Abstract
Male fertility is complex and influenced by genetic, hormonal, environmental and lifestyle factors. However, limitations to human studies necessitate the use of reliable preclinical models to better understand the underlying mechanisms of male fertility. Rhesus macaques (Macaca mulatta), with their close genetic and physiological similarities to humans, offer an invaluable model for male reproductive health studies. The suitability of rhesus macaques for studying male infertility is based on similarities in spermatogenesis, hormonal cycles and the way in which assisted reproductive technologies can be applied, and key differences and similarities between human and rhesus macaque sperm structure, function and cryopreservation techniques highlight the translational potential of findings derived from macaque models. Furthermore, insights into the epigenetic and proteomic characteristics of sperm in both species improve understanding of how these findings can help to advance clinical diagnostics, male contraception and fertility preservation and illuminate the regulatory omics of normal reproduction. Thus, the rhesus macaque model offers critical insights into male fertility and studies in this species could contribute to advances in therapies for male infertility.
Key points
-
Rhesus macaques share considerable genetic and physiological parallels with humans, including 97% conserved gene-coding regions, making them a robust model for studying male reproductive health.
-
The hypothalamus–pituitary–gonadal axis in rhesus macaques closely resembles that of humans, enabling detailed studies of hormonal regulation of reproduction.
-
The macaque model supports research into assisted reproductive and emerging technologies, helping to refine techniques for human reproductive support.
-
Non-human primates are indispensable models for refining assisted reproductive technologies and developing male contraceptives, offering direct translational value for human health.
-
Non-human primate models present inherent limitations, including species-specific biological divergences, ethical and welfare considerations, and financial and temporal demands.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
World Health Organization. Infertility prevalence estimates: 1990–2021 Report No. 9240068317 (WHO, 2023).
Eisenberg, M. L. et al. Male infertility. Nat. Rev. Dis. Primers 9, 49 (2023).
Cox, C. M. et al. Infertility prevalence and the methods of estimation from 1990 to 2021: a systematic review and meta-analysis. Hum. Reprod. Open. 2022, hoac051 (2022).
Abebe, M. S., Afework, M. & Abaynew, Y. Primary and secondary infertility in Africa: systematic review with meta-analysis. Fertil. Res. Pract. 6, 20 (2020).
Hewitson, L. & Schatten, G. The use of primates as models for assisted reproduction. Reprod. Biomed. Online 5, 50–55 (2002).
Aponte, P. M., Gutierrez-Reinoso, M. A. & Garcia-Herreros, M. Bridging the gap: animal models in next-generation reproductive technologies for male fertility preservation. Life 14, 17 (2024).
Giacomotto, J. & Ségalat, L. High-throughput screening and small animal models, where are we? Br. J. Pharmacol. 160, 204–216 (2010).
Alegria, A. D. et al. High-throughput genetic manipulation of multicellular organisms using a machine-vision guided embryonic microinjection robot. Genetics 226, iyae025 (2024).
Schlegel, P. N. Human spermatogenesis: insights from the clinical care of men with infertility. Front. Endocrinol. 13, 889959 (2022).
Phillips, K. A. et al. Why primate models matter. Am. J. Primatol. 76, 801–827 (2014).
Wolf, D. P., Stouffer, R. L. & Brenner, R. M. In Vitro Fertilization and Embryo Transfer in Primates (Springer, 1993).
Chellman, G. J. et al. Developmental and reproductive toxicology studies in nonhuman primates. Birth Defects Res. B Dev. Reprod. Toxicol. 86, 446–462 (2009).
Gibbs, R. A. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234 (2007).
Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917–920 (1998).
Wang, J. et al. Genetic diversity of 1,845 rhesus macaques improves genetic variation interpretation and identifies disease models. Nat. Commun. 15, 5658 (2024).
Wolfe-Coote, S. The Laboratory Primate (Elsevier, 2005).
Wei, Y.-L., She, Z.-Y., Huang, T., Zhang, H.-T. & Wang, X.-R. Male reproductive systems of Macaca mulatta: Gonadal development, spermatogenesis and applications in spermatogonia stem cell transplantation. Res. Vet. Sci. 137, 127–137 (2021).
Wang, X. et al. In utero MRI identifies consequences of early-gestation alcohol drinking on fetal brain development in rhesus macaques. Proc. Natl Acad. Sci. 117, 10035–10044 (2020).
Guo, G. et al. Peripheral infusion of human umbilical cord mesenchymal stem cells rescues acute liver failure lethality in monkeys. Stem Cell Res. Ther. 10, 1–13 (2019).
Van Doremalen, N. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 586, 578–582 (2020).
Talbot, C. F. et al. A psychometrically robust screening tool to rapidly identify socially impaired monkeys in the general population. Autism Res. 13, 1465–1475 (2020).
Stouffer, R. L. & Woodruff, T. K. Nonhuman primates: a vital model for basic and applied research on female reproduction, prenatal development, and women’s health. ILAR J. 58, 281–294 (2017).
Hedges, J. C. et al. Chronic exposure to delta-9-tetrahydrocannabinol impacts testicular volume and male reproductive health in rhesus macaques. Fertil. Steril. 117, 698–707 (2022).
Ford, M. M. et al. GDNF gene therapy for alcohol use disorder in male non-human primates. Nat. Med. 29, 2030–2040 (2023).
Hardneck, F., de Villiers, C. & Maree, L. Effect of copper sulphate and cadmium chloride on non-human primate sperm function in vitro. Int. J. Environ. Res. Public Health 18, 6200 (2021).
Bishop, C. V. et al. Individual and combined effects of 5-year exposure to hyperandrogenemia and Western-style diet on metabolism and reproduction in female rhesus macaques. Hum. Reprod. 36, 444–454 (2021).
Sitzmann, B. D. et al. Effects of moderate calorie restriction on testosterone production and semen characteristics in young rhesus macaques (Macaca mulatta). Biol. Reprod. 83, 635–640 (2010).
Ball, E. E. et al. Zika virus persistence in the male macaque reproductive tract. PLoS Negl. Trop. Dis. 16, e0010566 (2022).
Schmidt, J. K. et al. Zika virus in rhesus macaque semen and reproductive tract tissues: a pilot study of acute infection†. Biol. Reprod. 103, 1030–1042 (2020).
Liang, M. et al. SARS-CoV-2 infection induces testicular injury in Rhesus macaque. Virol. Sin. 37, 934–937 (2022).
Ramsey, C. & Hanna, C. in Comparative Embryo Culture: Methods and Protocols (ed J. R. Herrick) 341–353 (Springer, 2019).
Chan, A. W., Chong, K. Y., Martinovich, C., Simerly, C. & Schatten, G. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 291, 309–312 (2001).
Kang, Y., Chu, C., Wang, F. & Niu, Y. CRISPR/Cas9-mediated genome editing in nonhuman primates. Dis. Model. Mech. 12, dmm039982 (2019).
Fayomi, A. P. et al. Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. Science 363, 1314–1319 (2019).
Silber, S. in Fundamentals of Male Infertility 19–21 (Springer International Publishing, 2018).
Tijani, K. H., Oyende, B. O., Awosanya, G. O., Ojewola, R. W. & Yusuf, A. O. Assessment of testicular volume: a comparison of fertile and sub-fertile West African men. Afr. J. Urol. 20, 136–140 (2014).
Plant, T. M., Ramaswamy, S., Simorangkir, D. & Marshall, G. R. Postnatal and pubertal development of the rhesus monkey (Macaca mulatta) testis. Ann. NY Acad. Sci. 1061, 149–162 (2005).
Hedges, J. C. et al. Cessation of chronic delta-9-tetrahydrocannabinol use partially reverses impacts on male fertility and the sperm epigenome in rhesus macaques. Fertil. Steril. 120, 163–174 (2023).
Bercovitch, F. B. & Rodriguez, J. F. Testis size, epididymis weight, and sperm competition in rhesus macaques. Am. J. Primatol. 30, 163–168 (1993).
Schmidt, J. K. et al. Comparative computer-assisted sperm analysis in non-human primates. J. Med. Primatol. 50, 108–119 (2021).
Patel, D. P. et al. Seasonal variation in semen quality is not associated with fecundity in the Utah population database. Andrologia 54, e14515 (2022).
Malathi, A., Iyer, R. P., Mohan, R. & Balakrishnan, S. Impact of seasonal variations on semen parameters: a retrospective analysis of data from subjects attending a tertiary care fertility centre. J. Hum. Reprod. Sci. 16, 114–120 (2023).
Chen, Z. et al. Seasonal variation and age-related changes in human semen parameters. J. Androl. 24, 226–231 (2003).
Harcourt, A. H., Purvis, A. & Liles, L. Sperm competition: mating system, not breeding season, affects testes size of primates. Funct. Ecol. 9, 468–476 (1995).
Amor, H. et al. in Male Reproductive Anatomy (ed W. Wei) 3 (IntechOpen, 2021).
Haruyama, E. et al. Testicular development in cynomolgus monkeys. Toxicol. Pathol. 40, 935–942 (2012).
Kerr, J. B. & De Kretser, D. in Endocrinology 6th edn (eds J. L. Jameson & L. J. De Groot) 2440–2468 (Saunders, 2010).
Petersen, P. M., Seierøe, K. & Pakkenberg, B. The total number of Leydig and Sertoli cells in the testes of men across various age groups — a stereological study. J. Anat. 226, 175–179 (2015).
Amann, R. P. Considerations in evaluating human spermatogenesis on the basis of total sperm per ejaculate. J. Androl. 30, 626–641 (2009).
Verhagen, I., Ramaswamy, S., Teerds, K. J., Keijer, J. & Plant, T. M. Time course and role of luteinizing hormone and follicle-stimulating hormone in the expansion of the Leydig cell population at the time of puberty in the rhesus monkey (Macaca mulatta). Andrology 2, 924–930 (2014).
Simorangkir, D. R., Ramaswamy, S., Marshall, G. R., Roslund, R. & Plant, T. M. Sertoli cell differentiation in rhesus monkey (Macaca mulatta) is an early event in puberty and precedes attainment of the adult complement of undifferentiated spermatogonia. Reproduction 143, 513–522 (2012).
Voigt, A. L., de Lima, E. M. L. N. & Dobrinski, I. Comparing the adult and pre-pubertal testis: metabolic transitions and the change in the spermatogonial stem cell metabolic microenvironment. Andrology 11, 1132–1146 (2023).
Meroni, S. B. et al. Molecular mechanisms and signaling pathways involved in Sertoli cell proliferation. Front. Endocrinol. 10, 224 (2019).
Arregui, L. & Dobrinski, I. Xenografting of testicular tissue pieces: 12 years of an in vivo spermatogenesis system. Reproduction 148, R71–R84 (2014).
Plant, T. M. & Marshall, G. R. The functional significance of FSH in spermatogenesis and the control of its secretion in male primates. Endocr. Rev. 22, 764–786 (2001).
Sharpe, R., McKinnell, C., Kivlin, C. & Fisher, J. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769–784 (2003).
Aris, I. M. et al. Analysis of early-life growth and age at pubertal onset in us children. JAMA Netw. Open. 5, e2146873–e2146873 (2022).
Vijayakumar, N. et al. A longitudinal analysis of puberty-related cortical development. Neuroimage 228, 117684 (2021).
Teerds, K. J. & Huhtaniemi, I. T. Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum. Reprod. Update 21, 310–328 (2015).
James, E. R. et al. The role of the epididymis and the contribution of epididymosomes to mammalian reproduction. Int. J. Mol. Sci. 21, 5377 (2020).
Graham, S. D., Keane, T. E. & Glenn, J. F. Glenn’s Urologic Surgery (Wolters Kluwer Health/Lippincott Williams & Wilkins, 2010).
Jit, I. & Sanjeev Weight of the testes in Northwest Indian adults. Am. J. Hum. Biol. 3, 671–676 (1991).
Prasad, M. R. N. & Rajalakshmi, M. Comparative physiology of the mammalian epididymis. Gen. Comp. Endocrinol. 28, 530–537 (1976).
O’Donnell, L., Stanton, P. & de Kretser, D. M. Endocrinology of the Male Reproductive System and Spermatogenesis. Endotext [Internet] https://www.ncbi.nlm.nih.gov/books/NBK279031/ (updated 11 January 2017).
Barber, A. et al. Acute Effects of Psilocybin on Anxiety-Related Behaviors in Non-human Primates (University of Wisconsin-Madison, 2024).
Namwanje, M. & Brown, C. W. Activins and inhibins: roles in development, physiology, and disease. Cold Spring Harb. Perspect. Biol. 8, a021881 (2016).
Wickings, E. & Nieschlag, E. Proceedings: endocrine testicular function in adult and sub-adult rhesus monkeys, Macaca mulatta. J. Endocrinol. 69, 24P–24P (1976).
Brenner, R. M. & Slayden, O. D. Molecular and functional aspects of menstruation in the macaque. Rev. Endocr. Metab. Disord. 13, 309–318 (2012).
Moore, A. M., Novak, A. G. & Lehman, M. N. KNDy neurons of the hypothalamus and their role in GnRH pulse generation: an update. Endocrinology 165, bqad194 (2024).
Lehman, M. N., He, W., Coolen, L. M., Levine, J. E. & Goodman, R. L. Does the KNDy model for the control of gonadotropin-releasing hormone pulses apply to monkeys and humans? Semin. Reprod. Med. 37, 071–083 (2019).
Terasawa, E. & Garcia, J. P. Neuroendocrine mechanisms of puberty in non–human primates. Curr. Opin. Endocr. Metab. Res. 14, 145–151 (2020).
Ramaswamy, S., Dwarki, K., Ali, B., Gibbs, R. B. & Plant, T. M. The decline in pulsatile GnRH release, as reflected by circulating LH concentrations, during the infant-juvenile transition in the agonadal male rhesus monkey (Macaca mulatta) is associated with a reduction in kisspeptin content of KNDy neurons of the arcuate nucleus in the hypothalamus. Endocrinology 154, 1845–1853 (2013).
Guimiot, F. et al. Negative fetal FSH/LH regulation in late pregnancy is associated with declined kisspeptin/KISS1R expression in the tuberal hypothalamus. J. Clin. Endocrinol. Metab. 97, E2221–E2229 (2012).
Plant, T. M. Neuroendocrine control of the onset of puberty. Front. Neuroendocrinol. 38, 73–88 (2015).
Rey, R. A., Musse, M., Venara, M. & Chemes, H. E. Ontogeny of the androgen receptor expression in the fetal and postnatal testis: its relevance on Sertoli cell maturation and the onset of adult spermatogenesis. Microsc. Res. Tech. 72, 787–795 (2009).
Rohayem, J., Alexander, E. C., Heger, S., Nordenström, A. & Howard, S. R. Mini-puberty, physiological and disordered: consequences, and potential for therapeutic replacement. Endocr. Rev. 45, 460–492 (2024).
Becker, M. & Hesse, V. Minipuberty: why does it happen? Horm. Res. Paediatr. 93, 76–84 (2020).
Lanciotti, L., Cofini, M., Leonardi, A., Penta, L. & Esposito, S. Up-to-date review about minipuberty and overview on hypothalamic-pituitary-gonadal axis activation in fetal and neonatal life. Front. Endocrinol. 9, 410 (2018).
Busch, A. S. et al. Male minipuberty in human and non-human primates: planting the seeds of future fertility. Reproduction 166, R63–R72 (2023).
Wallen, K., Maestripieri, D. & Mann, D. R. Effects of neonatal testicular suppression with a GnRH antagonist on social behavior in group-living juvenile rhesus monkeys. Horm. Behav. 29, 322–337 (1995).
Nevison, C. M., Brown, G. R. & Dixson, A. F. Effects of altering testosterone in early infancy on social behaviour in captive yearling rhesus monkeys. Physiol. Behav. 62, 1397–1403 (1997).
Dmochowski, R. R., Kavoussi, L. R. & Peters, C. A. Campbell-Walsh-Wein Urology 13th edn (Elsevier, 2025).
Marques, P., Skorupskaite, K., Rozario, K. S., Anderson, R. A. & George, J. T. Physiology of GnRH and Gonadotropin Secretion. Endotext [Internet] (updated 15 October 2024).
Pitteloud, N. et al. Predictors of outcome of long-term GnRH therapy in men with idiopathic hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 87, 4128–4136 (2002).
Suter, K. A potential apulsatile mode of GnRH release in the male rhesus monkey (Macaca mulatta). J. Endocrinol. 163, 235–241 (1999).
Lemaire, J. J. et al. Maps of the adult human hypothalamus. Surg. Neurol. Int. 4, S156–S163 (2013).
Dash, S. et al. Brain volumetrics across the lifespan of the rhesus macaque. Neurobiol. Aging 126, 34–43 (2023).
Roberts, D. E., Killiany, R. J. & Rosene, D. L. Neuron numbers in the hypothalamus of the normal aging rhesus monkey: stability across the adult lifespan and between the sexes. J. Comp. Neurol. 520, 1181–1197 (2012).
Remick, A. K. et al. Histologic and immunohistochemical characterization of spontaneous pituitary adenomas in fourteen cynomolgus macaques (Macaca fascicularis). Vet. Pathol. 43, 484–493 (2006).
Sahni, D., Jit, I., Harjeet, Neelam & Bhansali, A. Weight and dimensions of the pituitary in northwestern Indians. Pituitary 9, 19–26 (2006).
Morley, J. E. et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism 46, 410–413 (1997).
Simorangkir, D. R., Ramaswamy, S., Marshall, G. R. & Plant, T. M. In the adult male rhesus monkey (Macaca mulatta), unilateral orchidectomy in the face of unchanging gonadotropin stimulation results in partial compensation of testosterone secretion by the remaining testis. Endocrinology 145, 5115–5120 (2004).
Andersson, A. M., Petersen, J. H., Jørgensen, N., Jensen, T. K. & Skakkebaek, N. E. Serum inhibin B and follicle-stimulating hormone levels as tools in the evaluation of infertile men: significance of adequate reference values from proven fertile men. J. Clin. Endocrinol. Metab. 89, 2873–2879 (2004).
Benderradji, H. et al. Defining reference ranges for serum anti-Müllerian hormone on a large cohort of normozoospermic adult men highlights new potential physiological functions of AMH on FSH secretion and sperm motility. J. Clin. Endocrinol. Metab. 107, 1878–1887 (2022).
Muller, M. N. Testosterone and reproductive effort in male primates. Horm. Behav. 91, 36–51 (2017).
Sobral, G. et al. Facial and genital color ornamentation, testosterone, and reproductive output in high-ranking male rhesus macaques. Sci. Rep. 14, 2621 (2024).
Gordon, T. P., Rose, R. M. & Bernstein, I. S. Seasonal rhythm in plasma testosterone levels in the rhesus monkey (Macaca mulatta): a three year study. Horm. Behav. 7, 229–243 (1976).
Travison, T. G. et al. Harmonized reference ranges for circulating testosterone levels in men of four cohort studies in the United States and Europe. J. Clin. Endocrinol. Metab. 102, 1161–1173 (2017).
Handelsman, D. J., Hirschberg, A. L. & Bermon, S. Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocr. Rev. 39, 803–829 (2018).
Kanabar, R., Mazur, A., Plum, A. & Schmied, J. Correlates of testosterone change as men age. Aging Male 25, 29–40 (2022).
Sorwell, K. G. & Urbanski, H. F. Causes and consequences of age-related steroid hormone changes: insights gained from nonhuman primates. J. Neuroendocrinol. 25, 1062–1069 (2013).
Schulster, M., Bernie, A. M. & Ramasamy, R. The role of estradiol in male reproductive function. Asian J. Androl. 18, 435–440 (2016).
Yamamoto, M., Hibi, H., Katsuno, S. & Miyake, K. Serum estradiol levels in normal men and men with idiopathic infertility. Int. J. Urol. 2, 44–46 (1995).
Gill-Sharma, M. K. Prolactin and male fertility: the long and short feedback regulation. Int. J. Endocrinol. 2009, 687259 (2009).
Papazoglou, A. S. et al. Serum prolactin levels and mortality in adults without prolactinoma: a meta-analysis. J. Clin. Endocrinol. Metab. 109, e1652–e1664 (2024).
Buvat, J. Hyperprolactinemia and sexual function in men: a short review. Int. J. Impot. Res. 15, 373–377 (2003).
Sanford, L. M. & Baker, S. J. Prolactin regulation of testosterone secretion and testes growth in DLS rams at the onset of seasonal testicular recrudescence. Reproduction 139, 197–207 (2010).
Sodi, R., Fikri, R., Diver, M., Ranganath, L. & Vora, J. Testosterone replacement-induced hyperprolactinaemia: case report and review of the literature. Ann. Clin. Biochem. 42, 153–159 (2005).
Meachem, S. J., Nieschlag, E. & Simoni, M. Inhibin B in male reproduction: pathophysiology and clinical relevance. Eur. J. Endocrinol. 145, 561–571 (2001).
Klingmüller, D. & Haidl, G. Inhibin B in men with normal and disturbed spermatogenesis. Hum. Reprod. 12, 2376–2378 (1997).
Jin, J.-M. & Yang, W.-X. Molecular regulation of hypothalamus–pituitary–gonads axis in males. Gene 551, 15–25 (2014).
Wistuba, J. et al. Experimental endocrine manipulation by contraceptive regimen in the male marmoset (Callithrix jacchus). Reproduction 145, 439–451 (2013).
Clermont, Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. 52, 198–236 (1972).
Sharpe, R. M. in The Physiology of Reproduction 2nd edn, Vol. 1 (eds Knobil, E. & Neill, J. D.) 1364–1434 (Raven Press, 1994).
Plant, T. M. Undifferentiated primate spermatogonia and their endocrine control. Trends Endocrinol. Metab. 21, 488–495 (2010).
Bi, R. et al. Epigenetic characterization of adult rhesus monkey spermatogonial stem cells identifies key regulators of stem cell homeostasis. Nucleic Acids Res. 52, 13644–13664 (2024).
Fayomi, A. P. & Orwig, K. E. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res. 29, 207–214 (2018).
Cho, I. K. & Easley, C. A. Recent developments in in vitro spermatogenesis and future directions. Reprod. Med. 4, 215–232 (2023).
Cornwall, G. A. New insights into epididymal biology and function. Hum. Reprod. Update 15, 213–227 (2009).
Barr, A. B. Timing of spermatogenesis in four nonhuman primate species. Fertil. Steril. 24, 381–389 (1973).
De Rooij, D., Van Alphen, M. & Van de Kant, H. Duration of the cycle of the seminiferous epithelium and its stages in the rhesus monkey (Macaca mulatta). Biol. Reprod. 35, 587–591 (1986).
Hermann, B. P. et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 11, 715–726 (2012).
Ramm, S. A. & Stockley, P. Sperm competition and sperm length influence the rate of mammalian spermatogenesis. Biol. Lett. 6, 219–221 (2010).
Torgerson, D. G., Kulathinal, R. J. & Singh, R. S. Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes. Mol. Biol. Evol. 19, 1973–1980 (2002).
Shami, A. N. et al. Single-cell RNA sequencing of human, macaque, and mouse testes uncovers conserved and divergent features of mammalian spermatogenesis. Dev. Cell 54, 529–547.e512 (2020).
Singh, A. & Hermann, B. P. Conserved transcriptome features define prepubertal primate spermatogonial stem cells as Adark spermatogonia and identify unique regulators. Int. J. Mol. Sci. 24, 4755 (2023).
Bush, S. J. et al. Adult human, but not rodent, spermatogonial stem cells retain states with a foetal-like signature. Cell 13, 742 (2024).
Muciaccia, B. et al. Novel stage classification of human spermatogenesis based on acrosome development. Biol. Reprod. 89, 60 (2013).
Turner, J. M. Meiotic sex chromosome inactivation. Development 134, 1823–1831 (2007).
Murat, F. et al. The molecular evolution of spermatogenesis across mammals. Nature 613, 308–316 (2023).
Beck, R. T., Lubach, G. R. & Coe, C. L. Feasibility of successfully breeding rhesus macaques (Macaca mulatta) to obtain healthy infants year-round. Am. J. Primatol. 82, e23085 (2020).
de Villiers, C. A comparison between the semen and sperm parameters from the captive-bred Vervet monkey (Chlorocebus aethiops) and Rhesus monkey (Macaca mulatta). J. Med. Primatol. 47, 211–216 (2018).
Tardif, S., Carville, A., Elmore, D., Williams, L. E. & Rice, K. in Nonhuma Primates in Biomedical Research 2nd edn, Vol. 1 (eds Abee, C. R. et al.) 197–249 (Academic Press, Elsevier, 2012).
Simorangkir, D., Marshall, G. & Plant, T. A re-examination of proliferation and differentiation of type A spermatogonia in the adult rhesus monkey (Macaca mulatta). Hum. Reprod. 24, 1596–1604 (2009).
Wang X., Zhou J. & Fan, C. Seasonal variation of reproductive functions in male rhesus monkey. Chin. J. Vet. Sci. 4, 375–377 (2002).
Gupta, G., Maikhuri, J., Setty, B. & Dhar, J. Seasonal variations in daily sperm production rate of rhesus and bonnet monkeys. J. Med. Primatol. 29, 411–414 (2000).
Fordney Settlage, D. S. & Hendrickx, A. G. Observations on coagulum characteristics of the rhesus monkey electroejaculate. Biol. Reprod. 11, 619–623 (1974).
Chan, A. W. et al. Foreign DNA transmission by ICSI: injection of spermatozoa bound with exogenous DNA results in embryonic GFP expression and live rhesus monkey births. Mol. Hum. Reprod. 6, 26–33 (2000).
Houser, L. A. et al. Improved training and semen collection outcomes using the closed box chair for macaques. Animals 11, 2384 (2021).
Leão, D. et al. Efficacious long-term cooling and freezing of Sapajus apella semen in ACP-118®. Anim. Reprod. Sci. 159, 118–123 (2015).
Lima, J. S. et al. Seminal coagulation and sperm quality in different social contexts in captive tufted capuchin monkeys (Sapajus apella). Am. J. Primatol. 79, e22643 (2017).
Oliveira, K. G. et al. Cooling and freezing of sperm from captive, free-living and endangered squirrel monkey species. Cryobiology 72, 283–289 (2016).
Almeida, D. et al. The effects of Trolox on the quality of sperm from captive squirrel monkey during liquefaction in the extender ACP-118™. Zygote 26, 333–335 (2018).
Li, Y. H., Cai, K. J., Kovacs, A. & Ji, W. Z. Effects of various extenders and permeating cryoprotectants on cryopreservation of cynomolgus monkey (Macaca fascicularis) spermatozoa. J. Androl. 26, 387–395 (2005).
Arakaki, P. R., de Carvalho, F. M., de Castro, P. H. G. & Muniz, J. A. P. C. Collection, evaluation, and coagulum dissolution of semen from Goeldi’s monkey, Callimico goeldii. Folia Primatol. 88, 334–343 (2017).
World Health Organization. WHO laboratory manual for the examination and processing of human semen 6th edn (WHO, 2021).
Baskaran, S., Finelli, R., Agarwal, A. & Henkel, R. Diagnostic value of routine semen analysis in clinical andrology. Andrologia 53, e13614 (2021).
Tomlinson, M. J. & Naeem, A. CASA in the medical laboratory: CASA in diagnostic andrology and assisted conception. Reprod., Fertil. Dev. 30, 850–859 (2018).
Amann, R. P. Can the fertility potential of a seminal sample be predicted accurately? J. Androl. 10, 89–98 (1989).
Sikka, S. C. & Hellstrom, W. J. Current updates on laboratory techniques for the diagnosis of male reproductive failure. Asian J. Androl. 18, 392–401 (2016).
Aghazarian, A., Huf, W., Pflüger, H. & Klatte, T. Standard semen parameters vs. sperm kinematics to predict sperm DNA damage. World J. Mens Health 39, 116–122 (2021).
Gu, N.-H., Zhao, W.-L., Wang, G.-S. & Sun, F. Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reprod. Biol. Endocrinol. 17, 66 (2019).
Mossman, J. A., Pearson, J. T., Moore, H. D. & Pacey, A. A. Variation in mean human sperm length is linked with semen characteristics. Hum. Reprod. 28, 22–32 (2013).
Firman, R. & Simmons, L. Sperm competition and the evolution of the sperm hook in house mice. J. Evolut. Biol. 22, 2505–2511 (2009).
Zhou, T. et al. Comparative analysis of macaque and human sperm proteomes: insights into sperm competition. Proteomics 15, 1564–1573 (2015).
Zamboni, L., Zemjanis, R. & Stefanini, M. The fine structure of monkey and human spermatozoa. Anat. Rec. 169, 129–153 (1971).
Martin, D. E., Gould, K. G. & Warner, H. Comparative morphology of primate spermatozoa using scanning electron microscopy. I. Families Hominidae, Pongidae, Cercopithecidae and Cebidae. J. Hum. Evol. 4, 287–292 (1975).
Lüke, L., Vicens, A., Tourmente, M. & Roldan, E. R. S. Evolution of protamine genes and changes in sperm head phenotype in rodents. Biol. Reprod. 90, 67 (2014).
Lüke, L., Tourmente, M., Dopazo, H., Serra, F. & Roldan, E. R. Selective constraints on protamine 2 in primates and rodents. BMC Evol. Biol. 16, 21 (2016).
Cooper, T. G. Cytoplasmic droplets: the good, the bad or just confusing? Hum. Reprod. 20, 9–11 (2005).
Avidor-Reiss, T., Mazur, M., Fishman, E. L. & Sindhwani, P. The role of sperm centrioles in human reproduction — the known and the unknown. Front. Cell Dev. Biol. 7, 188 (2019).
Nanassy, L. & Carrell, D. T. Paternal effects on early embryogenesis. J. Exp. Clin. Assist. Reprod. 5, 2 (2008).
Moretti, E., Pascarelli, N. A., Belmonte, G., Renieri, T. & Collodel, G. Sperm with fibrous sheath dysplasia and anomalies in head–neck junction: focus on centriole and centrin 1. Andrologia 49, e12701 (2017).
Sha, Y.-W. et al. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene 633, 48–53 (2017).
Manandhar, G., Simerly, C., Salisbury, J. & Schatten, G. Centriole and centrin degeneration during mouse spermiogenesis. Cell Motil. Cytoskelet. 43, 137–144 (1999).
Manandhar, G., Sutovsky, P., Joshi, H., Stearns, T. & Schatten, G. Centrosome reduction during mouse spermiogenesis. Dev. Biol. 203, 424–434 (1998).
Khanal, S. et al. The evolution of centriole degradation in mouse sperm. Nat. Commun. 15, 117 (2024).
Manandhar, G., Simerly, C. & Schatten, G. Highly degenerated distal centrioles in rhesus and human spermatozoa. Hum. Reprod. 15, 256–263 (2000).
Sironen, A., Shoemark, A., Patel, M., Loebinger, M. R. & Mitchison, H. M. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell. Mol. Life Sci. 77, 2029–2048 (2020).
Gervasi, M. G. et al. The actin cytoskeleton of the mouse sperm flagellum is organized in a helical structure. J. Cell Sci. 131, jcs215897 (2018).
Anderson, M. J. & Dixson, A. F. Motility and the midpiece in primates. Nature 416, 496–496 (2002).
Ruiz-Pesini, E. et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin. Chem. 44, 1616–1620 (1998).
Cummins, J. & Woodall, P. On mammalian sperm dimensions. Reproduction 75, 153–175 (1985).
Burch, F. C. et al. Establishing the normal range of sperm DNA fragmentation index (% DFI) for rhesus macaques. Sci. Rep. 13, 20016 (2023).
Evenson, D. P. in Sperm Chromatin 125–149 (Springer, 2011).
Li, F., Duan, X., Li, M. & Ma, X. Sperm DNA fragmentation index affect pregnancy outcomes and offspring safety in assisted reproductive technology. Sci. Rep. 14, 356 (2024).
Ryu, D.-Y. et al. Peroxiredoxin activity is a major landmark of male fertility. Sci. Rep. 7, 17174 (2017).
Perrin, A. et al. Molecular cytogenetic and genetic aspects of globozoospermia: a review. Andrologia 45, 1–9 (2013).
Zheng, W.-W. et al. Sperm DNA damage has a negative effect on early embryonic development following in vitro fertilization. Asian J. Androl. 20, 75–79 (2018).
Dai, X. et al. Sperm enrichment from poor semen samples by double density gradient centrifugation in combination with swim-up for IVF cycles. Sci. Rep. 10, 2286 (2020).
Evenson, D. P. Sperm chromatin structure assay (SCSA®) for fertility assessment. Curr. Protoc. 2, e508 (2022).
Zhang, F. et al. Sperm DNA fragmentation and male fertility: a retrospective study of 5114 men attending a reproductive center. J. Assist. Reprod. Genet. 38, 1133–1141 (2021).
Lu, J.-C. et al. Analysis of human sperm DNA fragmentation index (DFI) related factors: a report of 1010 subfertile men in China. Reprod. Biol. Endocrinol. 16, 1–9 (2018).
Amaral, A. et al. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol. Cell. Proteom. 12, 330–342 (2013).
de Mateo, S., Castillo, J., Estanyol, J. M., Ballescà, J. L. & Oliva, R. Proteomic characterization of the human sperm nucleus. Proteomics 11, 2714–2726 (2011).
Greither, T., Dejung, M., Behre, H. M., Butter, F. & Herlyn, H. The human sperm proteome — toward a panel for male fertility testing. Andrology 11, 1418–1436 (2023).
Becker, L. S. et al. Proteomic landscape of human sperm in patients with different spermatogenic impairments. Cells 12, 1017 (2023).
Agarwal, A., Panner Selvam, M. K. & Baskaran, S. Proteomic analyses of human sperm cells: understanding the role of proteins and molecular pathways affecting male reproductive health. Int. J. Mol. Sci. 21, 1621 (2020).
Dorus, S., Wasbrough, E. R., Busby, J., Wilkin, E. C. & Karr, T. L. Sperm proteomics reveals intensified selection on mouse sperm membrane and acrosome genes. Mol. Biol. Evol. 27, 1235–1246 (2010).
Skerget, S. et al. The Rhesus macaque (Macaca mulatta) sperm proteome. Mol. Cell Proteom. 12, 3052–3067 (2013).
Claw, K. G., George, R. D., MacCoss, M. J. & Swanson, W. J. Quantitative evolutionary proteomics of seminal fluid from primates with different mating systems. BMC Genom. 19, 488 (2018).
Stuppia, L., Franzago, M., Ballerini, P., Gatta, V. & Antonucci, I. Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin. Epigenetics 7, 120 (2015).
Siebert-Kuss, L. M. et al. Genome-wide DNA methylation changes in human spermatogenesis. Am. J. Hum. Genet. 111, 1125–1139 (2024).
Greeson, K. W., Crow, K. M. S., Edenfield, R. C. & Easley, C. A. Inheritance of paternal lifestyles and exposures through sperm DNA methylation. Nat. Rev. Urol. 20, 356–370 (2023).
Bash, J. C. et al. Delta-9-tetrahydrocannabinol exposure alters sperm DNA methylation in rhesus macaques. Fertil. Steril. 120, e131–e132 (2023).
Lu, Z. et al. Cynomolgus-rhesus hybrid macaques serve as a platform for imprinting studies. Innovation 4, 100436 (2023).
Liao, C., Walters, B. W., DiStasio, M. & Lesch, B. J. Human-specific epigenomic states in spermatogenesis. Comput. Struct. Biotechnol. J. 23, 577–588 (2024).
Balli, M. et al. Opportunities and limits of conventional IVF versus ICSI: it is time to come off the fence. J. Clin. Med. 11, 5722 (2022).
Haddad, M. et al. Thoughts on the popularity of ICSI. J. Assist. Reprod. Genet. 38, 101–123 (2021).
Nusser, K. et al. Developmental competence of oocytes after ICSI in the rhesus monkey. Hum. Reprod. 16, 130–137 (2001).
Pereira, N., O’Neill, C., Lu, V., Rosenwaks, Z. & Palermo, G. D. The safety of intracytoplasmic sperm injection and long-term outcomes. Reproduction 154, F61–F70 (2017).
Hart, R. J. & Wijs, L. A. The longer-term effects of IVF on offspring from childhood to adolescence. Front. Reprod. Health 4, 1045762 (2022).
Hewitson, L., Martinovich, C., Simerly, C., Takahashi, D. & Schatten, G. Rhesus offspring produced by intracytoplasmic injection of testicular sperm and elongated spermatids. Fertil. Steril. 77, 794–801 (2002).
Palermo, G. D. & Nagy, Z. P. Manual of Intracytoplasmic Sperm Injection in Human Assisted Reproduction: With Other Advanced Micromanipulation Techniques to Edit the Genetic and Cytoplasmic Content of the Oocyte (Cambridge Univ. Press, 2021).
Simerly, C. R. et al. Fertilization and cleavage axes differ in primates conceived by conventional (IVF) versus intracytoplasmic sperm injection (ICSI). Sci. Rep. 9, 15282 (2019).
Moretti, A., Kupatt, C. & Wolf, E. Cellular pathophysiology of Duchenne muscular dystrophy: insights from a novel rhesus macaque model. Signal. Transduct. Target. Ther. 9, 357 (2024).
Schmidt, J. K. et al. Atypical initial cleavage patterns minimally impact rhesus macaque in vitro embryo morphokinetics and embryo outgrowth development. Biol. Reprod. 109, 812–820 (2023).
Klooster, K. L., Burruel, V. R. & Meyers, S. A. Loss of fertilization potential of desiccated rhesus macaque spermatozoa following prolonged storage. Cryobiology 62, 161–166 (2011).
Yang, S. et al. Optimization of ethylene glycol concentrations, freezing rates and holding times in liquid nitrogen vapor for cryopreservation of rhesus macaque (Macaca mulatta) sperm. J. Vet. Med. Sci. 73, 717–723 (2011).
Nichols, S. & Bavister, B. Comparison of protocols for cryopreservation of rhesus monkey spermatozoa by post-thaw motility recovery and hyperactivation. Reprod. Fertil. Dev. 18, 777–780 (2006).
Si, W. et al. Directional freezing as an alternative method for cryopreserving rhesus macaque (Macaca mulatta) sperm. Theriogenology 74, 1431–1438 (2010).
Alapati, R., Goff, K., Kubisch, H. M. & Devireddy, R. V. Water transport in epididymal and ejaculated rhesus monkey (Macaca mulatta) sperm during freezing. Cryobiology 57, 182–185 (2008).
Moran, S. P., Chi, T., Prucha, M. S., Agca, Y. & Chan, A. W. Cryotolerance of sperm from transgenic rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 55, 520–524 (2016).
de Carvalho, F. M. et al. Cryopreservation and preparation of thawed spermatozoa from rhesus macaques (Macaca mulatta) for in vitro fertilization. J. Am. Assoc. Lab. Anim. Sci. 60, 396–406 (2021).
Sultan, I., Alfaar, A. S., Sultan, Y., Salman, Z. & Qaddoumi, I. Trends in childhood cancer: Incidence and survival analysis over 45 years of SEER data. PLoS ONE 20, e0314592 (2025).
Ehmcke, J., Gassei, K., Westernströer, B. & Schlatt, S. Immature rhesus monkey (Macaca mulatta) testis xenografts show increased growth, but not enhanced seminiferous differentiation, under human chorionic gonadotropin treatment of nude mouse recipients. Int. J. Androl. 34, e459–e467 (2011).
Tseng, H., Liu, Y.-L., Lu, B.-J. & Chen, C.-H. Immature testicular tissue engineered from weaned mice to adults for prepubertal fertility preservation — an in vivo translational study. Int. J. Mol. Sci. 23, 2042 (2022).
Povlsen, C. O., Skakkebaek, N. E., Rygaard, J. & Jensen, G. Heterotransplantation of human foetal organs to the mouse mutant nude. Nature 248, 247–249 (1974).
Skakkebaek, N., Jensen, G., Povlsen, C. & Rygaard, J. Heterotransplantation of human foetal testicular and ovarian tissue to the mouse mutant nude: a preliminary study. Acta Obstet. Gynecol. Scand. 53, 73–75 (1974).
Honaramooz, A., Li, M.-W., Penedo, M. C. T., Meyers, S. & Dobrinski, I. Accelerated maturation of primate testis by xenografting into mice1. Biol. Reprod. 70, 1500–1503 (2004).
Honaramooz, A. et al. Sperm from neonatal mammalian testes grafted in mice. Nature 418, 778–781 (2002).
Rathi, R. et al. Maturation of testicular tissue from infant monkeys after xenografting into mice. Endocrinology 149, 5288–5296 (2008).
Jahnukainen, K., Ehmcke, J., Nurmio, M. & Schlatt, S. Autologous ectopic grafting of cryopreserved testicular tissue preserves the fertility of prepubescent monkeys that receive sterilizing cytotoxic therapy. Cancer Res. 72, 5174–5178 (2012).
Shetty, G. et al. Donor spermatogenesis in de novo formed seminiferous tubules from transplanted testicular cells in rhesus monkey testis. Hum. Reprod. 33, 2249–2255 (2018).
Sung, Z.-Y. et al. Advancements in fertility preservation strategies for pediatric male cancer patients: a review of cryopreservation and transplantation of immature testicular tissue. Reprod. Biol. Endocrinol. 22, 47 (2024).
Yuan, H. et al. Primary culture of germ cells that portray stem cell characteristics and recipient preparation for autologous transplantation in the rhesus monkey. J. Cell. Mol. Med. 26, 1567–1578 (2022).
Hermann, B. P. et al. Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cell 25, 2330–2338 (2007).
Khampang, S. et al. Blastocyst development after fertilization with in vitro spermatids derived from nonhuman primate embryonic stem cells. F. S. Sci. 2, 365–375 (2021).
Ryu, J. et al. CRISPR/Cas9 editing of the MYO7A gene in rhesus macaque embryos to generate a primate model of Usher syndrome type 1B. Sci. Rep. 12, 10036 (2022).
Ryu, J. et al. Generation of rhesus macaque embryos with expanded CAG trinucleotide repeats in the huntingtin gene. Cells 13, 829 (2024).
Midic, U. et al. Quantitative assessment of timing, efficiency, specificity and genetic mosaicism of CRISPR/Cas9-mediated gene editing of hemoglobin beta gene in rhesus monkey embryos. Hum. Mol. Genet. 26, 2678–2689 (2017).
VandeVoort, C. A. & Tollner, T. L. The efficacy of ultrasound treatment as a reversible male contraceptive in the rhesus monkey. Reprod. Biol. Endocrinol. 10, 81 (2012).
O’Rand, M. G., Hamil, K. G., Adevai, T. & Zelinski, M. Inhibition of sperm motility in male macaques with EP055, a potential non-hormonal male contraceptive. PLoS ONE 13, e0195953 (2018).
Colagross-Schouten, A., Lemoy, M.-J., Keesler, R. I., Lissner, E. & VandeVoort, C. A. The contraceptive efficacy of intravas injection of Vasalgel™ for adult male rhesus monkeys. Basic. Clin. Androl. 27, 4 (2017).
Lobl, T. J. et al. Contraceptive efficacy of testosterone-estradiol implants in male rhesus monkeys. Contraception 27, 383–389 (1983).
Bunin, D. I. et al. Evaluation of dimethandrolone undecanoate in non-human primates as a candidate for long-acting injectable male contraceptive. Andrology https://doi.org/10.1111/andr.13819 (2024).
Sciorio, R., Tramontano, L., Adel, M. & Fleming, S. Decrease in sperm parameters in the 21st century: obesity, lifestyle, or environmental factors? An updated narrative review. J. Pers. Med. 14, 198 (2024).
Cappon, G. D. et al. Sensitivity of male reproductive endpoints in nonhuman primate toxicity studies: a statistical power analysis. Reprod. Toxicol. 41, 67–72 (2013).
Buse, E., Habermann, G., Osterburg, I., Korte, R. & Weinbauer, G. F. Reproductive/developmental toxicity and immunotoxicity assessment in the nonhuman primate model. Toxicology 185, 221–227 (2003).
Finelli, R., Mottola, F. & Agarwal, A. Impact of alcohol consumption on male fertility potential: a narrative review. Int. J. Environ. Res. Public Health 19, 328 (2021).
Kahler-Quesada, A. M. et al. Voluntary chronic heavy alcohol consumption in male rhesus macaques suppresses cancellous bone formation and increases bone marrow adiposity. Alcohol. Clin. Exp. Res. 43, 2494–2503 (2019).
Lo, J. O. et al. First trimester alcohol exposure alters placental perfusion and fetal oxygen availability affecting fetal growth and development in a non-human primate model. Am. J. Obstet. Gynecol. 216, 302.e1–302.e8 (2017).
Madden, P. J. et al. An immunoPET probe to SARS-CoV-2 reveals early infection of the male genital tract in rhesus macaques. Preprint at bioRxiv https://doi.org/10.1101/2022.02.25.481974 (2022).
Ravisankar, S. et al. Short-term Western-style diet negatively impacts reproductive outcomes in primates. JCI Insight 6, e138312 (2021).
Hung, P. H., Froenicke, L., Lyons, L. A. & VandeVoort, C. A. Nothing ‘FISH’y about the rhesus macaque sex ratio. J. Med. Primatol. 38, 42–50 (2009).
Kelkar, N. S. et al. Sex- and species-associated differences in complement-mediated immunity in humans and rhesus macaques. mBio 15, e0028224 (2024).
Yan, X. et al. Biochemical and hematological reference intervals in rhesus and cynomolgus macaques and implications for vaccine and drug development. Lab. Anim. 54, 141–155 (2025).
Bjornson-Hooper, Z. B. et al. A comprehensive atlas of immunological differences between humans, mice, and non-human primates. Front. Immunol. 13, 867015 (2022).
Uno, Y., Uehara, S. & Yamazaki, H. Utility of non-human primates in drug development: comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes. Biochem. Pharmacol. 121, 1–7 (2016).
He, Z. X., Chen, X. W., Yang, Y. & Zhou, S. F. A comparison of non-human primate cytochrome P450 2D members and the implication in drug discovery. Curr. Drug. Metab. 17, 520–527 (2016).
Stefanoni, D. et al. Red blood cell metabolism in Rhesus macaques and humans: comparative biology of blood storage. Haematologica 105, 2174–2186 (2020).
Prescott, M. J. Ethics of primate use. Adv. Sci. Res. 5, 11–22 (2010).
Coleman, K. Caring for nonhuman primates in biomedical research facilities: scientific, moral and emotional considerations. Am. J. Primatol. 73, 220–225 (2011).
National Academies of Sciences, Engineering & Medicine. Nonhuman Primate Models in Biomedical Research: State of the Science and Future Needs (The National Academies Press, 2023).
Acknowledgements
J.O.L. is funded by NIH NIDA DP1 DA056793. C.A.E is funded by NIH OD R01OD028223 and previously by NIH NIEHS K22ES025418.
Author information
Authors and Affiliations
Contributions
R.C.E., J.C.B., C.B.H. and J.O.L. researched data for the article. All authors contributed substantially to discussion of the content. R.C.E., J.C.B., C.B.H. and J.O.L. wrote the article. All authors reviewed and edited the manuscript before submission. R.C.E. and T.L.R.-S. researched data for the article. R.C.E. write the manuscript. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Urology thanks Manuela Simone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Mount Sinai FSH blood test: https://www.mountsinai.org/health-library/tests/follicle-stimulating-hormone-fsh-blood-test
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Edenfield, R.C., Bash, J.C., Shorey-Kendrick, L.E. et al. Non-human primates as a translational model for the study of male reproductive health. Nat Rev Urol (2025). https://doi.org/10.1038/s41585-025-01062-2
Accepted:
Published:
DOI: https://doi.org/10.1038/s41585-025-01062-2