Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant-based diets and urological health

Abstract

Plant-based diets have grown in popularity owing to multiple health and environmental benefits. Some evidence suggests that plant-based diets are associated with benefits for urological health. In genitourinary oncology, most research has focused on prostate cancer. Clinical trial results suggest a favourable influence of healthy lifestyle modifications including plant-based diets before and after prostate cancer treatment. Epidemiological evidence shows that a diet higher in plant-based and lower in animal-based food is associated with a lower risk of aggressive prostate cancer and better quality-of-life scores than a diet with less plant-based and more animal-based food. Studies on bladder and kidney cancer are scarce, but limited data suggest that vegetarian or plant-forward dietary patterns (increased consumption of fruits and vegetables and minimizing meat) are associated with a lower risk of development of these cancers than dietary patterns with fewer fruits and vegetables and more meat. With respect to benign urological conditions, epidemiological studies suggest that plant-based dietary patterns are associated with a lower risk of benign prostatic hyperplasia and urinary tract infections than non-plant-based dietary patterns. Compared with diets high in animal-based foods and low in plant-based foods, a substantial body of epidemiological evidence also suggests that increased consumption of healthy plant-based food is associated with a lower risk of erectile dysfunction. Plant-based dietary patterns that are high in fruits and vegetables with normal calcium intake, while limiting animal protein and salt, are associated with a lower risk of kidney stone development than dietary patterns that do not follow these parameters. Overall, increasing consumption of plant-based foods and reducing intake of animal-based foods has favourable associations with multiple urological conditions.

Key points

  • Plant-based diets have many well-established benefits for health, including a reduced risk of heart disease, diabetes and obesity. They are also substantially better for the environment.

  • Vegan and vegetarian diets are associated with a lower risk of prostate cancer progression than non-plant-based diets in clinical trials and observational studies. Limited data on bladder and kidney cancer suggest that diets with less meat and more vegetables might be associated with a lower risk of developing these conditions than diets with more meat and fewer vegetables.

  • Erectile dysfunction is linked with cardiovascular disease. Healthy plant-based diets offer an opportunity to optimize cardiovascular and sexual health.

  • Dietary patterns with more vegetables and less animal protein have been associated with a lower risk of benign prostatic hyperplasia than those with fewer vegetables and more animal protein.

  • Prospective cohort studies show that vegetarians are at a lower risk of kidney stones and urinary tract infections than non-vegetarians. Importantly, reducing global consumption of animal protein is important to combat climate change and antimicrobial resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct and indirect impacts of animal protein for urological health.

Similar content being viewed by others

References

  1. Clem, J. & Barthel, B. A look at plant-based diets. Mo. Med. 118, 233–238 (2021).

    PubMed  PubMed Central  Google Scholar 

  2. Position of the American Dietetic Association and Dietitians of Canada. Vegetarian diets. J. Am. Diet. Assoc. 103, 748–765 (2003).

    Article  Google Scholar 

  3. Kim, H. et al. Plant-based diets and incident CKD and kidney function. Clin. J. Am. Soc. Nephrol. 14, 682–691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fu, B. C. et al. Insulinemic and inflammatory dietary patterns and risk of prostate cancer. Eur. Urol. 79, 405–412 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sutliffe, J. T. et al. C-reactive protein response to a vegan lifestyle intervention. Complement. Ther. Med. 23, 32–37 (2015).

    Article  PubMed  Google Scholar 

  6. Kharaty, S. et al. Plant-based dietary indices and biomarkers of chronic low-grade inflammation: a cross-sectional analysis of adults in Ireland. Eur. J. Nutr. 62, 3397–3410 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bouvard, V. et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 16, 1599–1600 (2015).

    Article  PubMed  Google Scholar 

  8. Pernar, C. H. et al. The epidemiology of prostate cancer. Cold Spring Harb. Perspect. Med. 8, a030361 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sun, J. W. et al. Obesity and risk of bladder cancer: a dose-response meta-analysis of 15 cohort studies. PLoS ONE 10, e0119313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scelo, G. & Larose, T. L. Epidemiology and risk factors for kidney cancer. J. Clin. Oncol. 36, Jco2018791905 (2018).

    Article  PubMed  Google Scholar 

  11. Alhabeeb, H. et al. Association between body mass index and urinary tract infection: a systematic review and meta-analysis of observational cohort studies. Eat. Weight. Disord. 26, 2117–2125 (2021).

    Article  PubMed  Google Scholar 

  12. Aune, D. et al. Body mass index, abdominal fatness, weight gain and the risk of urinary incontinence: a systematic review and dose-response meta-analysis of prospective studies. BJOG 126, 1424–1433 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Emami, E. et al. Obesity and the risk of developing kidney stones: a systematic review and meta-analysis. Iran. J. Kidney Dis. 1, 63–72 (2023).

    PubMed  Google Scholar 

  14. Pizzol, D. et al. Associations between body mass index, waist circumference and erectile dysfunction: a systematic review and META-analysis. Rev. Endocr. Metab. Disord. 21, 657–666 (2020).

    Article  PubMed  Google Scholar 

  15. Brown, J. S. et al. Urologic complications of diabetes. Diabetes Care 28, 177–185 (2005).

    Article  PubMed  Google Scholar 

  16. Rosenfeld, R. M. et al. Dietary interventions to treat type 2 diabetes in adults with a goal of remission: an expert consensus statement from the American College of Lifestyle Medicine. Am. J. Lifestyle Med. 16, 342–362 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sangiorgi, G. et al. Anatomy, pathophysiology, molecular mechanisms, and clinical management of erectile dysfunction in patients affected by coronary artery disease: a review. Biomedicines 9, 432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ornish, D. et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA 280, 2001–2007 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Done, H. Y., Venkatesan, A. K. & Halden, R. U. Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? AAPS J. 17, 513–524 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Forslund, K. et al. Country-specific antibiotic use practices impact the human gut resistome. Genome Res. 23, 1163–1169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerber P. J. et al. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities (FAO, 2013).

  22. Eisen, M. B. & Brown, P. O. Rapid global phaseout of animal agriculture has the potential to stabilize greenhouse gas levels for 30 years and offset 68 percent of CO2 emissions this century. PLoS Clim. 1, e0000010 (2022).

    Article  Google Scholar 

  23. Milner, J. et al. Health effects of adopting low greenhouse gas emission diets in the UK. BMJ Open 5, e007364 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brikowski, T. H., Lotan, Y. & Pearle, M. S. Climate-related increase in the prevalence of urolithiasis in the United States. Proc. Natl Acad. Sci. USA 105, 9841–9846 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iyer, H. S. et al. Influence of neighborhood social and natural environment on prostate tumor histology in a cohort of male health professionals. Am. J. Epidemiol. 192, 1485–1498 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ponting, J. et al. The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil — a review. Sci. Total. Environ. 754, 142040 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Tuminello, S. et al. Exposure to chemical and toxic elements following Hurricane Harvey. Environ. Epidemiol. 3, 239–240 (2019).

    Article  Google Scholar 

  28. Erickson, T. B. et al. Environmental health effects attributed to toxic and infectious agents following hurricanes, cyclones, flash floods and major hydrometeorological events. J. Toxicol. Environ. Health Part B 22, 157–171 (2019).

    Article  CAS  Google Scholar 

  29. Steenland, K. & Winquist, A. PFAS and cancer, a scoping review of the epidemiologic evidence. Env. Res. 194, 110690 (2021).

    Article  CAS  Google Scholar 

  30. Nogueira, L. M. et al. Association between declared hurricane disasters and survival of patients with lung cancer undergoing radiation treatment. JAMA 322, 269–271 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ginex, P. et al. Climate disasters and oncology care: a systematic review of effects on patients, healthcare professionals, and health systems. Support. Care Cancer 31, 403 (2023).

    Article  PubMed  Google Scholar 

  32. Nogueira, L. M. et al. Climate change and cancer. Cancer Epidemiol. Biomark. Prev. 32, 869–875 (2023).

    Article  Google Scholar 

  33. Shah, U. A. & Merlo, G. Personal and planetary health-the connection with dietary choices. JAMA 329, 1823–1824 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kahleova, H. et al. Vegan diet and food costs among adults with overweight: a secondary analysis of a randomized clinical trial. JAMA Netw. Open 6, e2332106 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cespedes, E. M. & Hu, F. B. Dietary patterns: from nutritional epidemiologic analysis to national guidelines. Am. J. Clin. Nutr. 101, 899–900 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gupta, N. et al. Systematic review of the impact of a plant-based diet on prostate cancer incidence and outcomes. Prostate Cancer Prostatic Dis. 25, 444–452 (2022).

    Article  PubMed  Google Scholar 

  37. Ornish, D. et al. Intensive lifestyle changes may affect the progression of prostate cancer. J. Urol. 174, 1065–1069; discussion 1069–1070 (2005).

    Article  PubMed  Google Scholar 

  38. Dunn-Emke, S. R. et al. Nutrient adequacy of a very low-fat vegan diet. J. Am. Diet. Assoc. 105, 1442–1446 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kronenwetter, C. et al. A qualitative analysis of interviews of men with early stage prostate cancer: the Prostate Cancer Lifestyle Trial. Cancer Nurs. 28, 99–107 (2005).

    Article  PubMed  Google Scholar 

  40. Daubenmier, J. J. et al. Lifestyle and health-related quality of life of men with prostate cancer managed with active surveillance. Urology 67, 125–130 (2006).

    Article  PubMed  Google Scholar 

  41. Dewell, A. et al. Relationship of dietary protein and soy isoflavones to serum IGF-1 and IGF binding proteins in the Prostate Cancer Lifestyle Trial. Nutr. Cancer 58, 35–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Dewell, A. et al. A very-low-fat vegan diet increases intake of protective dietary factors and decreases intake of pathogenic dietary factors. J. Am. Diet. Assoc. 108, 347–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Frattaroli, J. et al. Clinical events in prostate cancer lifestyle trial: results from two years of follow-up. Urology 72, 1319–1323 (2008).

    Article  PubMed  Google Scholar 

  44. Carmody, J. et al. A dietary intervention for recurrent prostate cancer after definitive primary treatment: results of a randomized pilot trial. Urology 72, 1324–1328 (2008).

    Article  PubMed  Google Scholar 

  45. Carmody, J. F. et al. A novel measure of dietary change in a prostate cancer dietary program incorporating mindfulness training. J. Acad. Nutr. Diet. 112, 1822–1827 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Saxe, G. A. et al. Can diet in conjunction with stress reduction affect the rate of increase in prostate specific antigen after biochemical recurrence of prostate cancer? J. Urol. 166, 2202–2207 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Saxe, G. A. et al. Potential attenuation of disease progression in recurrent prostate cancer with plant-based diet and stress reduction. Integr. Cancer Ther. 5, 206–213 (2006).

    Article  PubMed  Google Scholar 

  48. Saxe, G. A. et al. Biological mediators of effect of diet and stress reduction on prostate cancer. Integr. Cancer Ther. 7, 130–138 (2008).

    Article  PubMed  Google Scholar 

  49. Nguyen, J. Y. et al. Adoption of a plant-based diet by patients with recurrent prostate cancer. Integr. Cancer Ther. 5, 214–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Hébert, J. R. et al. A diet, physical activity, and stress reduction intervention in men with rising prostate-specific antigen after treatment for prostate cancer. Cancer Epidemiol. 36, e128–e136 (2012).

    Article  PubMed  Google Scholar 

  51. Antwi, S. O. et al. Plasma carotenoids and tocopherols in relation to prostate-specific antigen (PSA) levels among men with biochemical recurrence of prostate cancer. Cancer Epidemiol. 39, 752–762 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. O’Neil, C. E. et al. Food sources of energy and nutrients among adults in the US: NHANES 2003–2006. Nutrients 4, 2097–2120 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Key, T. J. et al. Cancer incidence in British vegetarians. Br. J. Cancer 101, 192–197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Key, T. J. et al. Cancer incidence in vegetarians: results from the European Prospective Investigation into Cancer and Nutrition (EPIC-Oxford). Am. J. Clin. Nutr. 89, 1620S–1626S (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Key, T. J. et al. Mortality in British vegetarians: results from the European Prospective Investigation into Cancer and Nutrition (EPIC-Oxford). Am. J. Clin. Nutr. 89, 1613S–1619S (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Watling, C. Z. et al. Risk of cancer in regular and low meat-eaters, fish-eaters, and vegetarians: a prospective analysis of UK Biobank participants. BMC Med. 20, 73 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fraser, G. E. Associations between diet and cancer, ischemic heart disease, and all-cause mortality in non-Hispanic white California Seventh-day Adventists. Am. J. Clin. Nutr. 70, 532s–538s (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Mills, P. K. et al. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer 64, 598–604 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Tantamango-Bartley, Y. et al. Are strict vegetarians protected against prostate cancer? Am. J. Clin. Nutr. 103, 153–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Fraser, G. E. et al. Tomato consumption and intake of lycopene as predictors of the incidence of prostate cancer: the Adventist Health Study-2. Cancer Causes Control. 31, 341–351 (2020).

    Article  PubMed  Google Scholar 

  61. Key, T. J. et al. Mortality in vegetarians and non-vegetarians: a collaborative analysis of 8300 deaths among 76,000 men and women in five prospective studies. Public. Health Nutr. 1, 33–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Key, T. J. et al. Mortality in vegetarians and nonvegetarians: detailed findings from a collaborative analysis of 5 prospective studies. Am. J. Clin. Nutr. 70, 516s–524s (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Gilsing, A. M. et al. Vegetarianism, low meat consumption and the risk of lung, postmenopausal breast and prostate cancer in a population-based cohort study. Eur. J. Clin. Nutr. 70, 723–739 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Sobti, R. C. et al. CYP17 gene polymorphism and its association in north Indian prostate cancer patients. Anticancer. Res. 29, 1659–1663 (2009).

    CAS  PubMed  Google Scholar 

  65. Sobti, R. C. et al. Polymorphisms in the HPC/ELAC-2 and alpha 1-antitrypsin genes that correlate with human diseases in a North Indian population. Mol. Biol. Rep. 38, 3137–3144 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Chen, Y. C. et al. Diet, vegetarian food and prostate carcinoma among men in Taiwan. Br. J. Cancer 93, 1057–1061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chang-Claude, J., Frentzel-Beyme, R. & Eilber, U. Mortality pattern of German vegetarians after 11 years of follow-up. Epidemiology 3, 395–401 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Carter, J. P. et al. Hypothesis: dietary management may improve survival from nutritionally linked cancers based on analysis of representative cases. J. Am. Coll. Nutr. 12, 209–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Key, T. J. et al. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am. J. Clin. Nutr. 100, (Suppl. 1) 378s–385s (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Feiertag, N. et al. Should men eat more plants? A systematic review of the literature on the effect of plant-forward diets on men’s health. Urology 176, 7–15 (2023).

    Article  PubMed  Google Scholar 

  71. Satija, A. et al. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med. 13, e1002039 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yue, Y. et al. Reproducibility and validity of diet quality scores derived from food-frequency questionnaires. Am. J. Clin. Nutr. 115, 843–853 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Mouzannar, A. et al. Impact of plant-based diet on PSA level: data from the national health and nutrition examination survey. Urology 156, 205–210 (2021).

    Article  PubMed  Google Scholar 

  74. Loeb, S. et al. Association of plant-based diet index with prostate cancer risk. Am. J. Clin. Nutr. 115, 662–670 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Loeb, S. et al. Plant-based diet associated with better quality of life in prostate cancer survivors. Cancer 130, 1618–1628 (2024).

    Article  PubMed  Google Scholar 

  76. Liu, V. N. et al. Plant-based diets and disease progression in men with prostate cancer. JAMA Netw. Open 7, e249053 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Taylor, J. et al. A systematic review of plant-based diets and bladder cancer: a call for further research. Soc. Int. Urol. J. 3, 240–244 (2022).

    Article  Google Scholar 

  78. Yu, J. et al. Meat intake and the risk of bladder cancer: a systematic review and meta-analysis of observational studies. Nutr. Cancer 75, 825–845 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, S., Wang, Q. & He, J. Intake of red and processed meat and risk of renal cell carcinoma: a meta-analysis of observational studies. Oncotarget 8, 77942–77956 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang, S. et al. Consumption of fruits and vegetables and risk of renal cell carcinoma: a meta-analysis of observational studies. Oncotarget 8, 27892–27903 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Orlich, M. J. et al. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern. Med. 173, 1230–1238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lu, Y. et al. The association between plant-based diet and erectile function in Chinese young healthy men: a population-based study. Andrologia 53, e14038 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Lu, Y. et al. The association between plant-based diet and erectile dysfunction in Chinese men. Basic. Clin. Androl. 31, 11 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Carto, C. et al. Consumption of a healthy plant-based diet is associated with a decreased risk of erectile dysfunction: a cross-sectional study of the national health and nutrition examination survey. Urology 161, 76–82 (2022).

    Article  PubMed  Google Scholar 

  85. Yang, H. et al. Plant-based diet index and erectile dysfunction in the health professionals follow-up study. BJU Int. 130, 514–521 (2022).

    Article  PubMed  Google Scholar 

  86. Burnett, A. L. et al. Erectile dysfunction: AUA guideline. J. Urol. 200, 633–641 (2018).

    Article  PubMed  Google Scholar 

  87. Chen, Y. C. et al. The risk of urinary tract infection in vegetarians and non-vegetarians: a prospective study. Sci. Rep. 10, 906 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Magruder, M. et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat. Commun. 10, 5521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vincent, C. et al. Food reservoir for Escherichia coli causing urinary tract infections. Emerg. Infect. Dis. 16, 88–95 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marshall, B. M. & Levy, S. B. Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 24, 718–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mulder, M. et al. Diet as a risk factor for antimicrobial resistance in community-acquired urinary tract infections in a middle-aged and elderly population: a case-control study. Clin. Microbiol. Infect. 25, 613–619 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Manges, A. R. et al. Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: a case-control study. Foodborne Pathog. Dis. 4, 419–431 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Ambrosini, G. L. et al. Dietary patterns and surgically treated benign prostatic hyperplasia: a case control study in Western Australia. BJU Int. 101, 853–860 (2008).

    Article  PubMed  Google Scholar 

  94. Bravi, F. et al. Food groups and risk of benign prostatic hyperplasia. Urology 67, 73–79 (2006).

    Article  PubMed  Google Scholar 

  95. Lagiou, P. et al. Diet and benign prostatic hyperplasia: a study in Greece. Urology 54, 284–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Rohrmann, S. et al. Fruit and vegetable consumption, intake of micronutrients, and benign prostatic hyperplasia in US men. Am. J. Clin. Nutr. 85, 523–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Kristal, A. R. et al. Dietary patterns, supplement use, and the risk of symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial. Am. J. Epidemiol. 167, 925–934 (2008).

    Article  PubMed  Google Scholar 

  98. Lv, K. et al. The causal effect of metabolic syndrome and its components on benign prostatic hyperplasia: a univariable and multivariable Mendelian randomization study. Prostate 83, 1358–1364 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, Y. B. et al. Causal relationship between obesity, lifestyle factors and risk of benign prostatic hyperplasia: a univariable and multivariable Mendelian randomization study. J. Transl. Med. 20, 495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shankar, E. et al. Inflammatory signaling involved in high-fat diet induced prostate diseases. J. Urol. Res. 2, 1018 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. Stewart, K. L. & Lephart, E. D. Overview of BPH: symptom relief with dietary polyphenols, vitamins and phytochemicals by nutraceutical supplements with implications to the prostate microbiome. Int. J. Mol. Sci. 24, 5486 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Turney, B. W. et al. Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur. J. Epidemiol. 29, 363–369 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Taylor, E. N., Fung, T. T. & Curhan, G. C. DASH-style diet associates with reduced risk for kidney stones. J. Am. Soc. Nephrol. 20, 2253–2259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bai, S. et al. Associations between dietary patterns and nephrolithiasis risk in a large Chinese cohort: is a balanced or plant-based diet better? Food Funct. 14, 3220–3229 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. KC, M. & Leslie, S. W. Uric Acid Nephrolithiasis. StatPearls [Internet] https://www.ncbi.nlm.nih.gov/books/NBK560726/ (updated 15 October 2023).

  106. Barnard, N. D. et al. A Mediterranean diet and low-fat vegan diet to improve body weight and cardiometabolic risk factors: a randomized, cross-over trial. J. Am. Nutr. Assoc. 41, 127–139 (2022).

    CAS  PubMed  Google Scholar 

  107. Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).

    Article  PubMed  Google Scholar 

  108. Meschi, T. et al. The effect of fruits and vegetables on urinary stone risk factors. Kidney Int. 66, 2402–2410 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Holmes, R. P., Goodman, H. O. & Assimos, D. G. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 59, 270–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Holmes, R. P., Knight, J. & Assimos, D. G. Lowering urinary oxalate excretion to decrease calcium oxalate stone disease. Urolithiasis 44, 27–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Coe, F. L., Evan, A. & Worcester, E. Kidney stone disease. J. Clin. Invest. 115, 2598–2608 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ungerer, G. N. et al. Examination of nutritional factors associated with urolithiasis risk in plant based meat alternatives marketed to children and infants. J. Pediatr. Urol. 19, 513.e1–513.e7 (2023).

    Article  PubMed  Google Scholar 

  113. Ginty, F. Dietary protein and bone health. Proc. Nutr. Soc. 62, 867–876 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Kerstetter, J. E., O’Brien, K. O. & Insogna, K. L. Low protein intake: the impact on calcium and bone homeostasis in humans. J. Nutr. 133, 855s–861s (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Borin, J. F. et al. Plant-based milk alternatives and risk factors for kidney stones and chronic kidney disease. J. Ren. Nutr. 32, 363–365 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Goldfarb, D. S. & Patel, A. A. Climate change and its implications for kidney health. Curr. Opin. Urol. 34, 377–383 (2022).

    Article  Google Scholar 

  117. Scarborough, P. et al. Vegans, vegetarians, fish-eaters and meat-eaters in the UK show discrepant environmental impacts. Nat. Food 4, 565–574 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cole, A. P., Gupta, N. & Loeb, S. The plant-based prescription: how dietary change can improve both urological and planetary health. Eur. Urol. 84, 357–358 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.L. is supported by the New York State Department of Health and by T. Berns and M. Berns.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. S.L., J.F.B., A.P.C. and K.A. contributed substantially to discussion of the content. All authors wrote the article. S.L., A.P.C. and K.A. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Stacy Loeb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks James Hebert and Gary Fraser for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

National Kidney Foundation plant-based diet and kidney health: https://www.kidney.org/atoz/content/plant-based

NIDDK lactose intolerance: https://www.niddk.nih.gov/health-information/digestive-diseases/lactose-intolerance/definitionfacts#morelikely

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loeb, S., Borin, J.F., Venigalla, G. et al. Plant-based diets and urological health. Nat Rev Urol 22, 199–207 (2025). https://doi.org/10.1038/s41585-024-00939-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41585-024-00939-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing