed  Google Scholar 

  59. Wobker, S. E. & Williamson, S. R. Modern pathologic diagnosis of renal oncocytoma. J. Kidney Cancer VHL 4, 1–12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Trpkov, K. et al. New developments in existing WHO entities and evolving molecular concepts: the Genitourinary Pathology Society (GUPS) update on renal neoplasia. Mod. Pathol. 34, 1392–1424 (2021).

    Article  PubMed  Google Scholar 

  61. Gupta, S., Rowsey, R. A., Cheville, J. C. & Jimenez, R. E. Morphologic overlap between low-grade oncocytic tumor and eosinophilic variant of chromophobe renal cell carcinoma. Hum. Pathol. 119, 114–116 (2022).

    Article  PubMed  Google Scholar 

  62. Trpkov, K. et al. Eosinophilic solid and cystic renal cell carcinoma (ESC RCC): further morphologic and molecular characterization of ESC RCC as a distinct entity. Am. J. Surg. Pathol. 41, 1299–1308 (2017).

    Article  PubMed  Google Scholar 

  63. Kravtsov, O. et al. Low-grade oncocytic tumor of kidney (CK7-Positive, CD117-Negative): incidence in a single institutional experience with clinicopathological and molecular characteristics. Hum. Pathol. 114, 9–18 (2021).

    Article  PubMed  CAS  Google Scholar 

  64. Chen, Y.-B. et al. Somatic mutations of TSC2 or MTOR characterize a morphologically distinct subset of sporadic renal cell carcinoma with eosinophilic and vacuolated cytoplasm. Am. J. Surg. Pathol. 43, 121–131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Truong, L. D. & Shen, S. S. Immunohistochemical diagnosis of renal neoplasms. Arch. Pathol. Lab. Med. 135, 92–109 (2011).

    Article  PubMed  Google Scholar 

  66. Richard, P. O. et al. Active surveillance for renal neoplasms with oncocytic features is safe. J. Urol. 195, 581–586 (2016).

    Article  PubMed  Google Scholar 

  67. Miller, B. L. et al. Comparative analysis of surgery, thermal ablation, and active surveillance for renal oncocytic neoplasms. Urology 112, 92–97 (2018).

    Article  PubMed  Google Scholar 

  68. Samaratunga, H. et al. LOT and HOT … or not. The proliferation of clinically insignificant and poorly characterised types of renal neoplasia. Pathology 54, 842–847 (2022).

    Article  PubMed  CAS  Google Scholar 

  69. Amin, M. B. et al. Low grade oncocytic tumors of the kidney: a clinically relevant approach for the workup and accurate diagnosis. Mod. Pathol. 35, 1306–1316 (2022).

    Article  PubMed  Google Scholar 

  70. Lobo, J. et al. Eosinophilic solid and cystic renal cell carcinoma and renal cell carcinomas with TFEB alterations: a comparative study. Histopathology 81, 32–43 (2022).

    Article  PubMed  Google Scholar 

  71. Caliò, A. et al. Cathepsin K: a novel diagnostic and predictive biomarker for renal tumors. Cancers 13, 2441 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Smith, S. C. et al. A distinctive, low-grade oncocytic fumarate hydratase-deficient renal cell carcinoma, morphologically reminiscent of succinate dehydrogenase-deficient renal cell carcinoma. Histopathology 71, 42–52 (2017).

    Article  PubMed  Google Scholar 

  73. Hamza, A., Sirohi, D., Smith, S. C. & Amin, M. B. Low-grade oncocytic fumarate hydratase-deficient renal cell carcinoma: an update on biologic potential, morphologic spectrum, and differential diagnosis with other low-grade oncocytic tumors. Adv. Anat. Pathol. 28, 396–407 (2021).

    Article  PubMed  CAS  Google Scholar 

  74. Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO classification of tumours of the urinary system and male genital organs — part A: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016).

    Article  PubMed  Google Scholar 

  75. Massari, F. et al. The tumor entity denominated ‘clear cell-papillary renal cell carcinoma’ according to the WHO 2016 new classification, have the clinical characters of a renal cell adenoma as does harbor a benign outcome. Pathol. Oncol. Res. 24, 447–456 (2018).

    Article  PubMed  Google Scholar 

  76. Williamson, S. R. & Cheng, L. Clear cell renal cell tumors: not all that is ‘clear’ is cancer. Urol. Oncol. 34, 292.e17–22 (2016).

    Article  PubMed  Google Scholar 

  77. Hakimi, A. A. et al. TCEB1-mutated renal cell carcinoma: a distinct genomic and morphologic subtype. Mod. Pathol. 28, 845 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wang, Y. et al. Analysis of clinicopathological and molecular features of ELOC(TCEB1)-mutant renal cell carcinoma. Pathol. Res. Pract. 235, 153960 (2022).

    Article  PubMed  CAS  Google Scholar 

  79. Shah, R. B. et al. ‘Renal cell carcinoma with leiomyomatous stroma’ harbor somatic mutations of TSC1, TSC2, MTOR, and/or ELOC (TCEB1): clinicopathologic and molecular characterization of 18 sporadic tumors supports a distinct entity. Am. J. Surg. Pathol. 44, 571–581 (2020).

    Article  PubMed  Google Scholar 

  80. Parilla, M. et al. Genetic underpinnings of renal cell carcinoma with leiomyomatous stroma. Am. J. Surg. Pathol. 43, 1135 (2019).

    Article  PubMed  Google Scholar 

  81. Nathany, S. & Monappa, V. Mucinous tubular and spindle cell carcinoma: a review of histopathology and clinical and prognostic implications. Arch. Pathol. Lab. Med. 144, 115–118 (2020).

    Article  PubMed  CAS  Google Scholar 

  82. Zhao, M., He, X. & Teng, X. Mucinous tubular and spindle cell renal cell carcinoma: a review of clinicopathologic aspects. Diagn. Pathol. 10, 168 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kondo, T. et al. Acquired cystic disease-associated renal cell carcinoma is the most common subtype in long-term dialyzed patients: central pathology results according to the 2016 WHO classification in a multi-institutional study. Pathol. Int. 68, 543–549 (2018).

    Article  PubMed  Google Scholar 

  84. Kondo, T. et al. Comparable survival outcome between acquired cystic disease associated renal cell carcinoma and clear cell carcinoma in patients with end-stage renal disease: a multi-institutional central pathology study. Pathology 53, 720–727 (2021).

    Article  PubMed  Google Scholar 

  85. Foshat, M. & Eyzaguirre, E. Acquired cystic disease-associated renal cell carcinoma: review of pathogenesis, morphology, ancillary tests, and clinical features. Arch. Pathol. Lab. Med. 141, 600–606 (2017).

    Article  PubMed  CAS  Google Scholar 

  86. Przybycin, C. G. et al. Acquired cystic disease-associated renal cell carcinoma (ACD-RCC): a multiinstitutional study of 40 cases with clinical follow-up. Am. J. Surg. Pathol. 42, 1156 (2018).

    Article  PubMed  Google Scholar 

  87. Polascik, T. J., Pound, C. R., Meng, M. V., Partin, A. W. & Marshall, F. F. Partial nephrectomy: technique complications and pathological findings. J. Urol. 154, 1312–1318 (1995).

    Article  PubMed  CAS  Google Scholar 

  88. Shah, P. H. et al. Partial nephrectomy is associated with higher risk of relapse compared with radical nephrectomy for clinical stage T1 renal cell carcinoma pathologically up staged to T3a. J. Urol. 198, 289–296 (2017).

    Article  PubMed  Google Scholar 

  89. Tsai, H.-Y., Lee, K.-H., Ng, K.-F., Kao, Y.-T. & Chuang, C.-K. Clinicopathologic analysis of renal epithelioid angiomyolipoma: consecutively excised 23 cases. Kaohsiung J. Med. Sci. 35, 33–38 (2019).

    Article  PubMed  Google Scholar 

  90. Nese, N. et al. Pure epithelioid PEComas (So-Called Epithelioid Angiomyolipoma) of the kidney: a clinicopathologic study of 41 cases detailed assessment of morphology and risk stratification. Am. J. Surg. Pathol. 35, 161–176 (2011).

    Article  PubMed  Google Scholar 

  91. He, W. et al. Epithelioid angiomyolipoma of the kidney: pathological features and clinical outcome in a series of consecutively resected tumors. Mod. Pathol. 26, 1355–1364 (2013).

    Article  PubMed  Google Scholar 

  92. Brimo, F. et al. Renal epithelioid angiomyolipoma with atypia: a series of 40 cases with emphasis on clinicopathologic prognostic indicators of malignancy. Am. J. Surg. Pathol. 34, 715–722 (2010).

    Article  PubMed  Google Scholar 

  93. Sharma, A. E., Parilla, M., Wanjari, P., Segal, J. P. & Antic, T. A tale of 2 morphologies: diagnostic pitfalls in TFEB-associated renal cell carcinomas, including a novel NEAT1-TFEB fusion. Int. J. Surg. Pathol. 29, 21–29 (2021).

    Article  PubMed  CAS  Google Scholar 

  94. Kenerson, H., Folpe, A. L., Takayama, T. K. & Yeung, R. S. Activation of the mTOR pathway in sporadic angiomyolipomas and other perivascular epithelioid cell neoplasms. Hum. Pathol. 38, 1361–1371 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Guo, G., Gu, L. & Zhang, X. Everolimus in invasive malignant renal epithelioid angiomyolipoma. Front. Oncol. 10, 610858 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sanfilippo, R. et al. Role of chemotherapy, VEGFR inhibitors, and mTOR inhibitors in advanced perivascular epithelioid cell tumors (PEComas). Clin. Cancer Res. 25, 5295–5300 (2019).

    Article  PubMed  CAS  Google Scholar 

  97. Prendeville, S. et al. Accuracy of renal tumour biopsy for the diagnosis and subtyping of papillary renal cell carcinoma: analysis of paired biopsy and nephrectomy specimens with focus on discordant cases. J. Clin. Pathol. 72, 363–367 (2019).

    Article  PubMed  Google Scholar 

  98. Xia, Q.-Y. et al. Clinicopathologic and molecular analysis of the TFEB fusion variant reveals new members of TFEB translocation renal cell carcinomas (RCCs): expanding the genomic spectrum. Am. J. Surg. Pathol. 44, 477–489 (2020).

    Article  PubMed  Google Scholar 

  99. Gupta, S. et al. TFEB expression profiling in renal cell carcinomas: clinicopathologic correlations. Am. J. Surg. Pathol. 43, 1445 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Peckova, K. et al. Aggressive and nonaggressive translocation t(6;11) renal cell carcinoma: comparative study of 6 cases and review of the literature. Ann. Diagn. Pathol. 18, 351–357 (2014).

    Article  PubMed  Google Scholar 

  101. Caliò, A. et al. TFEB rearranged renal cell carcinoma. A clinicopathologic and molecular study of 13 cases. Tumors harboring MALAT1-TFEB, ACTB-TFEB, and the novel NEAT1-TFEB translocations constantly express PDL1. Mod. Pathol. 34, 842–850 (2021).

    Article  PubMed  Google Scholar 

  102. Smith, N. E. et al. t(6;11) renal cell carcinoma (RCC) expanded immunohistochemical profile emphasizing novel RCC markers and report of 10 new genetically confirmed cases. Am. J. Surg. Pathol. 38, 604–614 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liu, N. et al. Renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusions: clinical features, treatments and prognosis. PLoS ONE 11, e0166897 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Shen, Y., Liu, Z., Wei, Q. & Xue, W. Consensus on clinical diagnosis and treatment of fumarate hydratase-deficient renal cell carcinoma. Holist. Integr. Oncol. 3, 7 (2024).

    Article  Google Scholar 

  105. Iannantuono, G. M., Riondino, S., Sganga, S., Roselli, M. & Torino, F. Activity of ALK inhibitors in renal cancer with ALK alterations: a systematic review. Int. J. Mol. Sci. 23, 3995 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Kauffman, E. C. et al. Molecular genetics and cellular characteristics of TFE3 and TFEB translocation renal cell carcinomas. Nat. Rev. Urol. 11, 465–475 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Argani, P., Matoso, A., Baraban, E. G., Epstein, J. I. & Antonescu, C. R. MED15::TFE3 renal cell carcinomas: report of two new cases and review of the literature confirming nearly universal multilocular cystic morphology. Int. J. Surg. Pathol. 31, 409–414 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Argani, P. et al. TFE3-fusion variant analysis defines specific clinicopathologic associations among Xp11 translocation cancers. Am. J. Surg. Pathol. 40, 723–737 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wang, X.-T. et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum. Pathol. 63, 190–200 (2017).

    Article  PubMed  Google Scholar 

  110. Xia, Q. et al. Xp11.2 translocation renal cell carcinoma with NONO-TFE3 gene fusion: morphology, prognosis, and potential pitfall in detecting TFE3 gene rearrangement. Mod. Pathol. 30, 416–426 (2017).

    Article  PubMed  Google Scholar 

  111. Caliò, A. et al. TFE3 and TFEB-rearranged renal cell carcinomas: an immunohistochemical panel to differentiate from common renal cell neoplasms. Virchows Arch. 481, 877–891 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Williamson, S. R. et al. Report from the International Society of Urological Pathology (ISUP) consultation conference on molecular pathology of urogenital cancers. III. molecular pathology of kidney cancer. Am. J. Surg. Pathol. 44, e47–e65 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Caliò, A. et al. Comprehensive analysis of 34 MiT family translocation renal cell carcinomas and review of the literature: investigating prognostic markers and therapy targets. Pathology 52, 297–309 (2020).

    Article  PubMed  Google Scholar 

  114. Dong, X. et al. Clinicopathological features and prognosis of TFE3-positive renal cell carcinoma. Front. Oncol. 12, 1017425 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Skala, S. L. et al. Detection of 6 TFEB-amplified renal cell carcinomas and 25 renal cell carcinomas with MITF translocations: systematic morphologic analysis of 85 cases evaluated by clinical TFE3 and TFEB FISH assays. Mod. Pathol. 31, 179–197 (2018).

    Article  PubMed  CAS  Google Scholar 

  116. Argani, P., Zhang, L., Reuter, V. E., Tickoo, S. K. & Antonescu, C. R. RBM10-TFE3 renal cell carcinoma: a potential diagnostic pitfall due to cryptic intrachromosomal Xp11.2 inversion resulting in false-negative TFE3 FISH. Am. J. Surg. Pathol. 41, 655–662 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Classe, M. et al. Incidence, clinicopathological features and fusion transcript landscape of translocation renal cell carcinomas. Histopathology 70, 1089–1097 (2017).

    Article  PubMed  Google Scholar 

  118. Ellis, C. L. et al. Clinical heterogeneity of Xp11 translocation renal cell carcinoma: impact of fusion subtype, age, and stage. Mod. Pathol. 27, 875–886 (2014).

    Article  PubMed  CAS  Google Scholar 

  119. Bakouny, Z. et al. Integrative clinical and molecular characterization of translocation renal cell carcinoma. Cell Rep. 38, 110190 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Sun, G. et al. Integrated exome and RNA sequencing of TFE3-translocation renal cell carcinoma. Nat. Commun. 12, 5262 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Trpkov, K. et al. Fumarate hydratase-deficient renal cell carcinoma is strongly correlated with fumarate hydratase mutation and hereditary leiomyomatosis and renal cell carcinoma syndrome. Am. J. Surg. Pathol. 40, 865 (2016).

    Article  PubMed  Google Scholar 

  122. Galea, L. A. et al. ALK-rearranged renal cell carcinoma with TPM3::ALK gene fusion and review of the literature. Virchows Arch. Int. J. Pathol. 482, 625–633 (2022).

    Article  Google Scholar 

  123. Leibovich, B. C. et al. Predicting oncologic outcomes in renal cell carcinoma after surgery. Eur. Urol. 73, 772–780 (2018).

    Article  PubMed  Google Scholar 

  124. Moch, H. The WHO/ISUP grading system for renal carcinoma [German]. Pathol 37, 355–360 (2016).

    Article  CAS  Google Scholar 

  125. Delahunt, B., Eble, J. N., Egevad, L. & Samaratunga, H. Grading of renal cell carcinoma. Histopathology 74, 4–17 (2019).

    Article  PubMed  Google Scholar 

  126. Volpe, A. et al. Contemporary results of percutaneous biopsy of 100 small renal masses: a single center experience. J. Urol. 180, 2333–2337 (2008).

    Article  PubMed  Google Scholar 

  127. Amaral, B. S. et al. Renal tumor biopsy: rationale to avoid surgery in small renal masses. Curr. Urol. Rep. 22, 46 (2021).

    Article  PubMed  CAS  Google Scholar 

  128. Avulova, S. et al. Grading chromophobe renal cell carcinoma: evidence for a four-tiered classification incorporating coagulative tumor necrosis. Eur. Urol. 79, 225–231 (2021).

    Article  PubMed  Google Scholar 

  129. Baiocco, J. A. & Metwalli, A. R. Multiplex partial nephrectomy, repeat partial nephrectomy, and salvage partial nephrectomy remain the primary treatment in multifocal and hereditary kidney cancer. Front. Oncol. 7, 244 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  PubMed  CAS  Google Scholar 

  131. Carlo, M. I. et al. Familial kidney cancer: implications of new syndromes and molecular insights. Eur. Urol. 76, 754–764 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Argani, P. & Mehra, R. Renal cell carcinoma associated with tuberous sclerosis complex (TSC)/mammalian target of rapamycin (MTOR) genetic alterations. Mod. Pathol. 35, 296–297 (2022).

    Article  PubMed  Google Scholar 

  133. Swartz, M. A. et al. Renal medullary carcinoma: clinical, pathologic, immunohistochemical, and genetic analysis with pathogenetic implications. Urology 60, 1083–1089 (2002).

    Article  PubMed  Google Scholar 

  134. Smith, N. E. et al. VCL-ALK renal cell carcinoma in children with sickle-cell trait: the eighth sickle-cell nephropathy? Am. J. Surg. Pathol. 38, 858–863 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Shuch, B. et al. Defining early-onset kidney cancer: implications for germline and somatic mutation testing and clinical management. J. Clin. Oncol. 32, 431–437 (2014).

    Article  PubMed  Google Scholar 

  136. Motzer, R. J. et al. NCCN guidelines insights: kidney cancer, version 1.2021: featured updates to the NCCN guidelines. J. Natl Compr. Canc. Netw. 18, 1160–1170 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Drobner, J., Portal, D., Runcie, K., Yang, Y. & Singer, E. A. Systemic treatment for advanced and metastatic non-clear cell renal cell carcinoma: examining modern therapeutic strategies for a notoriously challenging malignancy. J. Kidney Cancer VHL 10, 37–60 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Williams, J. H., Frazier, H. A., Gawith, K. E., Laskin, W. B. & Christenson, P. J. Transitional cell carcinoma of the kidney with tumor thrombus into the vena cava. Urology 48, 932–935 (1996).

    Article  PubMed  CAS  Google Scholar 

  139. Li, M. et al. Transitional cell carcinoma with extension of the renal vein and IVC tumor thrombus: report of three cases and literature review. World J. Surg. Oncol. 14, 309 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tong, G.-X. et al. Expression of PAX8 in normal and neoplastic renal tissues: an immunohistochemical study. Mod. Pathol. 22, 1218–1227 (2009).

    Article  PubMed  CAS  Google Scholar 

  141. Shuch, B., Bratslavsky, G., Linehan, W. M. & Srinivasan, R. Sarcomatoid renal cell carcinoma: a comprehensive review of the biology and current treatment strategies. Oncologist 17, 46 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Damayanti, N. P. et al. Therapeutic targeting of TFE3/IRS-1/PI3K/mTOR axis in translocation renal cell carcinoma. Clin. Cancer Res. 24, 5977–5989 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Lang, M. et al. High-throughput and targeted drug screens identify pharmacological candidates against MiT-translocation renal cell carcinoma. J. Exp. Clin. Cancer Res. 42, 99 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Suarez, C. et al. Update in collecting duct carcinoma: current aspects of the clinical and molecular characterization of an orphan disease. Front. Oncol. 12, 970199 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Siadat, F. & Trpkov, K. ESC, ALK, HOT and LOT: three letter acronyms of emerging renal entities knocking on the door of the WHO classification. Cancers 12, 168 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Dawood, A. et al. Case report: disease progression of renal cell carcinoma containing a novel putative pathogenic KAT6A::NRG1 fusion on Ipilimumab-Nivolumab immunotherapy. A case study and review of the literature. Front. Oncol. 13, 1111706 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hora, M. et al. Re: Tumour seeding in the tract of percutaneous renal tumour biopsy: a report on seven cases from a UK tertiary referral centre. Eur. Urol. 76, e96 (2019).

    Article  PubMed  Google Scholar 

  148. Zhou, Y., Murugan, P., Li, F. & Bu, L. Needle tract seeding in renal tumor biopsies: experience from a single institution. Diagn. Pathol. 16, 43 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Taneja, K. & Williamson, S. R. Updates in pathologic staging and histologic grading of renal cell carcinoma. Surg. Pathol. Clin. 11, 797–812 (2018).

    Article  PubMed  Google Scholar 

  150. Salmasi, A. et al. Association between renal mass biopsy and upstaging to perinephric fat involvement in a contemporary cohort of patients with clinical T1a renal cell carcinoma. Urol. Oncol. 36, 527.e13–527.e19 (2018).

    Article  PubMed  Google Scholar 

  151. Zhang, L. et al. Tumor necrosis as a prognostic variable for the clinical outcome in patients with renal cell carcinoma: a systematic review and meta-analysis. BMC Cancer 18, 870 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Staehler, M. et al. Long-term follow-up in patients undergoing renal mass biopsy: seeding is not anecdotal. Clin. Genitourin. Cancer 22, 189–192 (2024).

    Article  PubMed  Google Scholar 

  153. Deng, J. et al. A comparison of the prognosis of papillary and clear cell renal cell carcinoma: evidence from a meta-analysis. Medicine 98, e16309 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Petersson, F. et al. A distinctive translocation carcinoma of the kidney; ‘rosette forming,’ t(6;11), HMB45-positive renal tumor: a histomorphologic, immunohistochemical, ultrastructural, and molecular genetic study of 4 cases. Hum. Pathol. 43, 726–736 (2012).

    Article  PubMed  CAS  Google Scholar 

  155. Pei, J. et al. NEAT1-TFE3 and KAT6A-TFE3 renal cell carcinomas, new members of MiT family translocation renal cell carcinoma. Mod. Pathol. 32, 710–716 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Wang, X. et al. RNA sequencing of Xp11 translocation-associated cancers reveals novel gene fusions and distinctive clinicopathologic correlations. Mod. Pathol. 31, 1346–1360 (2018).

    Article  PubMed  CAS  Google Scholar 

  157. Argani, P. et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am. J. Pathol. 159, 179–192 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Guo, W., Zhu, Y., Pu, X., Guo, H. & Gan, W. Clinical and pathological heterogeneity of four common fusion subtypes in Xp11.2 translocation renal cell carcinoma. Front. Oncol. 13, 1116648 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Song, Y. et al. Xp11 translocation renal cell carcinoma with morphological features mimicking multilocular cystic renal neoplasm of low malignant potential: a series of six cases with molecular analysis. J. Clin. Pathol. 74, 171–176 (2021).

    Article  PubMed  CAS  Google Scholar 

  160. Ye, H. et al. A rare partner of TFE3 in the Xp11 translocation renal cell carcinoma: clinicopathological analyses and detection of MED15-TFE3 fusion. Biomed. Res. Int. 2019, 5974089 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Zhan, H.-Q., Chen, H., Wang, C.-F. & Zhu, X.-Z. A case of PSF-TFE3 gene fusion in Xp11.2 renal cell carcinoma with melanotic features. Hum. Pathol. 46, 476–481 (2015).

    Article  PubMed  CAS  Google Scholar 

  162. Rao, Q. et al. PSF/SFPQ is a very common gene fusion partner in tfe3 rearrangement–associated perivascular epithelioid cell tumors (PEComas) and melanotic Xp11 translocation renal cancers: clinicopathologic, immunohistochemical, and molecular characteristics suggesting classification as a distinct entity. Am. J. Surg. Pathol. 39, 1181 (2015).

    Article  PubMed  Google Scholar 

  163. Pivovarcikova, K. et al. TFE3-fusion variant analysis defines specific clinicopathologic associations among Xp11 translocation cancers. Am. J. Surg. Pathol. 41, 138 (2017).

    Article  PubMed  Google Scholar 

  164. Xia, Q. et al. Xp11 translocation renal cell carcinomas (RCCs) with RBM10-TFE3 gene fusion demonstrating melanotic features and overlapping morphology with t(6;11) RCC: interest and diagnostic pitfall in detecting a paracentric inversion of: TFE3. Am. J. Surg. Pathol. 41, 663 (2017).

    Article  PubMed  Google Scholar 

  165. Fukuda, H. et al. A novel partner of TFE3 in the Xp11 translocation renal cell carcinoma: clinicopathological analyses and detection of EWSR1-TFE3 fusion. Virchows Arch. 474, 389–393 (2019).

    Article  PubMed  CAS  Google Scholar 

  166. Argani, P. et al. A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene 22, 5374–5378 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.M. researched data for the article. S.E.S. and A.B. contributed substantially to discussion of the content. S.E.S. and H.M. wrote the article. H.M., M.A.T.D., M.W., E.B., R.B., P.P., F.M., M.G.B.T. and A.B. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Soha El Sheikh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Brian Lane, who co-reviewed with Dennis Boynton, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, H., Tran-Dang, MA., Walkden, M. et al. Renal mass biopsy — a practical and clinicopathologically relevant approach to diagnosis. Nat Rev Urol 22, 8–25 (2025). https://doi.org/10.1038/s41585-024-00897-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41585-024-00897-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing