Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unlocking the power of semen analysis in primary health care — a path to men’s health and lifestyle transformation

Abstract

Declining fertility, overlooked mental health, and reduced life expectancy underscore the urgent need for renewed attention to men’s health. A semen analysis, traditionally used to assess fertility, holds untapped potential as a tool for promoting lifestyle changes and preventing chronic diseases in men. Spermatogenesis is highly sensitive to environmental and lifestyle factors and can be an early indicator of overall health. Disruptions in this process can signal underlying systemic issues and predict long-term health risks, including cardiovascular disease and metabolic disorders. An increasing number of men seek to engage in preconception care, as fertility is closely tied to a man’s sense of masculinity, identity and aspirations for fatherhood. In this context, a semen analysis can be a powerful motivator to encourage healthy behaviours and proactive health management. By incorporating semen analysis into primary care, health care providers can leverage men’s desire for fatherhood as an entry point to discuss broader health concerns, such as mental well-being, nutrition and physical activity. This approach would address immediate reproductive health, and also promote long-term wellness, helping to reduce the burden of chronic disease in men.

Key points

  • Semen analysis is a foundational but limited tool in assessing male fertility, which provides general insights into reproductive health through evaluation of sperm parameters (such as concentration, motility, morphology), but cannot definitively predict fertility.

  • Male fertility is highly influenced by environmental, lifestyle and medical factors, with evidence showing that both short-term and long-term interventions — such as nutritional supplementation and lifestyle changes — can lead to substantial improvements in semen quality and fertility potential.

  • Semen analysis serves as a valuable indicator of overall male health, with abnormal results linked to increased risks of chronic disease, mortality and cancer.

  • Masculinity and fertility are closely connected, and leveraging this relationship through sensitive communication can motivate men to adopt healthier behaviours.

  • Semen analysis has the potential to be a proactive tool for assessing both fertility and general health in men, but improved health care communication, male-specific resources and primary care engagement are essential to fully realize these benefits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spermatogenesis can be disrupted by lifestyle and environmental factors.
Fig. 2: Semen analysis as part of a general health check.

Similar content being viewed by others

References

  1. Agarwal, A. et al. Male infertility. Lancet 397, 319–333 (2021).

    Article  PubMed  Google Scholar 

  2. Sharlip, I. D. et al. Best practice policies for male infertility. Fertil. Steril. 77, 873–882 (2002).

    Article  PubMed  Google Scholar 

  3. Fisher, J. R. & Hammarberg, K. Psychological and social aspects of infertility in men: an overview of the evidence and implications for psychologically informed clinical care and future research. Asian J. Androl. 14, 121–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Hammarberg, K., Collins, V., Holden, C., Young, K. & McLachlan, R. Men’s knowledge, attitudes and behaviours relating to fertility. Hum. Reprod. Update 23, 458–480 (2017).

    Article  PubMed  Google Scholar 

  5. Evens E. M. A global perspective on infertility an under recognized public health issue. Carolina Papers International Health No. 18 https://www.scribd.com/document/125595459/A-Global-Perspective-on-Infertility-an-Under-Recognized-Public-Health-Issue-original (2004).

  6. Kimmins, S. et al. Frequency, morbidity and equity - the case for increased research on male fertility. Nat. Rev. Urol. 21, 102–124 (2024).

    Article  PubMed  Google Scholar 

  7. Levine, H. et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum. Reprod. Update 29, 157–176 (2023).

    Article  PubMed  Google Scholar 

  8. Levine, H. et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum. Reprod. Update 23, 646–659 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cedars, M. I. et al. The sixth vital sign: what reproduction tells us about overall health. Proceedings from a NICHD/CDC workshop. Hum. Reprod. Open. 2017, hox008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Choy, J. T. & Eisenberg, M. L. Male infertility as a window to health. Fertil. Steril. 110, 810–814 (2018).

    Article  PubMed  Google Scholar 

  11. Inhorn, M. C. & Patrizio, P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update 21, 411–426 (2015).

    Article  PubMed  Google Scholar 

  12. Lee, T. Y. & Chu, T. Y. The Chinese experience of male infertility. West. J. Nurs. Res. 23, 714–725 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Obst, K. L., Oxlad, M., Turnbull, D. & McPherson, N. O. “No one asked me if I’m alright”: a mixed-methods study exploring information/support needs and challenges engaging men diagnosed with male-factor infertility. Am. J. Mens Health 17, 15579883231209210 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sejbaek, C. S. et al. Depression among men in ART treatment: a register-based national cohort study. Hum. Reprod. Open. 2020, hoaa019 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fisher, J. R., Baker, G. H. & Hammarberg, K. Long-term health, well-being, life satisfaction, and attitudes toward parenthood in men diagnosed as infertile: challenges to gender stereotypes and implications for practice. Fertil. Steril. 94, 574–580 (2010).

    Article  PubMed  Google Scholar 

  16. Greil, A. L., Slauson-Blevins, K. & McQuillan, J. The experience of infertility: a review of recent literature. Sociol. Health Illn. 32, 140–162 (2010).

    Article  PubMed  Google Scholar 

  17. Institute for Health Metrics and Evaluation. Global burden of disease (GBD): institute for health metrics and evaluation. Institute for Health Metrics and Evaluation https://www.healthdata.org/research-analysis/gbd-data?trk=public_post-text (2021).

  18. Latif, T. et al. Semen quality as a predictor of subsequent morbidity: a Danish cohort study of 4,712 men with long-term follow-up. Am. J. Epidemiol. 186, 910–917 (2017).

    Article  PubMed  Google Scholar 

  19. Inhorn, M. C. Global infertility and the globalization of new reproductive technologies: illustrations from Egypt. Soc. Sci. Med. 56, 1837–1851 (2003).

    Article  PubMed  Google Scholar 

  20. Dyer, S. J., Abrahams, N., Mokoena, N. E. & van der Spuy, Z. M. ‘You are a man because you have children’: experiences, reproductive health knowledge and treatment-seeking behaviour among men suffering from couple infertility in South Africa. Hum. Reprod. 19, 960–967 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Björndahl, L. & Kirkman Brown, J. The sixth edition of the WHO laboratory manual for the examination and processing of human semen: ensuring quality and standardization in basic examination of human ejaculates. Fertil. Steril. 117, 246–251 (2022).

    Article  PubMed  Google Scholar 

  22. Wang, C. & Swerdloff, R. S. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil. Steril. 102, 1502–1507 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pasqualotto, F. F. et al. High percentage of abnormal semen parameters in a prevasectomy population. Fertil. Steril. 85, 954–960 (2006).

    Article  PubMed  Google Scholar 

  24. Bonde, J. P. et al. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet 352, 1172–1177 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Guzick, D. S. et al. Sperm morphology, motility, and concentration in fertile and infertile men. N. Engl. J. Med. 345, 1388–1393 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Esteves, S. C. Evolution of the World Health Organization semen analysis manual: where are we? Nat. Rev. Urol. 19, 439–446 (2022).

    Article  PubMed  Google Scholar 

  27. Zavos, P. M. & Goodpasture, J. C. Clinical improvements of specific seminal deficiencies via intercourse with a seminal collection device versus masturbation. Fertil. Steril. 51, 190–193 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Pound, N., Javed, M. H., Ruberto, C., Shaikh, M. A. & Del Valle, A. P. Duration of sexual arousal predicts semen parameters for masturbatory ejaculates. Physiol. Behav. 76, 685–689 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. World Health Organization. WHO laboratory manual for the examination and processing of human semen 5th edn (World Health Organization, 2010).

  30. Slama, R. et al. Time to pregnancy and semen parameters: a cross-sectional study among fertile couples from four European cities. Hum. Reprod. 17, 503–515 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ayala, C., Steinberger, E. & Smith, D. P. The influence of semen analysis parameters on the fertility potential of infertile couples. J. Androl. 17, 718–725 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Zinaman, M. J., Brown, C. C., Selevan, S. G. & Clegg, E. D. Semen quality and human fertility: a prospective study with healthy couples. J. Androl. 21, 145–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Keihani, S. et al. Semen parameter thresholds and time-to-conception in subfertile couples: how high is high enough? Hum. Reprod. 36, 2121–2133 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Robinson, L. et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum. Reprod. 27, 2908–2917 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Cissen, M. et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS ONE 11, e0165125 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Simon, L., Zini, A., Dyachenko, A., Ciampi, A. & Carrell, D. T. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J. Androl. 19, 80–90 (2017).

    Article  PubMed  Google Scholar 

  37. Tan, J., Taskin, O., Albert, A. & Bedaiwy, M. A. Association between sperm DNA fragmentation and idiopathic recurrent pregnancy loss: a systematic review and meta-analysis. Reprod. Biomed. Online 38, 951–960 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Agarwal, A. et al. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl. Androl. Urol. 5, 935–950 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Andrabi, S. W. et al. Fragmentation: causes, evaluation and management in male infertility. JBRA Assist. Reprod. 28, 306–319 (2024).

    PubMed  PubMed Central  Google Scholar 

  40. Newman, H., Catt, S., Vining, B., Vollenhoven, B. & Horta, F. DNA repair and response to sperm DNA damage in oocytes and embryos, and the potential consequences in ART: a systematic review. Mol. Hum. Reprod. 28, gaab071 (2022).

    Article  PubMed  Google Scholar 

  41. Peel, A., Saini, A., Deluao, J. C. & McPherson, N. O. Sperm DNA damage: the possible link between obesity and male infertility, an update of the current literature. Andrology 11, 1635–1652 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Aitken, R. J. Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction 159, R189–R201 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Jones, R., Mann, T. & Sherins, R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil. Steril. 31, 531–537 (1979).

    Article  CAS  PubMed  Google Scholar 

  44. Alvarez, J. G., Touchstone, J. C., Blasco, L. & Storey, B. T. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J. Androl. 8, 338–348 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Aitken, R. J. & Clarkson, J. S. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil. 81, 459–469 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. Bisht, S. & Dada, R. Oxidative stress: major executioner in disease pathology, role in sperm DNA damage and preventive strategies. Front. Biosci. 9, 420–447 (2017).

    Article  Google Scholar 

  47. O’Flaherty, C. & Matsushita-Fournier, D. Reactive oxygen species and protein modifications in spermatozoa. Biol. Reprod. 97, 577–585 (2017).

    Article  PubMed  Google Scholar 

  48. Castleton, P. et al. MiOXSYS® and OxiSperm® II assays appear to provide no clinical utility for determining oxidative stress in human sperm-results from repeated semen collections. Andrology 11, 1566–1578 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Heller, C. G. & Clermont, Y. Spermatogenesis in man: an estimate of its duration. Science 140, 184–186 (1963).

    Article  CAS  PubMed  Google Scholar 

  50. Lyons, H. E. et al. The influence of lifestyle and biological factors on semen variability. J. Assist. Reprod. Genet. 41, 1097–1109 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li, Y. X. et al. Association between body mass index and semen quality: a systematic review and meta-analysis. Int. J. Obes. 48, 1383–1401 (2024).

    Google Scholar 

  52. Service, C. A., Puri, D., Al Azzawi, S., Hsieh, T. C. & Patel, D. P. The impact of obesity and metabolic health on male fertility: a systematic review. Fertil. Steril. 120, 1098–1111 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Palmer, N. O., Bakos, H. W., Fullston, T. & Lane, M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis 2, 253–263 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Leisegang, K., Sengupta, P., Agarwal, A. & Henkel, R. Obesity and male infertility: mechanisms and management. Andrologia 53, e13617 (2021).

    Article  PubMed  Google Scholar 

  55. Neto, F. T., Bach, P. V., Najari, B. B., Li, P. S. & Goldstein, M. Spermatogenesis in humans and its affecting factors. Semin. Cell Dev. Biol. 59, 10–26 (2016).

    Article  PubMed  Google Scholar 

  56. Schneider, G., Kirschner, M. A., Berkowitz, R. & Ertel, N. H. Increased estrogen production in obese men. J. Clin. Endocrinol. Metab. 48, 633–638 (1979).

    Article  CAS  PubMed  Google Scholar 

  57. de Boer, H., Verschoor, L., Ruinemans-Koerts, J. & Jansen, M. Letrozole normalizes serum testosterone in severely obese men with hypogonadotropic hypogonadism. Diabetes Obes. Metab. 7, 211–215 (2005).

    Article  PubMed  Google Scholar 

  58. Escobar-Morreale, H. F., Santacruz, E., Luque-Ramírez, M. & Botella Carretero, J. I. Prevalence of ‘obesity-associated gonadal dysfunction’ in severely obese men and women and its resolution after bariatric surgery: a systematic review and meta-analysis. Hum. Reprod. Update 23, 390–408 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. De Silva, N. L. et al. Male hypogonadism: pathogenesis, diagnosis, and management. Lancet Diabetes Endocrinol. 12, 761–774 (2024).

    Article  PubMed  Google Scholar 

  60. Yeh, S. et al. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc. Natl Acad. Sci. USA 99, 13498–13503 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith, L. B. & Walker, W. H. The regulation of spermatogenesis by androgens. Semin. Cell Dev. Biol. 30, 2–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Gutorova, N. V., Kleshchyov, M. A., Tipisova, E. V. & Osadchuk, L. V. Effects of overweight and obesity on the spermogram values and levels of reproductive hormones in the male population of the European north of Russia. Bull. Exp. Biol. Med. 157, 95–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Jensen, T. K. et al. Body mass index in relation to semen quality and reproductive hormones among 1,558 Danish men. Fertil. Steril. 82, 863–870 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, Y. & Ding, Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction 154, R123–R131 (2017).

    Article  PubMed  Google Scholar 

  65. Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kumar, N. & Singh, A. K. Impact of environmental factors on human semen quality and male fertility: a narrative review. Environ. Sci. Eur. 34, 1–13 (2022).

    Article  Google Scholar 

  67. Ge, R. S., Chen, G. R., Tanrikut, C. & Hardy, M. P. Phthalate ester toxicity in Leydig cells: developmental timing and dosage considerations. Reprod. Toxicol. 23, 366–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Garza, S. et al. Mitochondrial dynamics, Leydig cell function, and age-related testosterone deficiency. FASEB J. 36, e22637 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Ješeta, M. et al. Overview of the mechanisms of action of selected bisphenols and perfluoroalkyl chemicals on the male reproductive axes. Front. Genet. 12, 692897 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Knez, J., Kranvogl, R., Breznik, B. P., Vončina, E. & Vlaisavljević, V. Are urinary bisphenol A levels in men related to semen quality and embryo development after medically assisted reproduction? Fertil. Steril. 101, 215–221.e5 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Radwan, M. et al. Urinary bisphenol A levels and male fertility. Am. J. Mens Health 12, 2144–2151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Adoamnei, E. et al. Urinary bisphenol A concentrations are associated with reproductive parameters in young men. Env. Res. 161, 122–128 (2018).

    Article  CAS  Google Scholar 

  73. Lü, L. et al. Exposure interferes with reproductive hormones and decreases sperm counts: a systematic review and meta-analysis of epidemiological studies. Toxics 12, 294 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Goldstone, A. E., Chen, Z., Perry, M. J., Kannan, K. & Louis, G. M. Urinary bisphenol A and semen quality, the LIFE study. Reprod. Toxicol. 51, 7–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Jeseta, M. et al. Cross sectional study on exposure to BPA and its analogues and semen parameters in Czech men. Env. Pollut. 345, 123445 (2024).

    Article  CAS  Google Scholar 

  76. Mruk, D. D. & Cheng, C. Y. The mammalian blood-testis barrier: its biology and regulation. Endocr. Rev. 36, 564–591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Siu, E. R. et al. An occludin-focal adhesion kinase protein complex at the blood-testis barrier: a study using the cadmium model. Endocrinology 150, 3336–3344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chung, N. P. & Cheng, C. Y. Is cadmium chloride-induced inter-Sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 142, 1878–1888 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. el-Sabeawy, F. et al. Treatment of rats during pubertal development with 2,3,7,8-tetrachlorodibenzo-p-dioxin alters both signaling kinase activities and epidermal growth factor receptor binding in the testis and the motility and acrosomal reaction of sperm. Toxicol. Appl. Pharmacol. 150, 427–442 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. World Health Organization. Dioxins. WHO https://www.who.int/news-room/fact-sheets/detail/dioxins-and-their-effects-on-human-health (2023).

  81. Xiao, X. et al. Differential effects of c-Src and c-Yes on the endocytic vesicle-mediated trafficking events at the Sertoli cell blood-testis barrier: an in vitro study. Am. J. Physiol. Endocrinol. Metab. 307, E553–E562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xiao, X., Mruk, D. D., Cheng, F. L. & Cheng, C. Y. C-Src and c-Yes are two unlikely partners of spermatogenesis and their roles in blood-testis barrier dynamics. Adv. Exp. Med. Biol. 763, 295–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mocarelli, P. et al. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ. Health Perspect. 116, 70–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Quintanilla-Vega, B. et al. Lead interaction with human protamine (HP2) as a mechanism of male reproductive toxicity. Chem. Res. Toxicol. 13, 594–600 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Ratcliffe, J. M. et al. Semen quality in papaya workers with long term exposure to ethylene dibromide. Br. J. Ind. Med. 44, 317–326 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Schrader, S. M., Turner, T. W. & Ratcliffe, J. M. The effects of ethylene dibromide on semen quality: a comparison of short-term and chronic exposure. Reprod. Toxicol. 2, 191–198 (1988).

    Article  CAS  PubMed  Google Scholar 

  87. Amir, D. The spermicidal effect of ethylene dibromide in bulls and rams. Mol. Reprod. Dev. 28, 99–109 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Meistrich, M. L. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil. Steril. 100, 1180–1186 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Duffin, K. et al. Impacts of cancer therapy on male fertility: past and present. Mol. Aspects Med. 100, 101308 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Vakalopoulos, I., Dimou, P., Anagnostou, I. & Zeginiadou, T. Impact of cancer and cancer treatment on male fertility. Hormones 14, 579–589 (2015).

    Article  PubMed  Google Scholar 

  91. Aitken, R. J., Smith, T. B., Jobling, M. S., Baker, M. A. & De Iuliis, G. N. Oxidative stress and male reproductive health. Asian J. Androl. 16, 31–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Wright, C., Milne, S. & Leeson, H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod. Biomed. Online 28, 684–703 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Aitken, R. J., Jones, K. T. & Robertson, S. A. Reactive oxygen species and sperm function-in sickness and in health. J. Androl. 33, 1096–1106 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Aitken, R. J., Drevet, J. R., Moazamian, A. & Gharagozloo, P. Male infertility and oxidative stress: a focus on the underlying mechanisms. Antioxidants 11, 306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Aitken, R. J., Wingate, J. K., De Iuliis, G. N., Koppers, A. J. & McLaughlin, E. A. Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J. Clin. Endocrinol. Metab. 91, 4154–4163 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Aitken, R. J. et al. Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. J. Biol. Chem. 287, 33048–33060 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Calamera, J., Buffone, M., Ollero, M., Alvarez, J. & Doncel, G. F. Superoxide dismutase content and fatty acid composition in subsets of human spermatozoa from normozoospermic, asthenozoospermic, and polyzoospermic semen samples. Mol. Reprod. Dev. 66, 422–430 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Aitken, R. J., Clarkson, J. S. & Fishel, S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol. Reprod. 41, 183–197 (1989).

    Article  CAS  PubMed  Google Scholar 

  99. Sanocka, D. & Kurpisz, M. Reactive oxygen species and sperm cells. Reprod. Biol. Endocrinol. 2, 12 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Aitken, R. J., Gibb, Z., Baker, M. A., Drevet, J. & Gharagozloo, P. Causes and consequences of oxidative stress in spermatozoa. Reprod. Fertil. Dev. 28, 1–10 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Aboulmaouahib, S. et al. Impact of alcohol and cigarette smoking consumption in male fertility potential: looks at lipid peroxidation, enzymatic antioxidant activities and sperm DNA damage. Andrologia 50, e12926 (2018).

    Article  Google Scholar 

  102. He, Y. et al. Ketamine inhibits human sperm function by Ca2+-related mechanism. Biochem. Biophys. Res. Commun. 478, 501–506 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Safarinejad, M. R. et al. The effects of opiate consumption on serum reproductive hormone levels, sperm parameters, seminal plasma antioxidant capacity and sperm DNA integrity. Reprod. Toxicol. 36, 18–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Amor, H., Hammadeh, M. E., Mohd, I. & Jankowski, P. M. Impact of heavy alcohol consumption and cigarette smoking on sperm DNA integrity. Andrologia 54, e14434 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Nazmara, Z. et al. Correlation between protamine-2 and miRNA-122 in sperm from heroin-addicted men: a case-control study. Urol. J. 17, 638–644 (2020).

    PubMed  Google Scholar 

  106. Imhof ML, J. Lipovac, M. Chedraui, P. Riedl, C. Improvement of sperm quality after micronutrient supplementation. ESPEN J. 7, e50–e53 (2012).

    Google Scholar 

  107. Nguyen, N. D., Le, M. T., Tran, N. Q. T., Nguyen, Q. H. V. & Cao, T. N. Micronutrient supplements as antioxidants in improving sperm quality and reducing DNA fragmentation. Basic. Clin. Androl. 33, 23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lipovac, M., Nairz, V., Aschauer, J. & Riedl, C. The effect of micronutrient supplementation on spermatozoa DNA integrity in subfertile men and subsequent pregnancy rate. Gynecol. Endocrinol. 37, 711–715 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Komiya, A. et al. Results of lifestyle modification promotion and reproductive/general health check for male partners of couples seeking conception. Heliyon 9, e15203 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eisenberg, M. L. et al. Semen quality, infertility and mortality in the USA. Hum. Reprod. 29, 1567–1574 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Del Giudice, F. et al. The association between mortality and male infertility: systematic review and meta-analysis. Urology 154, 148–157 (2021).

    Article  PubMed  Google Scholar 

  112. Glazer, C. H. et al. Male factor infertility and risk of death: a nationwide record-linkage study. Hum. Reprod. 34, 2266–2273 (2019).

    PubMed  Google Scholar 

  113. Shiraishi, K. & Matsuyama, H. Effects of medical comorbidity on male infertility and comorbidity treatment on spermatogenesis. Fertil. Steril. 110, 1006–11.e2 (2018).

    Article  PubMed  Google Scholar 

  114. Ventimiglia, E. et al. Infertility as a proxy of general male health: results of a cross-sectional survey. Fertil. Steril. 104, 48–55 (2015).

    Article  PubMed  Google Scholar 

  115. Hales C. M., Carroll M. D., Fryar C. D., Ogden C. L. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief. 1–8 (2020).

  116. Hales, C. N. Metabolic consequences of intrauterine growth retardation. Acta Paediatr. 86, 184–187 (1997).

    Article  Google Scholar 

  117. Yeh, T. L. et al. The relationship between metabolically healthy obesity and the risk of cardiovascular disease: a systematic review and meta-analysis. J. Clin. Med. 8, 1228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Salas-Huetos, A. et al. Male adiposity, sperm parameters and reproductive hormones: an updated systematic review and collaborative meta-analysis. Obes. Rev. 22, e13082 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Sepidarkish, M. et al. The effect of body mass index on sperm DNA fragmentation: a systematic review and meta-analysis. Int. J. Obes. 44, 549–558 (2020).

    Article  CAS  Google Scholar 

  120. Lotti, F., Marchiani, S., Corona, G. & Maggi, M. Metabolic syndrome and reproduction. Int. J. Mol. Sci. 22, 1988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ehala-Aleksejev, K. & Punab, M. The effect of metabolic syndrome on male reproductive health: a cross-sectional study in a group of fertile men and male partners of infertile couples. PLoS ONE 13, e0194395 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dupont, C. et al. Metabolic syndrome and smoking are independent risk factors of male idiopathic infertility. Basic. Clin. Androl. 29, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhao, L. & Pang, A. Effects of metabolic syndrome on semen quality and circulating sex hormones: a systematic review and meta-analysis. Front. Endocrinol. 11, 428 (2020).

    Article  Google Scholar 

  124. Pergialiotis, V. et al. Diabetes mellitus and functional sperm characteristics: a meta-analysis of observational studies. J. Diabetes Complications 30, 1167–1176 (2016).

    Article  PubMed  Google Scholar 

  125. Torres, M. et al. Male fertility is reduced by chronic intermittent hypoxia mimicking sleep apnea in mice. Sleep 37, 1757–1765 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. McLachlan, R. I. Approach to the patient with oligozoospermia. J. Clin. Endocrinol. Metab. 98, 873–880 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Lundy, S. D. & Vij, S. C. Male infertility in renal failure and transplantation. Transl. Androl. Urol. 8, 173–181 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zhang, Q. F. et al. Does COVID-19 affect sperm quality in males? the answer may be yes, but only temporarily. Virol. J. 21, 24 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Basaria, S. Male hypogonadism. Lancet 383, 1250–1263 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Bojesen, A., Juul, S. & Gravholt, C. H. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J. Clin. Endocrinol. Metab. 88, 622–626 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Herlihy, A. S., Halliday, J. L., Cock, M. L. & McLachlan, R. I. The prevalence and diagnosis rates of Klinefelter syndrome: an Australian comparison. Med. J. Aust. 194, 24–28 (2011).

    Article  PubMed  Google Scholar 

  132. Deebel, N. A., Bradshaw, A. W. & Sadri-Ardekani, H. Infertility considerations in Klinefelter syndrome: from origin to management. Best. Pract. Res. Clin. Endocrinol. Metab. 34, 101480 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Kanakis, G. A. & Nieschlag, E. Klinefelter syndrome: more than hypogonadism. Metabolism 86, 135–144 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Clemente-Suárez, V. J., Beltrán-Velasco, A. I., Redondo-Flórez, L., Martín-Rodríguez, A. & Tornero-Aguilera, J. F. Global impacts of western diet and its effects on metabolism and health: a narrative review. Nutrients 15, 2749 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Naidu, R. et al. Chemical pollution: a growing peril and potential catastrophic risk to humanity. Env. Int. 156, 106616 (2021).

    Article  CAS  Google Scholar 

  136. World Health Organization. Overweight prevalence among children under 5 years of age (%weight-for-height >+2 SD). WHO https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-jme-country-children-aged-5-years-overweight-(-weight-for-height-2-sd) (2025).

  137. World Health Organisation. Global status report on noncommunicable diseases 2010. (World Health Organisation, 2011).

  138. Heindel, J. J., Lustig, R. H., Howard, S. & Corkey, B. E. Obesogens: a unifying theory for the global rise in obesity. Int. J. Obes. 48, 449–460 (2024).

    Article  Google Scholar 

  139. Cancer Australia. Cancer incidence. Cancer Australia https://ncci.canceraustralia.gov.au/diagnosis/cancer-incidence/cancer-incidence (2024).

  140. van Oostrom, S. H. et al. Time trends in prevalence of chronic diseases and multimorbidity not only due to aging: data from general practices and health surveys. PLoS ONE 11, e0160264 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ward, B. W. & Schiller, J. S. Prevalence of multiple chronic conditions among US adults: estimates from the National Health Interview Survey, 2010. Prev. Chronic Dis. 10, E65 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Cristodoro, M., Zambella, E., Fietta, I., Inversetti, A. & Di Simone, N. Dietary patterns and fertility. Biology 13, 131 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Salas-Huetos, A., Babio, N., Carrell, D. T., Bulló, M. & Salas-Salvadó, J. Adherence to the Mediterranean diet is positively associated with sperm motility: a cross-sectional analysis. Sci. Rep. 9, 3389 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ricci, E. et al. Semen quality and alcohol intake: a systematic review and meta-analysis. Reprod. Biomed. Online 34, 38–47 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Gaskins, A. J., Colaci, D. S., Mendiola, J., Swan, S. H. & Chavarro, J. E. Dietary patterns and semen quality in young men. Hum. Reprod. 27, 2899–2907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Caruso, P. et al. Effects of Mediterranean diet on semen parameters in healthy young adults: a randomized controlled trial. Minerva Endocrinol. 45, 280–287 (2020).

    PubMed  Google Scholar 

  147. Montano, L. et al. Effects of a lifestyle change intervention on semen quality in healthy young men living in highly polluted areas in Italy: the FASt randomized controlled trial. Eur. Urol. Focus. 8, 351–359 (2022).

    Article  PubMed  Google Scholar 

  148. Walsh, T. J., Croughan, M. S., Schembri, M., Chan, J. M. & Turek, P. J. Increased risk of testicular germ cell cancer among infertile men. Arch. Intern. Med. 169, 351–356 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Walsh, T. J. et al. Increased risk of high-grade prostate cancer among infertile men. Cancer 116, 2140–2147 (2010).

    Article  PubMed  Google Scholar 

  150. Eisenberg, M. L., Li, S., Brooks, J. D., Cullen, M. R. & Baker, L. C. Increased risk of cancer in infertile men: analysis of U.S. claims data. J. Urol. 193, 1596–1601 (2015).

    Article  PubMed  Google Scholar 

  151. Hanson, H. A. et al. Subfertility increases risk of testicular cancer: evidence from population-based semen samples. Fertil. Steril. 105, 322–8.e1 (2016).

    Article  PubMed  Google Scholar 

  152. Schultz, N., Hamra, F. K. & Garbers, D. L. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc. Natl Acad. Sci. USA 100, 12201–12206 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mukherjee, S., Ridgeway, A. D. & Lamb, D. J. DNA mismatch repair and infertility. Curr. Opin. Urol. 20, 525–532 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Belladelli, F., Basran, S. & Eisenberg, M. L. Male fertility and physical exercise. World J. Mens Health 41, 482–488 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Gaskins, A. J. et al. Paternal physical and sedentary activities in relation to semen quality and reproductive outcomes among couples from a fertility center. Hum. Reprod. 29, 2575–2582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. American Heart Association. Lifestyle changes to prevent a heart attack. American Heart Association https://www.heart.org/en/health-topics/heart-attack/life-after-a-heart-attack/lifestyle-changes-for-heart-attack-prevention (2025).

  157. Mayo Clinic. Strategies to prevent heart disease. Mayo Clinic https://www.mayoclinic.org/diseases-conditions/heart-disease/in-depth/heart-disease-prevention/art-20046502 (2023).

  158. Kim, H. L. et al. Lifestyle modification in the management of metabolic syndrome: statement from Korean society of cardiometabolic syndrome (KSCMS). Korean Circ. J. 52, 93–109 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Oh, S., Kim, E. & Shoda, J. Editorial: lifestyle modification strategies as first line of chronic disease management. Front. Physiol. 14, 1204581 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Greaves, C. J. et al. Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public. Health 11, 119 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Rhodes, R. E., Janssen, I., Bredin, S. S. D., Warburton, D. E. R. & Bauman, A. Physical activity: health impact, prevalence, correlates and interventions. Psychol. Health 32, 942–975 (2017).

    Article  PubMed  Google Scholar 

  162. Cleland, V. et al. Effectiveness of interventions to promote physical activity and/or decrease sedentary behaviour among rural adults: a systematic review and meta-analysis. Obes. Rev. 18, 727–741 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Rippe, J. M. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease. Am. J. Lifestyle Med. 13, 204–212 (2019).

    Article  PubMed  Google Scholar 

  164. Darkins, A., Kendall, S., Edmonson, E., Young, M. & Stressel, P. Reduced cost and mortality using home telehealth to promote self-management of complex chronic conditions: a retrospective matched cohort study of 4,999 veteran patients. Telemed. J. E Health 21, 70–76 (2015).

    Article  PubMed  Google Scholar 

  165. Darkins, A. et al. Care coordination/home telehealth: the systematic implementation of health informatics, home telehealth, and disease management to support the care of veteran patients with chronic conditions. Telemed. J. E Health 14, 1118–1126 (2008).

    Article  PubMed  Google Scholar 

  166. McCarthy D. Kaiser Permanente: bridging the quality divide with integrated practice, group accountability, and health information technology. The Commonwealth Fund https://www.commonwealthfund.org/publications/case-study/2009/jun/kaiser-permanente-bridging-quality-divide-integrated-practice (2009).

  167. Rivera, A. & Scholar, J. Traditional masculinity: a review of toxicity rooted in social norms and gender socialization. ANS Adv. Nurs. Sci. 43, E1–E10 (2020).

    Article  PubMed  Google Scholar 

  168. Burton M. Negotiating masculinity: how infertility impacts hegemonic masculinity. LUJA 1, 49–57 (2014).

    Google Scholar 

  169. Pakpahan, C. et al. “Masculine?” A metasynthesis of qualitative studies on traditional masculinity on infertility. F1000Res 12, 252 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Trussell, J. C. et al. Association between testosterone, semen parameters, and live birth in men with unexplained infertility in an intrauterine insemination population. Fertil. Steril. 111, 1129–1134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cervi LK, D. Organising male infertility: masculinities and fertility treatment. Gend. Work. Organ. 29, 1113–1131 (2022).

    Article  Google Scholar 

  172. Clarke, M. J., Marks, A. D. & Lykins, A. D. Effect of normative masculinity on males’ dysfunctional sexual beliefs, sexual attitudes, and perceptions of sexual functioning. J. Sex. Res. 52, 327–337 (2015).

    Article  PubMed  Google Scholar 

  173. Malik, S. H. & Coulson, N. The male experience of infertility: a thematic analysis of an online infertility support group bulletin board. J. Reprod. Infant Psychol. 26, 18–30 (2008).

    Article  Google Scholar 

  174. Peronace, L. A., Boivin, J. & Schmidt, L. Patterns of suffering and social interactions in infertile men: 12 months after unsuccessful treatment. J. Psychosom. Obstet. Gynaecol. 28, 105–114 (2007).

    Article  PubMed  Google Scholar 

  175. Culley, L., Hudson, N. & Lohan, M. Where are all the men? The marginalization of men in social scientific research on infertility. Reprod. Biomed. Online 27, 225–235 (2013).

    Article  PubMed  Google Scholar 

  176. Wischmann, T. & Thorn, P. (Male) infertility: what does it mean to men? New evidence from quantitative and qualitative studies. Reprod. Biomed. Online 27, 236–243 (2013).

    Article  PubMed  Google Scholar 

  177. Mikkelsen, A. T., Madsen, S. A. & Humaidan, P. Psychological aspects of male fertility treatment. J. Adv. Nurs. 69, 1977–1986 (2013).

    Article  PubMed  Google Scholar 

  178. Arya, S. T. & Dibb, B. The experience of infertility treatment: the male perspective. Hum. Fertil. 19, 242–248 (2016).

    Article  Google Scholar 

  179. Tabong, P. T. & Adongo, P. B. Understanding the social meaning of infertility and childbearing: a qualitative study of the perception of childbearing and childlessness in Northern Ghana. PLoS ONE 8, e54429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Inhorn, M. C. Middle Eastern masculinities in the age of new reproductive technologies: male infertility and stigma in Egypt and Lebanon. Med. Anthropol. Q. 18, 162–182 (2004).

    Article  PubMed  Google Scholar 

  181. Serour, G. I. & Serour, A. G. The impact of religion and culture on medically assisted reproduction in the Middle East and Europe. Reprod. Biomed. Online 43, 421–433 (2021).

    Article  PubMed  Google Scholar 

  182. Nimbi, F. M., Tripodi, F., Rossi, R., Navarro-Cremades, F. & Simonelli, C. Male sexual desire: an overview of biological, psychological, sexual, relational, and cultural factors influencing desire. Sex. Med. Rev. 8, 59–91 (2020).

    Article  PubMed  Google Scholar 

  183. Coward, R. M. et al. Fertility related quality of life, gonadal function and erectile dysfunction in male partners of couples with unexplained infertility. J. Urol. 202, 379–384 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Ozkan, B., Orhan, E., Aktas, N. & Coskuner, E. R. Depression and sexual dysfunction in Turkish men diagnosed with infertility. Urology 85, 1389–1393 (2015).

    Article  PubMed  Google Scholar 

  185. Mahalik, J. R., Di Bianca, M. & Sepulveda, J. Examining father status and purpose to understand new days’ healthier lives. Psychol. Men. Masc. 21, 570–577 (2020).

    Article  Google Scholar 

  186. Lewington, L., Sebar, B. & Lee, J. “Becoming the man you always wanted to be”: exploring the representation of health and masculinity in Men’s Health magazine. Health Promot. J. Austr. 29, 243–250 (2018).

    Article  PubMed  Google Scholar 

  187. De Jonge, C. J. et al. Current global status of male reproductive health. Hum. Reprod. Open. 2024, hoae017 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  188. De Jonge, C. & Barratt, C. L. R. The present crisis in male reproductive health: an urgent need for a political, social, and research roadmap. Andrology 7, 762–768 (2019).

    Article  PubMed  Google Scholar 

  189. Torkel, S. et al. Barriers and enablers to a healthy lifestyle in people with infertility: a mixed-methods systematic review. Hum. Reprod. Update 30, 569–583 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Healthy male. A case for change. Healthy Male https://healthymale.org.au/plus-paternal/a-case-for-change (2024).

  191. Vargas, C., Whelan, J., Brimblecombe, J. & Allender, S. Co-creation, co-design, co-production for public health — a perspective on definition and distinctions. Public Health Res Pract. 32, 3222211 (2022).

    Article  PubMed  Google Scholar 

  192. Slattery, P., Saeri, A. K. & Bragge, P. Research co-design in health: a rapid overview of reviews. Health Res. Policy Syst. 18, 17 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Sanz, M. F., Acha, B. V. & García, M. F. Co-design for people-centred care digital solutions: a literature review. Int. J. Integr. Care 21, 16 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Ng, S. K., Martin, S. A., Adams, R. J., O’Loughlin, P. & Wittert, G. A. The effect of multimorbidity patterns and the impact of comorbid anxiety and depression on primary health service use: the men androgen inflammation lifestyle environment and stress (MAILES) study. Am. J. Mens. Health 14, 1557988320959993 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Mursa, R., Patterson, C. & Halcomb, E. Men’s help-seeking and engagement with general practice: an integrative review. J. Adv. Nurs. 78, 1938–1953 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  196. McGraw, J., White, K. M. & Russell-Bennett, R. Masculinity and men’s health service use across four social generations: findings from Australia’s Ten to Men study. SSM Popul. Health 15, 100838 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Håkonsen, L. B. et al. Does weight loss improve semen quality and reproductive hormones? results from a cohort of severely obese men. Reprod. Health 8, 24 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Faure, C. et al. In subfertile couple, abdominal fat loss in men is associated with improvement of sperm quality and pregnancy: a case-series. PLoS ONE 9, e86300 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Rafiee, B., Morowvat, M. H. & Rahimi-Ghalati, N. Comparing the effectiveness of dietary vitamin C and exercise interventions on fertility parameters in normal obese men. Urol. J. 13, 2635–2639 (2016).

    PubMed  Google Scholar 

  200. Rosety, M. et al. Exercise improved semen quality and reproductive hormone levels in sedentary obese adults. Nutr. Hosp. 34, 603–607 (2017).

    Article  PubMed  Google Scholar 

  201. Mir J., Franken D., Andrabi S. W., Ashraf M., Rao K. Impact of weight loss on sperm DNA integrity in obese men. Andrologia 50, e12957 (2018).

    Article  Google Scholar 

  202. Jaffar, M. & Ashraf, M. Does weight loss improve fertility with respect to semen parameters — results from a large cohort study. Int. J. Infertil. Fetal Med. 8, 12–17 (2017).

    Google Scholar 

  203. Bisht, S. et al. Sperm methylome alterations following yoga-based lifestyle intervention in patients of primary male infertility: a pilot study. Andrologia 52, e13551 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Mombeyni, A., Shakerian, S., Habibi, A. & Ghanbarzadeh, M. The effect of 12 weeks of concurrent training on hypothalamic-pituitary-gonadal axis hormones and semen fertility indices of sedentary obese men. Med. Sport 74, 269–283 (2021).

    Article  Google Scholar 

  205. Andersen, E. et al. Sperm count is increased by diet-induced weight loss and maintained by exercise or GLP-1 analogue treatment: a randomized controlled trial. Hum. Reprod. 37, 1414–1422 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Humaidan, P. et al. The combined effect of lifestyle intervention and antioxidant therapy on sperm DNA fragmentation and seminal oxidative stress in IVF patients: a pilot study. Int. Braz. J. Urol. 48, 131–156 (2022).

    Article  PubMed  Google Scholar 

  207. Ismail, A., Abdelghany, A. & Atef, H. Response of testosterone and semen parameters to a 14-week aerobic training in sedentary obese men with hyperglycaemia. Physiother. Q. 31, 28–33 (2023).

    Article  Google Scholar 

  208. Sharma, A. et al. Improvements in sperm motility following low- or high-intensity dietary interventions in men with obesity. J. Clin. Endocrinol. Metab. 109, 449–460 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.E.L., A.P. and N.O.M. researched data for the article. H.E.L., A.P., V.N. and N.O.M. contributed substantially to discussion of the content. H.E.L., A.P., M.G., J.D., V.N. and N.M.P. wrote the article. H.E.L., A.P., M.G., O.O. and N.M.P. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Hannah E. Lyons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Ralf Henkel, Sandro Esteves and Luca Boeri for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyons, H.E., Peel, A., Gonzalez, M. et al. Unlocking the power of semen analysis in primary health care — a path to men’s health and lifestyle transformation. Nat Rev Urol 22, 687–702 (2025). https://doi.org/10.1038/s41585-025-01047-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41585-025-01047-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing