Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synergistic targeting strategies for prostate cancer

Abstract

Prostate cancer is the second most commonly diagnosed cancer and the fifth leading cause of death among men worldwide. Androgen deprivation therapy is a common prostate cancer treatment, but its efficacy is often hindered by the development of resistance, which results in reducing survival benefits. Immunotherapy showed great promise in treating solid tumours; however, clinically significant improvements have not been demonstrated for patients with prostate cancer, highlighting specific drawbacks of this therapeutic modality. Hence, exploring novel strategies to synergistically enhance the efficacy of prostate cancer immunotherapy is imperative. Clinical investigations have focused on the combined use of targeted or gene therapy and immunotherapy for prostate cancer. Notably, tumour-specific antigens and inflammatory mediators are released from tumour cells after targeted or gene therapy, and the recruitment and infiltration of immune cells, including CD8+ T cells and natural killer cells activated by immunotherapy, are further augmented, markedly improving the efficacy and prognosis of prostate cancer. Thus, immunotherapy, targeted therapy and gene therapy could have reciprocal synergistic effects in prostate cancer in combination, resulting in a proposed synergistic model encompassing these three therapeutic modalities, presenting novel potential treatment strategies for prostate cancer.

Key points

  • Prostate cancer is generally considered to consist of an immunologically cold tumour with low immune-cell infiltration and low immunogenic response.

  • Immunotherapies for prostate cancer such as immune checkpoint blockade have limited antitumour activity, encouraging research into novel strategies to potentiate the efficacy of immunotherapy.

  • Targeted therapy is the mainstay treatment for patients with prostate cancer, but it sometimes fails to improve the clinical outcomes owing to drug resistance.

  • Gene therapy for prostate cancer demonstrates a generally good safety profile but limited efficacy, and so has potential for prostate cancer treatment, particularly in promoting the efficacy of immunotherapy.

  • A synergistic targeting model has been proposed focusing on potentiating the effect of immunotherapy through targeted or gene therapy. This model is a novel treatment strategy for overcoming drug resistance and immunosuppression for prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of the major immunotherapies for prostate cancer.
Fig. 2: Mechanisms of major drug target signalling pathways for prostate cancer and target drugs.
Fig. 3: The three major gene therapies for prostate cancer, including immunomodulatory, corrective and cytolytic gene therapies.
Fig. 4: Synergistic effect of targeted therapy for prostate cancer.
Fig. 5: Conceptual model of the synergistically enhanced effect of targeted combination therapy for prostate cancer.

Similar content being viewed by others

References

  1. Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024).

    PubMed  Google Scholar 

  2. Bergengren, O. et al. 2022 update on prostate cancer epidemiology and risk factors — a systematic review. Eur. Urol. 84, 191–206 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Litwin, M. S. & Tan, H.-J. The diagnosis and treatment of prostate cancer. JAMA 317, 2532–2542 (2017).

    Article  PubMed  Google Scholar 

  4. Shafi, A. A., Yen, A. E. & Weigel, N. L. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol. Ther. 140, 223–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Tombal, B. Non-metastatic CRPC and asymptomatic metastatic CRPC: which treatment for which patient? Ann. Oncol. 23, x251–x258 (2012).

    Article  PubMed  Google Scholar 

  6. Zhang, Y. & Zhang, Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol. Immunol. 17, 807–821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Antonarakis, E. S. et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 38, 395–405 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Sharma, P. et al. Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer: preliminary analysis of patients in the checkmate 650 trial. Cancer Cell 38, 489–499.e3 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Graff, J. N. et al. A phase II single-arm study of pembrolizumab with enzalutamide in men with metastatic castration-resistant prostate cancer progressing on enzalutamide alone. J. Immunother. Cancer 8, e000642 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee, P. & Gujar, S. Potentiating prostate cancer immunotherapy with oncolytic viruses. Nat. Rev. Urol. 15, 235–250 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, J. et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553, 91–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Bhatia, V. et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat. Commun. 14, 2041 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pachynski, R. K. et al. IL-7 expands lymphocyte populations and enhances immune responses to sipuleucel-T in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Immunother. Cancer 9, e002903 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brown, J. S., Sundar, R. & Lopez, J. Combining DNA damaging therapeutics with immunotherapy: more haste, less speed. Br. J. Cancer 118, 312–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin, Y. X. et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Sci. Transl. Med. 13, eaba9772 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morel, K. L. et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nat. Cancer 2, 444–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qi, Z. et al. Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-PI3Kα/β/δ treatment. Nat. Commun. 13, 182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patnaik, A. et al. Cabozantinib eradicates advanced murine prostate cancer by activating antitumor innate immunity. Cancer Discov. 7, 750–765 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gujar, S. A., Pan, D. A., Marcato, P., Garant, K. A. & Lee, P. W. Oncolytic virus-initiated protective immunity against prostate cancer. Mol. Ther. 19, 797–804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ozga, A. J., Chow, M. T. & Luster, A. D. Chemokines and the immune response to cancer. Immunity 54, 859–874 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cha, E. & Fong, L. Immunotherapy for prostate cancer: biology and therapeutic approaches. J. Clin. Oncol. 29, 3677–3685 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A. & Bluestone, J. A. CD28 costimulation: from mechanism to therapy. Immunity 44, 973–988 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He, Q., Jiang, X., Zhou, X. & Weng, J. Targeting cancers through TCR-peptide/MHC interactions. J. Hematol. Oncol. 12, 139 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giles, J. R., Globig, A.-M., Kaech, S. M. & Wherry, E. J. CD8+ T. cells in the cancer-immunity cycle. Immunity 56, 2231–2253 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug. Discov. 18, 197–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Majidpoor, J. & Mortezaee, K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin. Immunol. 226, 108707 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Brea, L. & Yu, J. Tumor-intrinsic regulators of the immune-cold microenvironment of prostate cancer. Trends Endocrinol. Metab. https://doi.org/10.1016/j.tem.2024.12.003 (2025).

  29. Zhang, H. et al. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J. Exp. Clin. Cancer Res. 40, 184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Topalian, S. L., Weiner, G. J. & Pardoll, D. M. Cancer immunotherapy comes of age. J. Clin. Oncol. 29, 4828–4836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thakur, A., Vaishampayan, U. & Lum, L. G. Immunotherapy and immune evasion in prostate cancer. Cancers 5, 569–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rebuzzi, S. E. et al. Immune checkpoint inhibitors in advanced prostate cancer: current data and future perspectives. Cancers 14, 1245 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, Y. M. et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 173, 1770–1782.e1714 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Pound, C. R. et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281, 1591–1597 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Sridaran, D. et al. Prostate cancer immunotherapy: improving clinical outcomes with a multi-pronged approach. Cell Rep. Med. 4, 101199 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Hummel, H. D. et al. Pasotuxizumab, a BiTE(®) immune therapy for castration-resistant prostate cancer: phase I, dose-escalation study findings. Immunotherapy 13, 125–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Autio, K. A. et al. First-in-human, phase 1 study of PF-06753512, a vaccine-based immunotherapy regimen (VBIR), in non-metastatic hormone-sensitive biochemical recurrence and metastatic castration-resistant prostate cancer (mCRPC). J. Immunother. Cancer 11, e005702 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, B. et al. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J. Hematol. Oncol. 15, 153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kontos, F. et al. B7-H3: an attractive target for antibody-based immunotherapy. Clin. Cancer Res. 27, 1227–1235 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Zucali, P. A. et al. Targeting CD38 and PD-1 with isatuximab plus cemiplimab in patients with advanced solid malignancies: results from a phase I/II open-label, multicenter study. J. Immunother. Cancer 10, e003697 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Powles, T. et al. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial. Nat. Med. 28, 144–153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown, L. C. et al. A phase 2 trial of avelumab in men with aggressive-variant or neuroendocrine prostate cancer. Prostate Cancer Prostatic Dis. 25, 762–769 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Winquist, E. et al. Randomized phase II study of durvalumab with or without tremelimumab in patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 31, 45–55 (2025).

    Article  CAS  PubMed  Google Scholar 

  46. Shenderov, E. et al. Neoadjuvant enoblituzumab in localized prostate cancer: a single-arm, phase 2 trial. Nat. Med. 29, 888–897 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, E. Y. et al. Pembrolizumab plus olaparib in patients with metastatic castration-resistant prostate cancer: long-term results from the phase 1b/2 KEYNOTE-365 cohort A study. Eur. Urol. 83, 15–26 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, E. Y. et al. Pembrolizumab plus docetaxel and prednisone in patients with metastatic castration-resistant prostate cancer: long-term results from the phase 1b/2 KEYNOTE-365 cohort B study. Eur. Urol. 82, 22–30 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petrylak, D. P. et al. Safety and clinical activity of atezolizumab in patients with metastatic castration-resistant prostate cancer: a phase I study. Clin. Cancer Res. 27, 3360–3369 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Fumet, J. D. et al. Precision medicine phase II study evaluating the efficacy of a double immunotherapy by durvalumab and tremelimumab combined with olaparib in patients with solid cancers and carriers of homologous recombination repair genes mutation in response or stable after olaparib treatment. BMC Cancer 20, 748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boyiadzis, M. M. et al. Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. J. Immunother. Cancer 6, 35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rebello, R. J. et al. Prostate cancer. Nat. Rev. Dis. Prim. 7, 9 (2021).

    Article  PubMed  Google Scholar 

  54. Wolf, P., Alzubi, J., Gratzke, C. & Cathomen, T. The potential of CAR T cell therapy for prostate cancer. Nat. Rev. Urol. 18, 556–571 (2021).

    Article  PubMed  Google Scholar 

  55. Larson, R. C. & Maus, M. V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21, 145–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hou, A. J., Chen, L. C. & Chen, Y. Y. Navigating CAR-T cells through the solid-tumour microenvironment. Nat. Rev. Drug. Discov. 20, 531–550 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, Y. et al. Strategies to enhance CAR-T persistence. Biomark. Res. 10, 86 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dorff, T. B. et al. PSCA-CAR T cell therapy in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 30, 1636–1644 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03013712 (2017).

  61. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05732948 (2023).

  62. Zanvit, P. et al. Antitumor activity of AZD0754, a dnTGFβRII-armored, STEAP2-targeted CAR-T cell therapy, in prostate cancer. J. Clin. Invest. 133, e169655 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 93, 290–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Deegen, P. et al. The PSMA-targeting half-life extended BiTE therapy AMG 160 has potent antitumor activity in preclinical models of metastatic castration-resistant prostate cancer. Clin. Cancer Res. 27, 2928–2937 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Friedrich, M. et al. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens. Mol. Cancer Ther. 11, 2664–2673 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Simão, D. C. et al. Bispecific T-cell engagers therapies in solid tumors: focusing on prostate cancer. Cancers 15, 1412 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Géraud, A. et al. Reactions and adverse events induced by T-cell engagers as anti-cancer immunotherapies, a comprehensive review. Eur. J. Cancer 205, 114075 (2024).

    Article  PubMed  Google Scholar 

  68. Kamat, N. V., Yu, E. Y. & Lee, J. K. BiTE-ing into prostate cancer with bispecific T-cell engagers. Clin. Cancer Res. 27, 2675–2677 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dorff, T. et al. A phase I study of acapatamab, a half-life extended, PSMA-targeting bispecific T-cell engager for metastatic castration-resistant prostate cancer. Clin. Cancer Res. 30, 1488–1500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nolan-Stevaux, O. et al. AMG 509 (Xaluritamig), an anti-STEAP1 XmAb 2+1 T-cell redirecting immune therapy with avidity-dependent activity against prostate cancer. Cancer Discov. 14, 90–103 (2023).

    Article  Google Scholar 

  71. Kelly, W. K. et al. Xaluritamig, a STEAP1 × CD3 XmAb 2+1 immune therapy for metastatic castration-resistant prostate cancer: results from dose exploration in a first-in-human study. Cancer Discov. 14, 76–89 (2023).

    Article  PubMed Central  Google Scholar 

  72. Vaishampayan, U. N. et al. Phase II trial of pembrolizumab and anti-CD3 x anti-HER2 bispecific antibody-armed activated T cells in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 29, 122–133 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saxena, M., van der Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Hamdy, F. C. et al. Fifteen-year outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N. Engl. J. Med. 388, 1547–1558 (2023).

    Article  PubMed  Google Scholar 

  75. Rastogi, I., Muralidhar, A. & McNeel, D. G. Vaccines as treatments for prostate cancer. Nat. Rev. Urol. 20, 544–559 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Higano, C. S. et al. Sipuleucel-T. Nat. Rev. Drug. Discov. 9, 513–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Sinha, M. et al. Pre-existing immune status associated with response to combination of sipuleucel-T and ipilimumab in patients with metastatic castration-resistant prostate cancer. J. Immunother. Cancer 9, e002254 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dorff, T. et al. Phase Ib study of patients with metastatic castrate-resistant prostate cancer treated with different sequencing regimens of atezolizumab and sipuleucel-T. J. Immunother. Cancer 9, e002931 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Antonarakis, E. S. et al. Sequencing of sipuleucel-T and androgen deprivation therapy in men with hormone-sensitive biochemically recurrent prostate cancer: a phase II randomized trial. Clin. Cancer Res. 23, 2451–2459 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Marshall, C. H. et al. Randomized phase II trial of sipuleucel-T with or without radium-223 in men with bone-metastatic castration-resistant prostate cancer. Clin. Cancer Res. 27, 1623–1630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Harrop, R., John, J. & Carroll, M. W. Recombinant viral vectors: cancer vaccines. Adv. Drug. Deliv. Rev. 58, 931–947 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Madan, R. A., Arlen, P. M., Mohebtash, M., Hodge, J. W. & Gulley, J. L. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert. Opin. Investig. Drugs 18, 1001–1011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Arlen, P. M. et al. Clinical safety of a viral vector based prostate cancer vaccine strategy. J. Urol. 178, 1515–1520 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Parsons, J. K. et al. A phase 2, double-blind, randomized controlled trial of PROSTVAC in prostate cancer patients on active surveillance. Eur. Urol. Focus. 9, 447–454 (2023).

    Article  PubMed  Google Scholar 

  85. Gulley, J. L. et al. Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J. Clin. Oncol. 37, 1051–1061 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bilusic, M. et al. Phase I study of a multitargeted recombinant Ad5 PSA/MUC-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Immunother. Cancer 9, e002374 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cappuccini, F. et al. Safety and immunogenicity of novel 5T4 viral vectored vaccination regimens in early stage prostate cancer: a phase I clinical trial. J. Immunother. Cancer 8, e000928 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Poria, R. et al. Vaccine development: current trends and technologies. Life Sci. 336, 122331 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. McNeel, D. G. et al. Phase II trial of a DNA vaccine encoding prostatic acid phosphatase (pTVG-HP [MVI-816]) in patients with progressive, nonmetastatic, castration-sensitive prostate cancer. J. Clin. Oncol. 37, 3507–3517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wargowski, E. et al. Prime-boost vaccination targeting prostatic acid phosphatase (PAP) in patients with metastatic castration-resistant prostate cancer (mCRPC) using Sipuleucel-T and a DNA vaccine. J. Immunother. Cancer 6, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. McNeel, D. G. et al. Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer (mCRPC). J. Immunother. Cancer 10, e004198 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. McNeel, D. G. et al. Phase 2 trial of a DNA vaccine (pTVG-HP) and nivolumab in patients with castration-sensitive non-metastatic (M0) prostate cancer. J. Immunother. Cancer 11, e008067 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kyriakopoulos, C. E. et al. Multicenter phase I trial of a DNA vaccine encoding the androgen receptor ligand-binding domain (pTVG-AR, MVI-118) in patients with metastatic prostate cancer. Clin. Cancer Res. 26, 5162–5171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lorentzen, C. L., Haanen, J. B., Met, Ö. & Svane, I. M. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 23, e450–e458 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kübler, H. et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J. Immunother. Cancer 3, 26 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Stenzl, A. et al. Results of the randomized, placebo-controlled phase I/IIB trial of CV9104, an mRNA based cancer immunotherapy, in patients with metastatic castration-resistant prostate cancer (mCRPC). Ann. Oncol. 28, v408–v409 (2017).

    Article  Google Scholar 

  97. Zheng, X. et al. Tumor-antigens and immune landscapes identification for prostate adenocarcinoma mRNA vaccine. Mol. Cancer 20, 160 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, W. et al. Peptide-based therapeutic cancer vaccine: current trends in clinical application. Cell Prolif. 54, e13025 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lilleby, W., Seierstad, T., Inderberg, E. M. & Hole, K. H. Impact of human telomerase reverse transcriptase peptide vaccine combined with androgen deprivation therapy and radiotherapy in de novo metastatic prostate cancer: long-term clinical monitoring. Int. J. Cancer 152, 2166–2173 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Lilleby, W. et al. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol. Immunother. 66, 891–901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yoshimura, K. et al. A phase 2 randomized controlled trial of personalized peptide vaccine immunotherapy with low-dose dexamethasone versus dexamethasone alone in chemotherapy-naive castration-resistant prostate cancer. Eur. Urol. 70, 35–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Noguchi, M. et al. A randomized phase III trial of personalized peptide vaccination for castration-resistant prostate cancer progressing after docetaxel. Oncol. Rep. 45, 159–168 (2021).

    Article  PubMed  Google Scholar 

  103. Saad, F. et al. Emerging therapeutic targets for patients with advanced prostate cancer. Cancer Treat. Rev. 76, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Vogelzang, N. J. et al. Efficacy and safety of autologous dendritic cell-based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer: the VIABLE phase 3 randomized clinical trial. JAMA Oncol. 8, 546–552 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Podrazil, M. et al. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget 6, 18192–18205 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ficazzola, M. A. & Taneja, S. S. Prospects for gene therapy in human prostate cancer. Mol. Med. Today 4, 494–504 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Aurilio, G. et al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells 9, 2653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Freedland, S. J. et al. Improved outcomes with enzalutamide in biochemically recurrent prostate cancer. N. Engl. J. Med. 389, 1453–1465 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Chi, K. N. et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 381, 13–24 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Fizazi, K. et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 377, 352–360 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Abida, W. et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J. Clin. Oncol. 38, 3763–3772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. de Bono, J. et al. Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 382, 2091–2102 (2020).

    Article  PubMed  Google Scholar 

  113. Wang, R. & Liu, X. Epigenetic regulation of prostate cancer. Genes. Dis. 7, 606–613 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Kumaraswamy, A. et al. Recent advances in epigenetic biomarkers and epigenetic targeting in prostate cancer. Eur. Urol. 80, 71–81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yuan, K. et al. Selective inhibition of CDK4/6: a safe and effective strategy for developing anticancer drugs. Acta Pharm. Sin. B 11, 30–54 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Tewari, D., Patni, P., Bishayee, A., Sah, A. N. & Bishayee, A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: a novel therapeutic strategy. Semin. Cancer Biol. 80, 1–17 (2022).

    Article  PubMed  Google Scholar 

  117. Murillo-Garzón, V. & Kypta, R. WNT signalling in prostate cancer. Nat. Rev. Urol. 14, 683–696 (2017).

    Article  PubMed  Google Scholar 

  118. Du, Z. & Lovly, C. M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 17, 58 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Mirzaei, S. et al. Transforming growth factor-beta (TGF-β) in prostate cancer: a dual function mediator? Int. J. Biol. Macromolecules 206, 435–452 (2022).

    Article  CAS  Google Scholar 

  120. Gharibpoor, F., Kamali Zonouzi, S., Razi, S. & Rezaei, N. AMPK’s double-faced role in advanced stages of prostate cancer. Clin. Transl. Oncol. 24, 2064–2073 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Corn, P. G. et al. A phase II study of cabozantinib and androgen ablation in patients with hormone-naïve metastatic prostate cancer. Clin. Cancer Res. 26, 990–999 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Song, B. et al. Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression. J. Clin. Invest. 129, 569–582 (2019).

    Article  PubMed  Google Scholar 

  123. Culig, Z. & Santer, F. R. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev. 33, 413–427 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Fontana, F. et al. Gonadotropin-releasing hormone receptors in prostate cancer: molecular aspects and biological functions. Int. J. Mol. Sci. 21, 9511 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chertin, B. et al. An implant releasing the gonadotropin hormone-releasing hormone agonist histrelin maintains medical castration for up to 30 months in metastatic prostate cancer. J. Urol. 163, 838–844 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Pettersson, B., Varenhorst, E., Petas, A. & Sandow, J. Duration of testosterone suppression after a 9.45 mg implant of the GnRH-analogue buserelin in patients with localised carcinoma of the prostate a 12-month follow-up study. Eur. Urol. 50, 483–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Bolla, M. et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N. Engl. J. Med. 337, 295–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Crawford, E. D. et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N. Engl. J. Med. 321, 419–424 (1989).

    Article  CAS  PubMed  Google Scholar 

  129. Kuhn, J. M. et al. A randomized comparison of the clinical and hormonal effects of two GnRH agonists in patients with prostate cancer. Eur. Urol. 32, 397–403 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Van Poppel, H. et al. Degarelix: a novel gonadotropin-releasing hormone (GnRH) receptor blocker-results from a 1-yr, multicentre, randomised, phase 2 dosage-finding study in the treatment of prostate cancer. Eur. Urol. 54, 805–813 (2008).

    Article  PubMed  Google Scholar 

  131. Shore, N. D. et al. Oral relugolix for androgen-deprivation therapy in advanced prostate cancer. N. Engl. J. Med. 382, 2187–2196 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Tan, M. H., Li, J., Xu, H. E., Melcher, K. & Yong, E. L. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 36, 3–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Møller, S., Iversen, P. & Franzmann, M.-B. Flutamide-induced liver failure. J. Hepatol. 10, 346–349 (1990).

    Article  PubMed  Google Scholar 

  134. Scher, H. I. & Kelly, W. K. Flutamide withdrawal syndrome: its impact on clinical trials in hormone-refractory prostate cancer. J. Clin. Oncol. 11, 1566–1572 (1993).

    Article  CAS  PubMed  Google Scholar 

  135. Penson, D. F. et al. Enzalutamide versus bicalutamide in castration-resistant prostate cancer: the STRIVE trial. J. Clin. Oncol. 34, 2098–2106 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Desai, K., McManus, J. M. & Sharifi, N. Hormonal therapy for prostate cancer. Endocr. Rev. 42, 354–373 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chen, Y., Zhou, Q., Hankey, W., Fang, X. & Yuan, F. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis. 13, 632 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Armstrong, A. J. et al. ARCHES: a randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J. Clin. Oncol. 37, 2974–2986 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hussain, M. et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 378, 2465–2474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sternberg, C. N. et al. Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 382, 2197–2206 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Fizazi, K. et al. Nonmetastatic, castration-resistant prostate cancer and survival with darolutamide. N. Engl. J. Med. 383, 1040–1049 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Smith, M. R. et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N. Engl. J. Med. 378, 1408–1418 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Smith, M. R. et al. Darolutamide and survival in metastatic, hormone-sensitive prostate cancer. N. Engl. J. Med. 386, 1132–1142 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fizazi, K. et al. Darolutamide in nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 380, 1235–1246 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Sweeney, C. J. et al. Testosterone suppression plus enzalutamide versus testosterone suppression plus standard antiandrogen therapy for metastatic hormone-sensitive prostate cancer (ENZAMET): an international, open-label, randomised, phase 3 trial. Lancet Oncol. 24, 323–334 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Joseph, J. D. et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov. 3, 1020–1029 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Borgmann, H. et al. Moving towards precision urologic oncology: targeting enzalutamide-resistant prostate cancer and mutated forms of the androgen receptor using the novel inhibitor darolutamide (ODM-201). Eur. Urol. 73, 4–8 (2018).

    Article  PubMed  Google Scholar 

  148. Gu, W. et al. Rezvilutamide versus bicalutamide in combination with androgen-deprivation therapy in patients with high-volume, metastatic, hormone-sensitive prostate cancer (CHART): a randomised, open-label, phase 3 trial. Lancet Oncol. 23, 1249–1260 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug. Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  150. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05177042 (2025).

  151. Bryce, A. & Ryan, C. J. Development and clinical utility of abiraterone acetate as an androgen synthesis inhibitor. Clin. Pharmacol. Ther. 91, 101–108 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Fizazi, K. et al. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol. 20, 686–700 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. James, N. D. et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377, 338–351 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mostaghel, E. A. et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin. Cancer Res. 17, 5913–5925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Attard, G., Reid, A. H., Olmos, D. & de Bono, J. S. Antitumor activity with CYP17 blockade indicates that castration-resistant prostate cancer frequently remains hormone driven. Cancer Res. 69, 4937–4940 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Agarwal, N. et al. Orteronel for metastatic hormone-sensitive prostate cancer: a multicenter, randomized, open-label phase III trial (SWOG-1216). J. Clin. Oncol. 40, 3301–3309 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Taplin, M. E. et al. Androgen receptor modulation optimized for response-splice variant: a phase 3, randomized trial of galeterone versus enzalutamide in androgen receptor splice variant-7-expressing metastatic castration-resistant prostate cancer. Eur. Urol. 76, 843–851 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Culig, Z. Androgen receptor coactivators in regulation of growth and differentiation in prostate cancer. J. Cell Physiol. 231, 270–274 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Culig, Z. & Puhr, M. Androgen receptor-interacting proteins in prostate cancer development and therapy resistance. Am. J. Pathol. 194, 324–334 (2024).

    Article  CAS  PubMed  Google Scholar 

  160. Nguyen, D. P., Li, J. & Tewari, A. K. Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int. 113, 986–992 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Lee, E. et al. GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance. Elife 8, e41913 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Yuan, F. et al. Molecular determinants for enzalutamide-induced transcription in prostate cancer. Nucleic Acids Res. 47, 10104–10114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Abida, W. et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis. Oncol. 2017, PO.17.00029 (2017).

    PubMed  Google Scholar 

  164. Teyssonneau, D. et al. Prostate cancer and PARP inhibitors: progress and challenges. J. Hematol. Oncol. 14, 51 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mateo, J. et al. A decade of clinical development of PARP inhibitors in perspective. Ann. Oncol. 30, 1437–1447 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Taylor, A. K., Kosoff, D., Emamekhoo, H., Lang, J. M. & Kyriakopoulos, C. E. PARP inhibitors in metastatic prostate cancer. Front. Oncol. 13, 1159557 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Fizazi, K. et al. Rucaparib or physician’s choice in metastatic prostate cancer. N. Engl. J. Med. 388, 719–732 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mosca, L., Ilari, A., Fazi, F., Assaraf, Y. G. & Colotti, G. Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug Resist. Updates 54, 100742 (2021).

    Article  CAS  Google Scholar 

  170. Agarwal, N. et al. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): a randomised, placebo-controlled, phase 3 trial. Lancet 402, 291–303 (2023).

    Article  CAS  PubMed  Google Scholar 

  171. Chi, K. N. et al. Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer. J. Clin. Oncol. 41, 3339–3351 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hussain, M. et al. Targeting androgen receptor and DNA repair in metastatic castration-resistant prostate cancer: results from NCI 9012. J. Clin. Oncol. 36, 991–999 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Plant-Fox, A. S., O’Halloran, K. & Goldman, S. Pediatric brain tumors: the era of molecular diagnostics, targeted and immune-based therapeutics, and a focus on long term neurologic sequelae. Curr. Probl. Cancer 45, 100777 (2021).

    Article  PubMed  Google Scholar 

  174. Seed, G. et al. Elucidating acquired PARP inhibitor resistance in advanced prostate cancer. Cancer Cell 42, 2113–2123.e2114 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cahuzac, M., Péant, B., Mes-Masson, A. M. & Saad, F. Development of olaparib-resistance prostate cancer cell lines to identify mechanisms associated with acquired resistance. Cancers 14, 3877 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cai, M. et al. Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug. Resist. Updat. 68, 100962 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Nishiyama, A. & Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 37, 1012–1027 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Li, L. C., Okino, S. T. & Dahiya, R. DNA methylation in prostate cancer. Biochim. Biophys. Acta 1704, 87–102 (2004).

    CAS  PubMed  Google Scholar 

  180. Song, Y., Wu, F. & Wu, J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J. Hematol. Oncol. 9, 49 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Crea, F. et al. The emerging role of histone lysine demethylases in prostate cancer. Mol. Cancer 11, 52 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jerónimo, C. et al. Epigenetics in prostate cancer: biologic and clinical relevance. Eur. Urol. 60, 753–766 (2011).

    Article  PubMed  Google Scholar 

  183. Kim, K. H. & Roberts, C. W. Targeting EZH2 in cancer. Nat. Med. 22, 128–134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li, M. et al. LSD1 inhibition disrupts super-enhancer-driven oncogenic transcriptional programs in castration-resistant prostate cancer. Cancer Res. 83, 1684–1698 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Audia, J. E. & Campbell, R. M. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8, a019521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Di Cerbo, V. & Schneider, R. Cancers with wrong HATs: the impact of acetylation. Brief. Funct. Genomics 12, 231–243 (2013).

    Article  PubMed  Google Scholar 

  187. Waddell, A. R., Huang, H. & Liao, D. CBP/p300: critical co-activators for nuclear steroid hormone receptors and emerging therapeutic targets in prostate and breast cancers. Cancers 13, 2872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Abbas, A. & Gupta, S. The role of histone deacetylases in prostate cancer. Epigenetics 3, 300–309 (2008).

    Article  PubMed  Google Scholar 

  189. Dai, X. et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat. Med. 23, 1063–1071 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Filippakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Singal, R. et al. Phase I/II study of azacitidine, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxel-based therapy. Clin. Genitourin. Cancer 13, 22–31 (2015).

    Article  PubMed  Google Scholar 

  192. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05037500 (2025).

  193. Zhang, L. et al. Lenalidomide improves the antitumor activity of CAR-T cells directed toward the intracellular Wilms Tumor 1 antigen. Hematology 26, 818–826 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Liu, Y. et al. Modeling lung adenocarcinoma metastases using patient-derived organoids. Cell Rep. Med. 5, 101777 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04846478 (2025).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04388852 (2024).

  197. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03460977 (2025).

  198. Li, C. et al. PiggyBac-generated CAR19-T cells plus lenalidomide cause durable complete remission of triple-hit refractory/relapsed DLBCL: a case report. Front. Immunol. 12, 599493 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04628988 (2023).

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03568656 (2024).

  201. Rimando, J. C. et al. Flotetuzumab and other T-cell immunotherapies upregulate MHC class II expression on acute myeloid leukemia cells. Blood 141, 1718–1723 (2023).

    Article  CAS  PubMed  Google Scholar 

  202. Lasko, L. M. et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550, 128–132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rana, Z., Diermeier, S., Hanif, M. & Rosengren, R. J. Understanding failure and improving treatment using HDAC inhibitors for prostate cancer. Biomedicines 8, 22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Schneider, B. J. et al. Phase I study of vorinostat (suberoylanilide hydroxamic acid, NSC 701852) in combination with docetaxel in patients with advanced and relapsed solid malignancies. Invest. New Drugs 30, 249–257 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Rathkopf, D. E. et al. A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer. Cancer Chemother. Pharmacol. 72, 537–544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lin, J. et al. Phase I study of entinostat in combination with enzalutamide for treatment of patients with metastatic castration-resistant prostate cancer. Oncologist 26, e2136–e2142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Eigl, B. J. et al. A phase II study of the HDAC inhibitor SB939 in patients with castration resistant prostate cancer: NCIC clinical trials group study IND195. Invest. New Drugs 33, 969–976 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Aggarwal, R. R. et al. A phase Ib/IIa study of the pan-BET inhibitor ZEN-3694 in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 26, 5338–5347 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cousin, S. et al. Safety, pharmacokinetic, pharmacodynamic and clinical activity of molibresib for the treatment of nuclear protein in testis carcinoma and other cancers: results of a phase I/II open-label, dose escalation study. Int. J. Cancer 150, 993–1006 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Lewin, J. et al. Phase Ib trial with birabresib, a small-molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors. J. Clin. Oncol. 36, 3007–3014 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Piha-Paul, S. A. et al. First-in-human study of mivebresib (ABBV-075), an oral pan-inhibitor of bromodomain and extra terminal proteins, in patients with relapsed/refractory solid tumors. Clin. Cancer Res. 25, 6309–6319 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04556617 (2025).

  213. Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  215. Kase, A. M., Copland Iii, J. A. & Tan, W. Novel therapeutic strategies for CDK4/6 inhibitors in metastatic castrate-resistant prostate cancer. Onco Targets Ther. 13, 10499–10513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Bertoli, C., Skotheim, J. M. & de Bruin, R. A. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 14, 518–528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Han, W. et al. Exploiting the tumor-suppressive activity of the androgen receptor by CDK4/6 inhibition in castration-resistant prostate cancer. Mol. Ther. 30, 1628–1644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. de Kouchkovsky, I. et al. A phase Ib/II study of the CDK4/6 inhibitor ribociclib in combination with docetaxel plus prednisone in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 28, 1531–1539 (2022).

    Article  PubMed  Google Scholar 

  219. Palmbos, P. L. et al. A randomized phase II study of androgen deprivation therapy with or without palbociclib in rb-positive metastatic hormone-sensitive prostate cancer. Clin. Cancer Res. 27, 3017–3027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Finn, R. S. et al. Palbociclib and letrozole in advanced breast cancer. N. Engl. J. Med. 375, 1925–1936 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04408924 (2024).

  222. Miller, T. W., Rexer, B. N., Garrett, J. T. & Arteaga, C. L. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res. 13, 224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Shorning, B. Y., Dass, M. S., Smalley, M. J. & Pearson, H. B. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling. Int. J. Mol. Sci. 21, 4507 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Pungsrinont, T., Kallenbach, J. & Baniahmad, A. Role of PI3K-AKT-mTOR pathway as a pro-survival signaling and resistance-mediating mechanism to therapy of prostate cancer. Int. J. Mol. Sci. 22, 11088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Murugan, A. K. mTOR: role in cancer, metastasis and drug resistance. Semin. Cancer Biol. 59, 92–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Toren, P. & Zoubeidi, A. Targeting the PI3K/Akt pathway in prostate cancer: challenges and opportunities (review). Int. J. Oncol. 45, 1793–1801 (2014).

    Article  CAS  PubMed  Google Scholar 

  227. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Armstrong, A. J. et al. Phase II trial of the PI3 kinase inhibitor buparlisib (BKM-120) with or without enzalutamide in men with metastatic castration resistant prostate cancer. Eur. J. Cancer 81, 228–236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sarker, D. et al. A phase I, open-label, dose-finding study of GSK2636771, a PI3Kβ inhibitor, administered with enzalutamide in patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 27, 5248–5257 (2021).

    Article  CAS  PubMed  Google Scholar 

  230. Choudhury, A. D. et al. A phase I study investigating AZD8186, a potent and selective inhibitor of PI3Kβ/δ, in patients with advanced solid tumors. Clin. Cancer Res. 28, 2257–2269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Tortorella, E., Giantulli, S., Sciarra, A. & Silvestri, I. AR and PI3K/AKT in prostate cancer: a tale of two interconnected pathways. Int. J. Mol. Sci. 24, 2046 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Raith, F., O’Donovan, D. H., Lemos, C., Politz, O. & Haendler, B. Addressing the reciprocal crosstalk between the AR and the PI3K/AKT/mTOR signaling pathways for prostate cancer treatment. Int. J. Mol. Sci. 24, 2289 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Gupta, S. et al. A phase I trial of combined ridaforolimus and MK-2206 in patients with advanced malignancies. Clin. Cancer Res. 21, 5235–5244 (2015).

    Article  CAS  PubMed  Google Scholar 

  235. Crabb, S. J. et al. Overall survival update for patients with metastatic castration-resistant prostate cancer treated with capivasertib and docetaxel in the phase 2 ProCAID clinical trial. Eur. Urol. 82, 512–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  236. Sweeney, C. et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet 398, 131–142 (2021).

    Article  CAS  PubMed  Google Scholar 

  237. Jhanwar-Uniyal, M. et al. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv. Biol. Regul. 72, 51–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  238. Kremer, C. L. et al. Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate 66, 1203–1212 (2006).

    Article  CAS  PubMed  Google Scholar 

  239. Templeton, A. J. et al. Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08). Eur. Urol. 64, 150–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  240. Chow, H. et al. A phase 2 clinical trial of everolimus plus bicalutamide for castration-resistant prostate cancer. Cancer 122, 1897–1904 (2016).

    Article  CAS  PubMed  Google Scholar 

  241. George, D. J. et al. Phase 2 clinical trial of TORC1 inhibition with everolimus in men with metastatic castration-resistant prostate cancer. Urol. Oncol. 38, 79.e15–79.e22 (2020).

    Article  CAS  PubMed  Google Scholar 

  242. Armstrong, A. J. et al. A phase II trial of temsirolimus in men with castration-resistant metastatic prostate cancer. Clin. Genitourin. Cancer 11, 397–406 (2013).

    Article  PubMed  Google Scholar 

  243. Barata, P. C. et al. Phase I/II study evaluating the safety and clinical efficacy of temsirolimus and bevacizumab in patients with chemotherapy refractory metastatic castration-resistant prostate cancer. Invest. N. Drugs 37, 331–337 (2019).

    Article  CAS  Google Scholar 

  244. Graham, L. et al. A phase II study of the dual mTOR inhibitor MLN0128 in patients with metastatic castration resistant prostate cancer. Invest. N. Drugs 36, 458–467 (2018).

    Article  CAS  Google Scholar 

  245. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02064608 (2019).

  246. Sweeney, C. J. et al. Phase Ib/II study of enzalutamide with samotolisib (LY3023414) or placebo in patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 28, 2237–2247 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01717898 (2018).

  248. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01485861 (2023).

  249. Liu, J. et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal. Transduct. Target Ther. 7, 13 (2022).

    PubMed  PubMed Central  Google Scholar 

  250. Kypta, R. M. & Waxman, J. Wnt/β-catenin signalling in prostate cancer. Nat. Rev. Urol. 9, 418–428 (2012).

    Article  CAS  PubMed  Google Scholar 

  251. Anastas, J. N. & Moon, R. T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  252. Horvath, L. G. et al. Secreted frizzled-related protein 4 inhibits proliferation and metastatic potential in prostate cancer. Prostate 67, 1081–1090 (2007).

    Article  CAS  PubMed  Google Scholar 

  253. Zhang, Z. et al. Inhibition of the Wnt/β-catenin pathway overcomes resistance to enzalutamide in castration-resistant prostate cancer. Cancer Res. 78, 3147–3162 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Patel, R. et al. Activation of β-catenin cooperates with loss of Pten to drive AR-independent castration-resistant prostate cancer. Cancer Res. 80, 576–590 (2020).

    Article  CAS  PubMed  Google Scholar 

  255. Koushyar, S., Grant, G. H. & Uysal-Onganer, P. The interaction of Wnt-11 and signalling cascades in prostate cancer. Tumour Biol. 37, 13049–13057 (2016).

    Article  CAS  PubMed  Google Scholar 

  256. Sha, J. et al. PRKAR2B promotes prostate cancer metastasis by activating Wnt/β-catenin and inducing epithelial-mesenchymal transition. J. Cell Biochem. 119, 7319–7327 (2018).

    Article  CAS  PubMed  Google Scholar 

  257. Fang, Q. et al. β-ionone inhibits epithelial-mesenchymal transition (EMT) in prostate cancer cells by negatively regulating the Wnt/β-catenin pathway. Front. Biosci. 27, 335 (2022).

    Article  CAS  Google Scholar 

  258. Kaplan, Z., Zielske, S. P., Ibrahim, K. G. & Cackowski, F. C. Wnt and β-catenin signaling in the bone metastasis of prostate cancer. Life 11, 1099 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Kelsey, R. Foxy–5 in prostate cancer model. Nat. Rev. Urol. 14, 638–638 (2017).

    Article  PubMed  Google Scholar 

  260. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02020291 (2016).

  261. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02655952 (2018).

  262. Wozney, J. L. & Antonarakis, E. S. Growth factor and signaling pathways and their relevance to prostate cancer therapeutics. Cancer Metastasis Rev. 33, 581–594 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. George, D. J. Receptor tyrosine kinases as rational targets for prostate cancer treatment: platelet-derived growth factor receptor and imatinib mesylate. Urology 60, 115–121 (2002).

    Article  PubMed  Google Scholar 

  264. Varkaris, A., Katsiampoura, A. D., Araujo, J. C., Gallick, G. E. & Corn, P. G. Src signaling pathways in prostate cancer. Cancer Metastasis Rev. 33, 595–606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Mahajan, K. & Mahajan, N. P. Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. J. Cell Physiol. 224, 327–333 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Gelman, I. H. Androgen receptor activation in castration-recurrent prostate cancer: the role of Src-family and Ack1 tyrosine kinases. Int. J. Biol. Sci. 10, 620–626 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Smith, M. et al. Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J. Clin. Oncol. 34, 3005–3013 (2016).

    Article  CAS  PubMed  Google Scholar 

  268. Liow, E. et al. Phase 2 study of neoadjuvant FGFR inhibition and androgen deprivation therapy prior to prostatectomy. Clin. Genitourin. Cancer 20, 452–458 (2022).

    Article  PubMed  Google Scholar 

  269. Cathomas, R. et al. Efficacy of cetuximab in metastatic castration-resistant prostate cancer might depend on EGFR and PTEN expression: results from a phase II trial (SAKK 08/07). Clin. Cancer Res. 18, 6049–6057 (2012).

    Article  CAS  PubMed  Google Scholar 

  270. Choi, Y. J. et al. Phase II study of dovitinib in patients with castration-resistant prostate cancer (KCSG-GU11-05). Cancer Res. Treat. 50, 1252–1259 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. McHugh, D. J. et al. A phase I trial of IGF-1R inhibitor cixutumumab and mTOR inhibitor temsirolimus in metastatic castration-resistant prostate cancer. Clin. Genitourin. Cancer 18, 171–178.e172 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Sun, D. Y., Wu, J. Q., He, Z. H., He, M. F. & Sun, H. B. Cancer-associated fibroblast regulate proliferation and migration of prostate cancer cells through TGF-β signaling pathway. Life Sci. 235, 116791 (2019).

    Article  CAS  PubMed  Google Scholar 

  273. Jiao, C. et al. TGF-β signaling regulates SPOP expression and promotes prostate cancer cell stemness. Aging 12, 7747–7760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Fournier, P. G. et al. The TGF-β signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell 27, 809–821 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Akhurst, R. J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug. Discov. 11, 790–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02452008 (2024).

  277. Kong, D. et al. Procoxacin bidirectionally inhibits osteoblastic and osteoclastic activity in bone and suppresses bone metastasis of prostate cancer. J. Exp. Clin. Cancer Res. 42, 45 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Chen, C. et al. Metformin exerts anti-AR-negative prostate cancer activity via AMPK/autophagy signaling pathway. Cancer Cell Int. 21, 404 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Clements, A. et al. Metformin in prostate cancer: two for the price of one. Ann. Oncol. 22, 2556–2560 (2011).

    Article  CAS  PubMed  Google Scholar 

  280. Rothermundt, C. et al. Metformin in chemotherapy-naive castration-resistant prostate cancer: a multicenter phase 2 trial (SAKK 08/09). Eur. Urol. 66, 468–474 (2014).

    Article  CAS  PubMed  Google Scholar 

  281. Wilson, B. E. et al. Effects of metformin and statins on outcomes in men with castration-resistant metastatic prostate cancer: secondary analysis of COU-AA-301 and COU-AA-302. Eur. J. Cancer 170, 296–304 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Xu, H. et al. ADP-dependent glucokinase controls metabolic fitness in prostate cancer progression. Mil. Med. Res. 10, 64 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Pan, H., Zhu, Y., Wei, W., Shao, S. & Rui, X. Transcription factor FoxM1 is the downstream target of c-Myc and contributes to the development of prostate cancer. World J. Surg. Oncol. 16, 59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Lin, J. Z. et al. FOXM1 contributes to docetaxel resistance in castration-resistant prostate cancer by inducing AMPK/mTOR-mediated autophagy. Cancer Lett. 469, 481–489 (2020).

    Article  CAS  PubMed  Google Scholar 

  285. You, S. et al. Integrated classification of prostate cancer reveals a novel luminal subtype with poor outcome. Cancer Res. 76, 4948–4958 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Xu, H. et al. SR9009 inhibits lethal prostate cancer subtype 1 by regulating the LXRα/FOXM1 pathway independently of REV-ERBs. Cell Death Dis. 13, 949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Gómez-Navarro, J., Curiel, D. T. & Douglas, J. T. Gene therapy for cancer. Eur. J. Cancer 35, 2039–2057 (1999).

    Article  PubMed  Google Scholar 

  288. Gutierrez, A. A., Lemoine, N. R. & Sikora, K. Gene therapy for cancer. Lancet 339, 715–721 (1992).

    Article  CAS  PubMed  Google Scholar 

  289. Wadhwa, P. D. et al. Cancer gene therapy: scientific basis. Annu. Rev. Med. 53, 437–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  290. Nasu, Y. et al. Suicide gene therapy with adenoviral delivery of HSV-tK gene for patients with local recurrence of prostate cancer after hormonal therapy. Mol. Ther. 15, 834–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  291. Cai, Z. et al. Targeting strategies of adenovirus-mediated gene therapy and virotherapy for prostate cancer (Review). Mol. Med. Rep. 16, 6443–6458 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Altwaijry, N., Somani, S. & Dufès, C. Targeted nonviral gene therapy in prostate cancer. Int. J. Nanomed. 13, 5753–5767 (2018).

    Article  CAS  Google Scholar 

  293. Thomas, C. E., Ehrhardt, A. & Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  294. Santana-Armas, M. L. & Tros de Ilarduya, C. Strategies for cancer gene-delivery improvement by non-viral vectors. Int. J. Pharm. 596, 120291 (2021).

    Article  CAS  PubMed  Google Scholar 

  295. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  296. Liu, D., Wang, L. & Guo, Y. Advances in and prospects of immunotherapy for prostate cancer. Cancer Lett. 601, 217155 (2024).

    Article  CAS  PubMed  Google Scholar 

  297. Harrington, K. J., Spitzweg, C., Bateman, A. R., Morris, J. C. & Vile, R. G. Gene therapy for prostate cancer: current status and future prospects. J. Urol. 166, 1220–1233 (2001).

    Article  CAS  PubMed  Google Scholar 

  298. Brill, T. H. et al. Allogeneic retrovirally transduced, IL-2- and IFN-γ-secreting cancer cell vaccine in patients with hormone refractory prostate cancer — a phase I clinical trial. J. Gene Med. 9, 547–560 (2007).

    Article  CAS  PubMed  Google Scholar 

  299. Agha-Mohammadi, S. & Lotze, M. T. Immunomodulation of cancer: potential use of selectively replicating agents. J. Clin. Invest. 105, 1173–1176 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Gregg, J. R. & Thompson, T. C. Considering the potential for gene-based therapy in prostate cancer. Nat. Rev. Urol. 18, 170–184 (2021).

    Article  PubMed  Google Scholar 

  301. Belldegrun, A. et al. Interleukin 2 gene therapy for prostate cancer: phase I clinical trial and basic biology. Hum. Gene Ther. 12, 883–892 (2001).

    Article  CAS  PubMed  Google Scholar 

  302. Hull, G. W. et al. Prostate cancer gene therapy: comparison of adenovirus-mediated expression of interleukin 12 with interleukin 12 plus B7-1 for in situ gene therapy and gene-modified, cell-based vaccines. Clin. Cancer Res. 6, 4101–4109 (2000).

    CAS  PubMed  Google Scholar 

  303. Simons, J. W. & Sacks, N. Granulocyte-macrophage colony-stimulating factor−transduced allogeneic cancer cellular immunotherapy: the GVAX® vaccine for prostate cancer. Urol. Oncol.: Semin. Original Invest. 24, 419–424 (2006).

    Article  CAS  Google Scholar 

  304. Higano, C. S. et al. Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113, 975–984 (2008).

    Article  CAS  PubMed  Google Scholar 

  305. Vuky, J. et al. Phase II trial of neoadjuvant docetaxel and CG1940/CG8711 followed by radical prostatectomy in patients with high-risk clinically localized prostate cancer. Oncologist 18, 687–688 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Wang, G., Zhao, D., Spring, D. J. & DePinho, R. A. Genetics and biology of prostate cancer. Genes. Dev. 32, 1105–1140 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Clayman, G. L. et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J. Clin. Oncol. 16, 2221–2232 (1998).

    Article  CAS  PubMed  Google Scholar 

  308. Swisher, S. G. et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J. Natl Cancer Inst. 91, 763–771 (1999).

    Article  CAS  PubMed  Google Scholar 

  309. Schuler, M. et al. Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer: results of a multicenter phase II study. J. Clin. Oncol. 19, 1750–1758 (2001).

    Article  CAS  PubMed  Google Scholar 

  310. Wolf, J. K. et al. A phase I study of Adp53 (INGN 201; ADVEXIN) for patients with platinum- and paclitaxel-resistant epithelial ovarian cancer. Gynecol. Oncol. 94, 442–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  311. Guan, Y. S. et al. p53 gene therapy in combination with transcatheter arterial chemoembolization for HCC: one-year follow-up. World J. Gastroenterol. 17, 2143–2149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Tamura, R. E., Lana, M. G., Costanzi-Strauss, E. & Strauss, B. E. Combination of cabazitaxel and p53 gene therapy abolishes prostate carcinoma tumor growth. Gene Ther. 27, 15–26 (2020).

    Article  CAS  PubMed  Google Scholar 

  313. Kunimura, N. et al. Combination of rAd-p53 in situ gene therapy and anti-PD-1 antibody immunotherapy induced anti-tumor activity in mouse syngeneic urogenital cancer models. Sci. Rep. 10, 17464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Ai, J. et al. rAAV-delivered PTEN therapeutics for prostate cancer. Mol. Ther. Nucleic Acids 27, 122–132 (2022).

    Article  CAS  PubMed  Google Scholar 

  315. Deng, J. H., Deng, Q., Kuo, C. H., Delaney, S. W. & Ying, S. Y. MiRNA targets of prostate cancer. Methods Mol. Biol. 936, 357–369 (2013).

    Article  CAS  PubMed  Google Scholar 

  316. Vo, J. N. et al. The landscape of circular RNA in cancer. Cell 176, 869–881.e813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Qiu, K., Zheng, Z. & Huang, Y. Long intergenic noncoding RNA 00844 promotes apoptosis and represses proliferation of prostate cancer cells through upregulating GSTP1 by recruiting EBF1. J. Cell Physiol. 235, 8472–8485 (2020).

    Article  CAS  PubMed  Google Scholar 

  318. Chalanqui, M. J., O’Doherty, M., Dunne, N. J. & McCarthy, H. O. MiRNA 34a: a therapeutic target for castration-resistant prostate cancer. Expert. Opin. Ther. Targets 20, 1075–1085 (2016).

    Article  CAS  PubMed  Google Scholar 

  319. Ai, J. et al. rAAV-based and intraprostatically delivered miR-34a therapeutics for efficient inhibition of prostate cancer progression. Gene Ther. 29, 418–424 (2022).

    Article  CAS  PubMed  Google Scholar 

  320. Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Wang, X. et al. Long intragenic non-coding RNA lincRNA-p21 suppresses development of human prostate cancer. Cell Prolif. 50, e12318 (2017).

    Article  PubMed  Google Scholar 

  322. Attard, G. et al. Prostate cancer. Lancet 387, 70–82 (2016).

    Article  PubMed  Google Scholar 

  323. Xue, J., Chen, K., Hu, H. & Gopinath, S. C. B. Progress in gene therapy treatments for prostate cancer. Biotechnol. Appl. Biochem. 69, 1166–1175 (2022).

    Article  CAS  PubMed  Google Scholar 

  324. Pope, I. M., Poston, G. J. & Kinsella, A. R. The role of the bystander effect in suicide gene therapy. Eur. J. Cancer 33, 1005–1016 (1997).

    Article  CAS  PubMed  Google Scholar 

  325. Duarte, S., Carle, G., Faneca, H., Lima, M. C. P. D. & Pierrefite-Carle, V. Suicide gene therapy in cancer: where do we stand now? Cancer Lett. 324, 160–170 (2012).

    Article  CAS  PubMed  Google Scholar 

  326. Nyati, S. et al. A phase I clinical trial of oncolytic adenovirus mediated suicide and interleukin-12 gene therapy in patients with recurrent localized prostate adenocarcinoma. PLoS ONE 18, e0291315 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Herman, J. R. et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum. Gene Ther. 10, 1239–1249 (1999).

    Article  CAS  PubMed  Google Scholar 

  328. Yang, K., Feng, S. & Luo, Z. Oncolytic adenovirus, a new treatment strategy for prostate cancer. Biomedicines 10, 3262 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Wang, G., Liu, Y., Liu, S., Lin, Y. & Hu, C. Oncolyic virotherapy for prostate cancer: lighting a fire in winter. Int. J. Mol. Sci. 23, 12647 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Sweeney, K. & Halldén, G. Oncolytic adenovirus-mediated therapy for prostate cancer. Oncolytic Virother 5, 45–57 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Small, E. J. et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol. Ther. 14, 107–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  332. Ryan, P. C. et al. Antitumor efficacy and tumor-selective replication with a single intravenous injection of OAS403, an oncolytic adenovirus dependent on two prevalent alterations in human cancer. Cancer Gene Ther. 11, 555–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  333. Freytag, S. O. et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 62, 4968–4976 (2002).

    CAS  PubMed  Google Scholar 

  334. Barton, K. N. et al. Second-generation replication-competent oncolytic adenovirus armed with improved suicide genes and ADP gene demonstrates greater efficacy without increased toxicity. Mol. Ther. 13, 347–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  335. Oyama, M. et al. Oncolytic viral therapy for human prostate cancer by conditionally replicating herpes simplex virus 1 vector G207. Jpn. J. Cancer Res. 91, 1339–1344 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Walker, J. R. et al. Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207. Hum. Gene Ther. 10, 2237–2243 (1999).

    Article  CAS  PubMed  Google Scholar 

  337. van de Merbel, A. F. et al. Reovirus mutant jin-3 exhibits lytic and immune-stimulatory effects in preclinical human prostate cancer models. Cancer Gene Ther. 29, 793–802 (2022).

    Article  PubMed  Google Scholar 

  338. Mao, L. J. et al. Oncolytic adenovirus harboring interleukin-24 improves chemotherapy for advanced prostate cancer. J. Cancer 9, 4391–4397 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  339. Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

    Article  CAS  PubMed  Google Scholar 

  340. Claps, M. et al. Immune-checkpoint inhibitors and metastatic prostate cancer therapy: learning by making mistakes. Cancer Treat. Rev. 88, 102057 (2020).

    Article  CAS  PubMed  Google Scholar 

  341. Schepisi, G. et al. CAR-T cell therapy: a potential new strategy against prostate cancer. J. Immunother. Cancer 7, 258 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  342. Jiang, Y. et al. Prospect of prostate cancer treatment: armed CAR-T or combination therapy. Cancers 14, 967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Armstrong, A. J. et al. Improved survival with enzalutamide in patients with metastatic hormone-sensitive prostate cancer. J. Clin. Oncol. 40, 1616–1622 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Buck, S. A. J., Koolen, S. L. W., Mathijssen, R. H. J., de Wit, R. & van Soest, R. J. Cross-resistance and drug sequence in prostate cancer. Drug. Resist. Updates 56, 100761 (2021).

    Article  CAS  Google Scholar 

  345. Sun, X. et al. PANoptosis: mechanisms, biology, and role in disease. Immunol. Rev. 321, 246–262 (2024).

    Article  CAS  PubMed  Google Scholar 

  346. Ocansey, D. K. W. et al. Current evidence and therapeutic implication of PANoptosis in cancer. Theranostics 14, 640–661 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Yi, X. et al. Construction of PANoptosis signature: novel target discovery for prostate cancer immunotherapy. Mol. Ther. Nucleic Acids 33, 376–390 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Peyraud, F. & Italiano, A. Combined PARP inhibition and immune checkpoint therapy in solid tumors. Cancers 12, 1502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Mao, W. et al. Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition. J. Immunother. Cancer 7, 277 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  350. Madan, R. A. et al. Clinical and immunologic impact of short-course enzalutamide alone and with immunotherapy in non-metastatic castration sensitive prostate cancer. J. Immunother. Cancer 9, e001556 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  351. Tan, H. Y. et al. Targeting tumour microenvironment by tyrosine kinase inhibitor. Mol. Cancer 17, 43 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  352. Chabanon, R. M. et al. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J. Clin. Invest. 129, 1211–1228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  353. Yang, F. et al. Non-coding RNAs: emerging roles in the characterization of immune microenvironment and immunotherapy of prostate cancer. Biochem. Pharmacol. 214, 115669 (2023).

    Article  CAS  PubMed  Google Scholar 

  354. Dos Reis, F. D., Jerónimo, C. & Correia, M. P. Epigenetic modulation and prostate cancer: paving the way for NK cell anti-tumor immunity. Front. Immunol. 14, 1152572 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  355. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT06236139 (2025).

  357. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01487863 (2019).

  358. Bishop, J. L. et al. PD-L1 is highly expressed in enzalutamide resistant prostate cancer. Oncotarget 6, 234–242 (2015).

    Article  PubMed  Google Scholar 

  359. Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Pala, L., De Pas, T. & Conforti, F. Boosting anticancer immunotherapy through androgen receptor blockade. Cancer Cell 40, 455–457 (2022).

    Article  CAS  PubMed  Google Scholar 

  361. Xu, P. et al. Androgen receptor blockade resistance with enzalutamide in prostate cancer results in immunosuppressive alterations in the tumor immune microenvironment. J. Immunother. Cancer 11, e006581 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  362. Karzai, F. et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J. Immunother. Cancer 6, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  363. Antonarakis, E. S. et al. Pembrolizumab plus olaparib for patients with previously treated and biomarker-unselected metastatic castration-resistant prostate cancer: the randomized, open-label, phase III KEYLYNK-010 trial. J. Clin. Oncol. 41, 3839–3850 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Kang, N. et al. EZH2 inhibition: a promising strategy to prevent cancer immune editing. Epigenomics 12, 1457–1476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Murphy, S. et al. Overcome prostate cancer resistance to immune checkpoint therapy with ketogenic diet-induced epigenetic reprogramming. Preprint at bioRxiv https://doi.org/10.1101/2023.08.07.552383 (2023).

  367. Yamada, Y. et al. Targeting DNA methylation and B7-H3 in RB1-deficient and neuroendocrine prostate cancer. Sci. Transl. Med. 15, eadf6732 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02998567 (2024).

  369. Park, S. H. et al. Going beyond polycomb: EZH2 functions in prostate cancer. Oncogene 40, 5788–5798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Gameiro, S. R., Malamas, A. S., Tsang, K. Y., Ferrone, S. & Hodge, J. W. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget 7, 7390–7402 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  371. Liu, J. et al. p300/CBP inhibition enhances the efficacy of programmed death-ligand 1 blockade treatment in prostate cancer. Oncogene 39, 3939–3951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Su, W. et al. The polycomb repressor complex 1 drives double-negative prostate cancer metastasis by coordinating stemness and immune suppression. Cancer Cell 36, 139–155.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Want, M. Y. et al. WHSC1/NSD2 regulates immune infiltration in prostate cancer. J. Immunother. Cancer 9, e001374 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  374. Jain, N. et al. Disruption of SUV39H1-mediated H3K9 methylation sustains CAR T-cell function. Cancer Discov. 14, 142–157 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Gao, X., Leone, G. W. & Wang, H. Cyclin D-CDK4/6 functions in cancer. Adv. Cancer Res. 148, 147–169 (2020).

    Article  CAS  PubMed  Google Scholar 

  376. Liu, C. et al. The immunological role of CDK4/6 and potential mechanism exploration in ovarian cancer. Front. Immunol. 12, 799171 (2021).

    Article  CAS  PubMed  Google Scholar 

  377. Jin, X. et al. Phosphorylated RB promotes cancer immunity by inhibiting NF-κB activation and PD-L1 expression. Mol. Cell 73, 22–35.e26 (2019).

    Article  CAS  PubMed  Google Scholar 

  378. Deng, J. et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 8, 216–233 (2018).

    Article  CAS  PubMed  Google Scholar 

  379. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04751929 (2025).

  380. Dart, D. A., Uysal-Onganer, P. & Jiang, W. G. Prostate-specific PTen deletion in mice activates inflammatory microRNA expression pathways in the epithelium early in hyperplasia development. Oncogenesis 6, 400 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  381. Crane, C. A. et al. PI(3) kinase is associated with a mechanism of immunoresistance in breast and prostate cancer. Oncogene 28, 306–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  382. Chaudagar, K. et al. Suppression of tumor cell lactate-generating signaling pathways eradicates murine PTEN/p53-deficient aggressive-variant prostate cancer via macrophage phagocytosis. Clin. Cancer Res. 29, 4930–4940 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Chaudagar, K. et al. Reversal of lactate and PD-1-mediated macrophage immunosuppression controls growth of PTEN/p53-deficient prostate cancer. Clin. Cancer Res. 29, 1952–1968 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03673787 (2022).

  386. Suryawanshi, A., Tadagavadi, R. K., Swafford, D. & Manicassamy, S. Modulation of inflammatory responses by Wnt/β-catenin signaling in dendritic cells: a novel immunotherapy target for autoimmunity and cancer. Front. Immunol. 7, 460 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  387. Stakheev, D. et al. The WNT/β-catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC-3 prostate cancer cells by prostate cancer patient lymphocytes in vitro. Sci. Rep. 9, 4761 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  388. Agarwal, N. et al. Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021). Lancet Oncol. 23, 899–909 (2022).

    Article  CAS  PubMed  Google Scholar 

  389. Agarwal, N. et al. A phase III, randomized, open-label study (CONTACT-02) of cabozantinib plus atezolizumab versus second novel hormone therapy in patients with metastatic castration-resistant prostate cancer. Future Oncol. 18, 1185–1198 (2022).

    Article  CAS  PubMed  Google Scholar 

  390. Qiao, Y. et al. Autophagy inhibition by targeting PIKfyve potentiates response to immune checkpoint blockade in prostate cancer. Nat. Cancer 2, 978–993 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04159896 (2024).

  392. Deng, G. et al. Ibrutinib inhibits BTK signaling in tumor-infiltrated B cells and amplifies antitumor immunity by PD-1 checkpoint blockade for metastatic prostate cancer. Cancers 15, 2356 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Mauri, C. & Bosma, A. Immune regulatory function of B cells. Annu. Rev. Immunol. 30, 221–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  394. Stiff, A. et al. Myeloid-derived suppressor cells express Bruton’s tyrosine kinase and can be depleted in tumor-bearing hosts by ibrutinib treatment. Cancer Res. 76, 2125–2136 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Sridaran, D. et al. Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nat. Commun. 13, 6929 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Guan, W. et al. Inhibition of TAMs improves the response to docetaxel in castration-resistant prostate cancer. Endocr. Relat. Cancer 26, 131–140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Miller, A. M., Ozenci, V., Kiessling, R. & Pisa, P. Immune monitoring in a phase 1 trial of a PSA DNA vaccine in patients with hormone-refractory prostate cancer. J. Immunother. 28, 389–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  398. Pavlenko, M. et al. A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br. J. Cancer 91, 688–694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Junghans, R. P. et al. Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate 76, 1257–1270 (2016).

    Article  CAS  PubMed  Google Scholar 

  400. Yanagisawa, N. et al. Cytopathic effects and local immune responses in repeated neoadjuvant HSV-tk + ganciclovir gene therapy for prostate cancer. Asian J. Urol. 8, 280–288 (2021).

    Article  PubMed  Google Scholar 

  401. Zafar, S. et al. Oncolytic adenovirus type 3 coding for CD40L facilitates dendritic cell therapy of prostate cancer in humanized mice and patient samples. Hum. Gene Ther. 32, 192–202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Li, X. et al. CXCL10-armed oncolytic adenovirus promotes tumor-infiltrating T-cell chemotaxis to enhance anti-PD-1 therapy. Oncoimmunology 11, 2118210 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  403. Ju, F. et al. Oncolytic virus expressing PD-1 inhibitors activates a collaborative intratumoral immune response to control tumor and synergizes with CTLA-4 or TIM-3 blockade. J. Immunother. Cancer 10, e004762 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  404. Fang, L. et al. Recombinant oncolytic adenovirus armed with CCL5, IL-12, and IFN-γ promotes CAR-T infiltration and proliferation in vivo to eradicate local and distal tumors. Cell Death Discov. 9, 328 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03514836 (2021).

  406. Shoushtari, A. N. et al. Pilot study of ONCOS-102 and pembrolizumab: remodeling of the tumor microenvironment and clinical outcomes in anti-PD-1-resistant advanced melanoma. Clin. Cancer Res. 29, 100–109 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2023YFC3403200), the National Natural Science Foundation of China (82472774 and 81702536). We thank all the colleagues from the Department of Urology, Institute of Urology, West China Hospital, Sichuan University, for supporting our work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jianzhong Ai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Susan Slovin, Zoran Culig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Han, Z. & Ai, J. Synergistic targeting strategies for prostate cancer. Nat Rev Urol 22, 645–671 (2025). https://doi.org/10.1038/s41585-025-01042-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41585-025-01042-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research