Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-human primates as a translational model for the study of male reproductive health

Abstract

Male fertility is complex and influenced by genetic, hormonal, environmental and lifestyle factors. However, limitations to human studies necessitate the use of reliable preclinical models to better understand the underlying mechanisms of male fertility. Rhesus macaques (Macaca mulatta), with their close genetic and physiological similarities to humans, offer an invaluable model for male reproductive health studies. The suitability of rhesus macaques for studying male infertility is based on similarities in spermatogenesis, hormonal cycles and the way in which assisted reproductive technologies can be applied, and key differences and similarities between human and rhesus macaque sperm structure, function and cryopreservation techniques highlight the translational potential of findings derived from macaque models. Furthermore, insights into the epigenetic and proteomic characteristics of sperm in both species improve understanding of how these findings can help to advance clinical diagnostics, male contraception and fertility preservation and illuminate the regulatory omics of normal reproduction. Thus, the rhesus macaque model offers critical insights into male fertility and studies in this species could contribute to advances in therapies for male infertility.

Key points

  • Rhesus macaques share considerable genetic and physiological parallels with humans, including 97% conserved gene-coding regions, making them a robust model for studying male reproductive health.

  • The hypothalamus–pituitary–gonadal axis in rhesus macaques closely resembles that of humans, enabling detailed studies of hormonal regulation of reproduction.

  • The macaque model supports research into assisted reproductive and emerging technologies, helping to refine techniques for human reproductive support.

  • Non-human primates are indispensable models for refining assisted reproductive technologies and developing male contraceptives, offering direct translational value for human health.

  • Non-human primate models present inherent limitations, including species-specific biological divergences, ethical and welfare considerations, and financial and temporal demands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparisons in testicular histology between humans and rhesus macaques.
Fig. 2: The hypothalamus–pituitary–testis axis.
Fig. 3: Comparative biology of reproduction.
Fig. 4: Comparative sperm morphology.

Similar content being viewed by others

References

  1. World Health Organization. Infertility prevalence estimates: 1990–2021 Report No. 9240068317 (WHO, 2023).

  2. Eisenberg, M. L. et al. Male infertility. Nat. Rev. Dis. Primers 9, 49 (2023).

    Article  PubMed  Google Scholar 

  3. Cox, C. M. et al. Infertility prevalence and the methods of estimation from 1990 to 2021: a systematic review and meta-analysis. Hum. Reprod. Open. 2022, hoac051 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abebe, M. S., Afework, M. & Abaynew, Y. Primary and secondary infertility in Africa: systematic review with meta-analysis. Fertil. Res. Pract. 6, 20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hewitson, L. & Schatten, G. The use of primates as models for assisted reproduction. Reprod. Biomed. Online 5, 50–55 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Aponte, P. M., Gutierrez-Reinoso, M. A. & Garcia-Herreros, M. Bridging the gap: animal models in next-generation reproductive technologies for male fertility preservation. Life 14, 17 (2024).

    Article  CAS  Google Scholar 

  7. Giacomotto, J. & Ségalat, L. High-throughput screening and small animal models, where are we? Br. J. Pharmacol. 160, 204–216 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alegria, A. D. et al. High-throughput genetic manipulation of multicellular organisms using a machine-vision guided embryonic microinjection robot. Genetics 226, iyae025 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schlegel, P. N. Human spermatogenesis: insights from the clinical care of men with infertility. Front. Endocrinol. 13, 889959 (2022).

    Article  Google Scholar 

  10. Phillips, K. A. et al. Why primate models matter. Am. J. Primatol. 76, 801–827 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wolf, D. P., Stouffer, R. L. & Brenner, R. M. In Vitro Fertilization and Embryo Transfer in Primates (Springer, 1993).

  12. Chellman, G. J. et al. Developmental and reproductive toxicology studies in nonhuman primates. Birth Defects Res. B Dev. Reprod. Toxicol. 86, 446–462 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Gibbs, R. A. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917–920 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, J. et al. Genetic diversity of 1,845 rhesus macaques improves genetic variation interpretation and identifies disease models. Nat. Commun. 15, 5658 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wolfe-Coote, S. The Laboratory Primate (Elsevier, 2005).

  17. Wei, Y.-L., She, Z.-Y., Huang, T., Zhang, H.-T. & Wang, X.-R. Male reproductive systems of Macaca mulatta: Gonadal development, spermatogenesis and applications in spermatogonia stem cell transplantation. Res. Vet. Sci. 137, 127–137 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, X. et al. In utero MRI identifies consequences of early-gestation alcohol drinking on fetal brain development in rhesus macaques. Proc. Natl Acad. Sci. 117, 10035–10044 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo, G. et al. Peripheral infusion of human umbilical cord mesenchymal stem cells rescues acute liver failure lethality in monkeys. Stem Cell Res. Ther. 10, 1–13 (2019).

    Article  Google Scholar 

  20. Van Doremalen, N. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 586, 578–582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Talbot, C. F. et al. A psychometrically robust screening tool to rapidly identify socially impaired monkeys in the general population. Autism Res. 13, 1465–1475 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stouffer, R. L. & Woodruff, T. K. Nonhuman primates: a vital model for basic and applied research on female reproduction, prenatal development, and women’s health. ILAR J. 58, 281–294 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hedges, J. C. et al. Chronic exposure to delta-9-tetrahydrocannabinol impacts testicular volume and male reproductive health in rhesus macaques. Fertil. Steril. 117, 698–707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ford, M. M. et al. GDNF gene therapy for alcohol use disorder in male non-human primates. Nat. Med. 29, 2030–2040 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hardneck, F., de Villiers, C. & Maree, L. Effect of copper sulphate and cadmium chloride on non-human primate sperm function in vitro. Int. J. Environ. Res. Public Health 18, 6200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bishop, C. V. et al. Individual and combined effects of 5-year exposure to hyperandrogenemia and Western-style diet on metabolism and reproduction in female rhesus macaques. Hum. Reprod. 36, 444–454 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Sitzmann, B. D. et al. Effects of moderate calorie restriction on testosterone production and semen characteristics in young rhesus macaques (Macaca mulatta). Biol. Reprod. 83, 635–640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ball, E. E. et al. Zika virus persistence in the male macaque reproductive tract. PLoS Negl. Trop. Dis. 16, e0010566 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmidt, J. K. et al. Zika virus in rhesus macaque semen and reproductive tract tissues: a pilot study of acute infection†. Biol. Reprod. 103, 1030–1042 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liang, M. et al. SARS-CoV-2 infection induces testicular injury in Rhesus macaque. Virol. Sin. 37, 934–937 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramsey, C. & Hanna, C. in Comparative Embryo Culture: Methods and Protocols (ed J. R. Herrick) 341–353 (Springer, 2019).

  32. Chan, A. W., Chong, K. Y., Martinovich, C., Simerly, C. & Schatten, G. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 291, 309–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Kang, Y., Chu, C., Wang, F. & Niu, Y. CRISPR/Cas9-mediated genome editing in nonhuman primates. Dis. Model. Mech. 12, dmm039982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fayomi, A. P. et al. Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. Science 363, 1314–1319 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Silber, S. in Fundamentals of Male Infertility 19–21 (Springer International Publishing, 2018).

  36. Tijani, K. H., Oyende, B. O., Awosanya, G. O., Ojewola, R. W. & Yusuf, A. O. Assessment of testicular volume: a comparison of fertile and sub-fertile West African men. Afr. J. Urol. 20, 136–140 (2014).

    Article  Google Scholar 

  37. Plant, T. M., Ramaswamy, S., Simorangkir, D. & Marshall, G. R. Postnatal and pubertal development of the rhesus monkey (Macaca mulatta) testis. Ann. NY Acad. Sci. 1061, 149–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Hedges, J. C. et al. Cessation of chronic delta-9-tetrahydrocannabinol use partially reverses impacts on male fertility and the sperm epigenome in rhesus macaques. Fertil. Steril. 120, 163–174 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bercovitch, F. B. & Rodriguez, J. F. Testis size, epididymis weight, and sperm competition in rhesus macaques. Am. J. Primatol. 30, 163–168 (1993).

    Article  PubMed  Google Scholar 

  40. Schmidt, J. K. et al. Comparative computer-assisted sperm analysis in non-human primates. J. Med. Primatol. 50, 108–119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Patel, D. P. et al. Seasonal variation in semen quality is not associated with fecundity in the Utah population database. Andrologia 54, e14515 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Malathi, A., Iyer, R. P., Mohan, R. & Balakrishnan, S. Impact of seasonal variations on semen parameters: a retrospective analysis of data from subjects attending a tertiary care fertility centre. J. Hum. Reprod. Sci. 16, 114–120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen, Z. et al. Seasonal variation and age-related changes in human semen parameters. J. Androl. 24, 226–231 (2003).

    Article  PubMed  Google Scholar 

  44. Harcourt, A. H., Purvis, A. & Liles, L. Sperm competition: mating system, not breeding season, affects testes size of primates. Funct. Ecol. 9, 468–476 (1995).

    Article  Google Scholar 

  45. Amor, H. et al. in Male Reproductive Anatomy (ed W. Wei) 3 (IntechOpen, 2021).

  46. Haruyama, E. et al. Testicular development in cynomolgus monkeys. Toxicol. Pathol. 40, 935–942 (2012).

    Article  PubMed  Google Scholar 

  47. Kerr, J. B. & De Kretser, D. in Endocrinology 6th edn (eds J. L. Jameson & L. J. De Groot) 2440–2468 (Saunders, 2010).

  48. Petersen, P. M., Seierøe, K. & Pakkenberg, B. The total number of Leydig and Sertoli cells in the testes of men across various age groups — a stereological study. J. Anat. 226, 175–179 (2015).

    Article  PubMed  Google Scholar 

  49. Amann, R. P. Considerations in evaluating human spermatogenesis on the basis of total sperm per ejaculate. J. Androl. 30, 626–641 (2009).

    Article  PubMed  Google Scholar 

  50. Verhagen, I., Ramaswamy, S., Teerds, K. J., Keijer, J. & Plant, T. M. Time course and role of luteinizing hormone and follicle-stimulating hormone in the expansion of the Leydig cell population at the time of puberty in the rhesus monkey (Macaca mulatta). Andrology 2, 924–930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Simorangkir, D. R., Ramaswamy, S., Marshall, G. R., Roslund, R. & Plant, T. M. Sertoli cell differentiation in rhesus monkey (Macaca mulatta) is an early event in puberty and precedes attainment of the adult complement of undifferentiated spermatogonia. Reproduction 143, 513–522 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Voigt, A. L., de Lima, E. M. L. N. & Dobrinski, I. Comparing the adult and pre-pubertal testis: metabolic transitions and the change in the spermatogonial stem cell metabolic microenvironment. Andrology 11, 1132–1146 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meroni, S. B. et al. Molecular mechanisms and signaling pathways involved in Sertoli cell proliferation. Front. Endocrinol. 10, 224 (2019).

    Article  Google Scholar 

  54. Arregui, L. & Dobrinski, I. Xenografting of testicular tissue pieces: 12 years of an in vivo spermatogenesis system. Reproduction 148, R71–R84 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Plant, T. M. & Marshall, G. R. The functional significance of FSH in spermatogenesis and the control of its secretion in male primates. Endocr. Rev. 22, 764–786 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Sharpe, R., McKinnell, C., Kivlin, C. & Fisher, J. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Aris, I. M. et al. Analysis of early-life growth and age at pubertal onset in us children. JAMA Netw. Open. 5, e2146873–e2146873 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vijayakumar, N. et al. A longitudinal analysis of puberty-related cortical development. Neuroimage 228, 117684 (2021).

    Article  PubMed  Google Scholar 

  59. Teerds, K. J. & Huhtaniemi, I. T. Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum. Reprod. Update 21, 310–328 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. James, E. R. et al. The role of the epididymis and the contribution of epididymosomes to mammalian reproduction. Int. J. Mol. Sci. 21, 5377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Graham, S. D., Keane, T. E. & Glenn, J. F. Glenn’s Urologic Surgery (Wolters Kluwer Health/Lippincott Williams & Wilkins, 2010).

  62. Jit, I. & Sanjeev Weight of the testes in Northwest Indian adults. Am. J. Hum. Biol. 3, 671–676 (1991).

    Article  PubMed  Google Scholar 

  63. Prasad, M. R. N. & Rajalakshmi, M. Comparative physiology of the mammalian epididymis. Gen. Comp. Endocrinol. 28, 530–537 (1976).

    Article  CAS  PubMed  Google Scholar 

  64. O’Donnell, L., Stanton, P. & de Kretser, D. M. Endocrinology of the Male Reproductive System and Spermatogenesis. Endotext [Internet] https://www.ncbi.nlm.nih.gov/books/NBK279031/ (updated 11 January 2017).

  65. Barber, A. et al. Acute Effects of Psilocybin on Anxiety-Related Behaviors in Non-human Primates (University of Wisconsin-Madison, 2024).

  66. Namwanje, M. & Brown, C. W. Activins and inhibins: roles in development, physiology, and disease. Cold Spring Harb. Perspect. Biol. 8, a021881 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wickings, E. & Nieschlag, E. Proceedings: endocrine testicular function in adult and sub-adult rhesus monkeys, Macaca mulatta. J. Endocrinol. 69, 24P–24P (1976).

    CAS  PubMed  Google Scholar 

  68. Brenner, R. M. & Slayden, O. D. Molecular and functional aspects of menstruation in the macaque. Rev. Endocr. Metab. Disord. 13, 309–318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moore, A. M., Novak, A. G. & Lehman, M. N. KNDy neurons of the hypothalamus and their role in GnRH pulse generation: an update. Endocrinology 165, bqad194 (2024).

    Article  PubMed Central  Google Scholar 

  70. Lehman, M. N., He, W., Coolen, L. M., Levine, J. E. & Goodman, R. L. Does the KNDy model for the control of gonadotropin-releasing hormone pulses apply to monkeys and humans? Semin. Reprod. Med. 37, 071–083 (2019).

    Article  CAS  Google Scholar 

  71. Terasawa, E. & Garcia, J. P. Neuroendocrine mechanisms of puberty in non–human primates. Curr. Opin. Endocr. Metab. Res. 14, 145–151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ramaswamy, S., Dwarki, K., Ali, B., Gibbs, R. B. & Plant, T. M. The decline in pulsatile GnRH release, as reflected by circulating LH concentrations, during the infant-juvenile transition in the agonadal male rhesus monkey (Macaca mulatta) is associated with a reduction in kisspeptin content of KNDy neurons of the arcuate nucleus in the hypothalamus. Endocrinology 154, 1845–1853 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guimiot, F. et al. Negative fetal FSH/LH regulation in late pregnancy is associated with declined kisspeptin/KISS1R expression in the tuberal hypothalamus. J. Clin. Endocrinol. Metab. 97, E2221–E2229 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Plant, T. M. Neuroendocrine control of the onset of puberty. Front. Neuroendocrinol. 38, 73–88 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rey, R. A., Musse, M., Venara, M. & Chemes, H. E. Ontogeny of the androgen receptor expression in the fetal and postnatal testis: its relevance on Sertoli cell maturation and the onset of adult spermatogenesis. Microsc. Res. Tech. 72, 787–795 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Rohayem, J., Alexander, E. C., Heger, S., Nordenström, A. & Howard, S. R. Mini-puberty, physiological and disordered: consequences, and potential for therapeutic replacement. Endocr. Rev. 45, 460–492 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Becker, M. & Hesse, V. Minipuberty: why does it happen? Horm. Res. Paediatr. 93, 76–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Lanciotti, L., Cofini, M., Leonardi, A., Penta, L. & Esposito, S. Up-to-date review about minipuberty and overview on hypothalamic-pituitary-gonadal axis activation in fetal and neonatal life. Front. Endocrinol. 9, 410 (2018).

    Article  Google Scholar 

  79. Busch, A. S. et al. Male minipuberty in human and non-human primates: planting the seeds of future fertility. Reproduction 166, R63–R72 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Wallen, K., Maestripieri, D. & Mann, D. R. Effects of neonatal testicular suppression with a GnRH antagonist on social behavior in group-living juvenile rhesus monkeys. Horm. Behav. 29, 322–337 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Nevison, C. M., Brown, G. R. & Dixson, A. F. Effects of altering testosterone in early infancy on social behaviour in captive yearling rhesus monkeys. Physiol. Behav. 62, 1397–1403 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Dmochowski, R. R., Kavoussi, L. R. & Peters, C. A. Campbell-Walsh-Wein Urology 13th edn (Elsevier, 2025).

  83. Marques, P., Skorupskaite, K., Rozario, K. S., Anderson, R. A. & George, J. T. Physiology of GnRH and Gonadotropin Secretion. Endotext [Internet] (updated 15 October 2024).

  84. Pitteloud, N. et al. Predictors of outcome of long-term GnRH therapy in men with idiopathic hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 87, 4128–4136 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Suter, K. A potential apulsatile mode of GnRH release in the male rhesus monkey (Macaca mulatta). J. Endocrinol. 163, 235–241 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Lemaire, J. J. et al. Maps of the adult human hypothalamus. Surg. Neurol. Int. 4, S156–S163 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dash, S. et al. Brain volumetrics across the lifespan of the rhesus macaque. Neurobiol. Aging 126, 34–43 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Roberts, D. E., Killiany, R. J. & Rosene, D. L. Neuron numbers in the hypothalamus of the normal aging rhesus monkey: stability across the adult lifespan and between the sexes. J. Comp. Neurol. 520, 1181–1197 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Remick, A. K. et al. Histologic and immunohistochemical characterization of spontaneous pituitary adenomas in fourteen cynomolgus macaques (Macaca fascicularis). Vet. Pathol. 43, 484–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Sahni, D., Jit, I., Harjeet, Neelam & Bhansali, A. Weight and dimensions of the pituitary in northwestern Indians. Pituitary 9, 19–26 (2006).

    Article  PubMed  Google Scholar 

  91. Morley, J. E. et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism 46, 410–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Simorangkir, D. R., Ramaswamy, S., Marshall, G. R. & Plant, T. M. In the adult male rhesus monkey (Macaca mulatta), unilateral orchidectomy in the face of unchanging gonadotropin stimulation results in partial compensation of testosterone secretion by the remaining testis. Endocrinology 145, 5115–5120 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Andersson, A. M., Petersen, J. H., Jørgensen, N., Jensen, T. K. & Skakkebaek, N. E. Serum inhibin B and follicle-stimulating hormone levels as tools in the evaluation of infertile men: significance of adequate reference values from proven fertile men. J. Clin. Endocrinol. Metab. 89, 2873–2879 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Benderradji, H. et al. Defining reference ranges for serum anti-Müllerian hormone on a large cohort of normozoospermic adult men highlights new potential physiological functions of AMH on FSH secretion and sperm motility. J. Clin. Endocrinol. Metab. 107, 1878–1887 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Muller, M. N. Testosterone and reproductive effort in male primates. Horm. Behav. 91, 36–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Sobral, G. et al. Facial and genital color ornamentation, testosterone, and reproductive output in high-ranking male rhesus macaques. Sci. Rep. 14, 2621 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gordon, T. P., Rose, R. M. & Bernstein, I. S. Seasonal rhythm in plasma testosterone levels in the rhesus monkey (Macaca mulatta): a three year study. Horm. Behav. 7, 229–243 (1976).

    Article  CAS  PubMed  Google Scholar 

  98. Travison, T. G. et al. Harmonized reference ranges for circulating testosterone levels in men of four cohort studies in the United States and Europe. J. Clin. Endocrinol. Metab. 102, 1161–1173 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Handelsman, D. J., Hirschberg, A. L. & Bermon, S. Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocr. Rev. 39, 803–829 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kanabar, R., Mazur, A., Plum, A. & Schmied, J. Correlates of testosterone change as men age. Aging Male 25, 29–40 (2022).

    Article  PubMed  Google Scholar 

  101. Sorwell, K. G. & Urbanski, H. F. Causes and consequences of age-related steroid hormone changes: insights gained from nonhuman primates. J. Neuroendocrinol. 25, 1062–1069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schulster, M., Bernie, A. M. & Ramasamy, R. The role of estradiol in male reproductive function. Asian J. Androl. 18, 435–440 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yamamoto, M., Hibi, H., Katsuno, S. & Miyake, K. Serum estradiol levels in normal men and men with idiopathic infertility. Int. J. Urol. 2, 44–46 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Gill-Sharma, M. K. Prolactin and male fertility: the long and short feedback regulation. Int. J. Endocrinol. 2009, 687259 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Papazoglou, A. S. et al. Serum prolactin levels and mortality in adults without prolactinoma: a meta-analysis. J. Clin. Endocrinol. Metab. 109, e1652–e1664 (2024).

    Article  PubMed  Google Scholar 

  106. Buvat, J. Hyperprolactinemia and sexual function in men: a short review. Int. J. Impot. Res. 15, 373–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Sanford, L. M. & Baker, S. J. Prolactin regulation of testosterone secretion and testes growth in DLS rams at the onset of seasonal testicular recrudescence. Reproduction 139, 197–207 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Sodi, R., Fikri, R., Diver, M., Ranganath, L. & Vora, J. Testosterone replacement-induced hyperprolactinaemia: case report and review of the literature. Ann. Clin. Biochem. 42, 153–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Meachem, S. J., Nieschlag, E. & Simoni, M. Inhibin B in male reproduction: pathophysiology and clinical relevance. Eur. J. Endocrinol. 145, 561–571 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Klingmüller, D. & Haidl, G. Inhibin B in men with normal and disturbed spermatogenesis. Hum. Reprod. 12, 2376–2378 (1997).

    Article  PubMed  Google Scholar 

  111. Jin, J.-M. & Yang, W.-X. Molecular regulation of hypothalamus–pituitary–gonads axis in males. Gene 551, 15–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Wistuba, J. et al. Experimental endocrine manipulation by contraceptive regimen in the male marmoset (Callithrix jacchus). Reproduction 145, 439–451 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Clermont, Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. 52, 198–236 (1972).

    Article  CAS  PubMed  Google Scholar 

  114. Sharpe, R. M. in The Physiology of Reproduction 2nd edn, Vol. 1 (eds Knobil, E. & Neill, J. D.) 1364–1434 (Raven Press, 1994).

  115. Plant, T. M. Undifferentiated primate spermatogonia and their endocrine control. Trends Endocrinol. Metab. 21, 488–495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bi, R. et al. Epigenetic characterization of adult rhesus monkey spermatogonial stem cells identifies key regulators of stem cell homeostasis. Nucleic Acids Res. 52, 13644–13664 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fayomi, A. P. & Orwig, K. E. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res. 29, 207–214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cho, I. K. & Easley, C. A. Recent developments in in vitro spermatogenesis and future directions. Reprod. Med. 4, 215–232 (2023).

    Article  Google Scholar 

  119. Cornwall, G. A. New insights into epididymal biology and function. Hum. Reprod. Update 15, 213–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barr, A. B. Timing of spermatogenesis in four nonhuman primate species. Fertil. Steril. 24, 381–389 (1973).

    Article  CAS  PubMed  Google Scholar 

  121. De Rooij, D., Van Alphen, M. & Van de Kant, H. Duration of the cycle of the seminiferous epithelium and its stages in the rhesus monkey (Macaca mulatta). Biol. Reprod. 35, 587–591 (1986).

    Article  PubMed  Google Scholar 

  122. Hermann, B. P. et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 11, 715–726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ramm, S. A. & Stockley, P. Sperm competition and sperm length influence the rate of mammalian spermatogenesis. Biol. Lett. 6, 219–221 (2010).

    Article  PubMed  Google Scholar 

  124. Torgerson, D. G., Kulathinal, R. J. & Singh, R. S. Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes. Mol. Biol. Evol. 19, 1973–1980 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Shami, A. N. et al. Single-cell RNA sequencing of human, macaque, and mouse testes uncovers conserved and divergent features of mammalian spermatogenesis. Dev. Cell 54, 529–547.e512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Singh, A. & Hermann, B. P. Conserved transcriptome features define prepubertal primate spermatogonial stem cells as Adark spermatogonia and identify unique regulators. Int. J. Mol. Sci. 24, 4755 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bush, S. J. et al. Adult human, but not rodent, spermatogonial stem cells retain states with a foetal-like signature. Cell 13, 742 (2024).

    Article  CAS  Google Scholar 

  128. Muciaccia, B. et al. Novel stage classification of human spermatogenesis based on acrosome development. Biol. Reprod. 89, 60 (2013).

    Article  PubMed  Google Scholar 

  129. Turner, J. M. Meiotic sex chromosome inactivation. Development 134, 1823–1831 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Murat, F. et al. The molecular evolution of spermatogenesis across mammals. Nature 613, 308–316 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Beck, R. T., Lubach, G. R. & Coe, C. L. Feasibility of successfully breeding rhesus macaques (Macaca mulatta) to obtain healthy infants year-round. Am. J. Primatol. 82, e23085 (2020).

    Article  PubMed  Google Scholar 

  132. de Villiers, C. A comparison between the semen and sperm parameters from the captive-bred Vervet monkey (Chlorocebus aethiops) and Rhesus monkey (Macaca mulatta). J. Med. Primatol. 47, 211–216 (2018).

    Article  Google Scholar 

  133. Tardif, S., Carville, A., Elmore, D., Williams, L. E. & Rice, K. in Nonhuma Primates in Biomedical Research 2nd edn, Vol. 1 (eds Abee, C. R. et al.) 197–249 (Academic Press, Elsevier, 2012).

  134. Simorangkir, D., Marshall, G. & Plant, T. A re-examination of proliferation and differentiation of type A spermatogonia in the adult rhesus monkey (Macaca mulatta). Hum. Reprod. 24, 1596–1604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang X., Zhou J. & Fan, C. Seasonal variation of reproductive functions in male rhesus monkey. Chin. J. Vet. Sci. 4, 375–377 (2002).

    Google Scholar 

  136. Gupta, G., Maikhuri, J., Setty, B. & Dhar, J. Seasonal variations in daily sperm production rate of rhesus and bonnet monkeys. J. Med. Primatol. 29, 411–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Fordney Settlage, D. S. & Hendrickx, A. G. Observations on coagulum characteristics of the rhesus monkey electroejaculate. Biol. Reprod. 11, 619–623 (1974).

    Article  Google Scholar 

  138. Chan, A. W. et al. Foreign DNA transmission by ICSI: injection of spermatozoa bound with exogenous DNA results in embryonic GFP expression and live rhesus monkey births. Mol. Hum. Reprod. 6, 26–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Houser, L. A. et al. Improved training and semen collection outcomes using the closed box chair for macaques. Animals 11, 2384 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Leão, D. et al. Efficacious long-term cooling and freezing of Sapajus apella semen in ACP-118®. Anim. Reprod. Sci. 159, 118–123 (2015).

    Article  PubMed  Google Scholar 

  141. Lima, J. S. et al. Seminal coagulation and sperm quality in different social contexts in captive tufted capuchin monkeys (Sapajus apella). Am. J. Primatol. 79, e22643 (2017).

    Article  Google Scholar 

  142. Oliveira, K. G. et al. Cooling and freezing of sperm from captive, free-living and endangered squirrel monkey species. Cryobiology 72, 283–289 (2016).

    Article  PubMed  Google Scholar 

  143. Almeida, D. et al. The effects of Trolox on the quality of sperm from captive squirrel monkey during liquefaction in the extender ACP-118™. Zygote 26, 333–335 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Li, Y. H., Cai, K. J., Kovacs, A. & Ji, W. Z. Effects of various extenders and permeating cryoprotectants on cryopreservation of cynomolgus monkey (Macaca fascicularis) spermatozoa. J. Androl. 26, 387–395 (2005).

    Article  PubMed  Google Scholar 

  145. Arakaki, P. R., de Carvalho, F. M., de Castro, P. H. G. & Muniz, J. A. P. C. Collection, evaluation, and coagulum dissolution of semen from Goeldi’s monkey, Callimico goeldii. Folia Primatol. 88, 334–343 (2017).

    Article  Google Scholar 

  146. World Health Organization. WHO laboratory manual for the examination and processing of human semen 6th edn (WHO, 2021).

  147. Baskaran, S., Finelli, R., Agarwal, A. & Henkel, R. Diagnostic value of routine semen analysis in clinical andrology. Andrologia 53, e13614 (2021).

    Article  PubMed  Google Scholar 

  148. Tomlinson, M. J. & Naeem, A. CASA in the medical laboratory: CASA in diagnostic andrology and assisted conception. Reprod., Fertil. Dev. 30, 850–859 (2018).

    Article  PubMed  Google Scholar 

  149. Amann, R. P. Can the fertility potential of a seminal sample be predicted accurately? J. Androl. 10, 89–98 (1989).

    Article  CAS  PubMed  Google Scholar 

  150. Sikka, S. C. & Hellstrom, W. J. Current updates on laboratory techniques for the diagnosis of male reproductive failure. Asian J. Androl. 18, 392–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Aghazarian, A., Huf, W., Pflüger, H. & Klatte, T. Standard semen parameters vs. sperm kinematics to predict sperm DNA damage. World J. Mens Health 39, 116–122 (2021).

    Article  PubMed  Google Scholar 

  152. Gu, N.-H., Zhao, W.-L., Wang, G.-S. & Sun, F. Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reprod. Biol. Endocrinol. 17, 66 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Mossman, J. A., Pearson, J. T., Moore, H. D. & Pacey, A. A. Variation in mean human sperm length is linked with semen characteristics. Hum. Reprod. 28, 22–32 (2013).

    Article  PubMed  Google Scholar 

  154. Firman, R. & Simmons, L. Sperm competition and the evolution of the sperm hook in house mice. J. Evolut. Biol. 22, 2505–2511 (2009).

    Article  CAS  Google Scholar 

  155. Zhou, T. et al. Comparative analysis of macaque and human sperm proteomes: insights into sperm competition. Proteomics 15, 1564–1573 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Zamboni, L., Zemjanis, R. & Stefanini, M. The fine structure of monkey and human spermatozoa. Anat. Rec. 169, 129–153 (1971).

    Article  CAS  PubMed  Google Scholar 

  157. Martin, D. E., Gould, K. G. & Warner, H. Comparative morphology of primate spermatozoa using scanning electron microscopy. I. Families Hominidae, Pongidae, Cercopithecidae and Cebidae. J. Hum. Evol. 4, 287–292 (1975).

    Article  CAS  Google Scholar 

  158. Lüke, L., Vicens, A., Tourmente, M. & Roldan, E. R. S. Evolution of protamine genes and changes in sperm head phenotype in rodents. Biol. Reprod. 90, 67 (2014).

    Article  PubMed  Google Scholar 

  159. Lüke, L., Tourmente, M., Dopazo, H., Serra, F. & Roldan, E. R. Selective constraints on protamine 2 in primates and rodents. BMC Evol. Biol. 16, 21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Cooper, T. G. Cytoplasmic droplets: the good, the bad or just confusing? Hum. Reprod. 20, 9–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Avidor-Reiss, T., Mazur, M., Fishman, E. L. & Sindhwani, P. The role of sperm centrioles in human reproduction — the known and the unknown. Front. Cell Dev. Biol. 7, 188 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Nanassy, L. & Carrell, D. T. Paternal effects on early embryogenesis. J. Exp. Clin. Assist. Reprod. 5, 2 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Moretti, E., Pascarelli, N. A., Belmonte, G., Renieri, T. & Collodel, G. Sperm with fibrous sheath dysplasia and anomalies in head–neck junction: focus on centriole and centrin 1. Andrologia 49, e12701 (2017).

    Article  Google Scholar 

  164. Sha, Y.-W. et al. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene 633, 48–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Manandhar, G., Simerly, C., Salisbury, J. & Schatten, G. Centriole and centrin degeneration during mouse spermiogenesis. Cell Motil. Cytoskelet. 43, 137–144 (1999).

    Article  CAS  Google Scholar 

  166. Manandhar, G., Sutovsky, P., Joshi, H., Stearns, T. & Schatten, G. Centrosome reduction during mouse spermiogenesis. Dev. Biol. 203, 424–434 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Khanal, S. et al. The evolution of centriole degradation in mouse sperm. Nat. Commun. 15, 117 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Manandhar, G., Simerly, C. & Schatten, G. Highly degenerated distal centrioles in rhesus and human spermatozoa. Hum. Reprod. 15, 256–263 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Sironen, A., Shoemark, A., Patel, M., Loebinger, M. R. & Mitchison, H. M. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell. Mol. Life Sci. 77, 2029–2048 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Gervasi, M. G. et al. The actin cytoskeleton of the mouse sperm flagellum is organized in a helical structure. J. Cell Sci. 131, jcs215897 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Anderson, M. J. & Dixson, A. F. Motility and the midpiece in primates. Nature 416, 496–496 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Ruiz-Pesini, E. et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin. Chem. 44, 1616–1620 (1998).

    Article  CAS  PubMed  Google Scholar 

  173. Cummins, J. & Woodall, P. On mammalian sperm dimensions. Reproduction 75, 153–175 (1985).

    Article  CAS  Google Scholar 

  174. Burch, F. C. et al. Establishing the normal range of sperm DNA fragmentation index (% DFI) for rhesus macaques. Sci. Rep. 13, 20016 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Evenson, D. P. in Sperm Chromatin 125–149 (Springer, 2011).

  176. Li, F., Duan, X., Li, M. & Ma, X. Sperm DNA fragmentation index affect pregnancy outcomes and offspring safety in assisted reproductive technology. Sci. Rep. 14, 356 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ryu, D.-Y. et al. Peroxiredoxin activity is a major landmark of male fertility. Sci. Rep. 7, 17174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Perrin, A. et al. Molecular cytogenetic and genetic aspects of globozoospermia: a review. Andrologia 45, 1–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Zheng, W.-W. et al. Sperm DNA damage has a negative effect on early embryonic development following in vitro fertilization. Asian J. Androl. 20, 75–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Dai, X. et al. Sperm enrichment from poor semen samples by double density gradient centrifugation in combination with swim-up for IVF cycles. Sci. Rep. 10, 2286 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Evenson, D. P. Sperm chromatin structure assay (SCSA®) for fertility assessment. Curr. Protoc. 2, e508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhang, F. et al. Sperm DNA fragmentation and male fertility: a retrospective study of 5114 men attending a reproductive center. J. Assist. Reprod. Genet. 38, 1133–1141 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Lu, J.-C. et al. Analysis of human sperm DNA fragmentation index (DFI) related factors: a report of 1010 subfertile men in China. Reprod. Biol. Endocrinol. 16, 1–9 (2018).

    Article  Google Scholar 

  184. Amaral, A. et al. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol. Cell. Proteom. 12, 330–342 (2013).

    Article  CAS  Google Scholar 

  185. de Mateo, S., Castillo, J., Estanyol, J. M., Ballescà, J. L. & Oliva, R. Proteomic characterization of the human sperm nucleus. Proteomics 11, 2714–2726 (2011).

    Article  PubMed  Google Scholar 

  186. Greither, T., Dejung, M., Behre, H. M., Butter, F. & Herlyn, H. The human sperm proteome — toward a panel for male fertility testing. Andrology 11, 1418–1436 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Becker, L. S. et al. Proteomic landscape of human sperm in patients with different spermatogenic impairments. Cells 12, 1017 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Agarwal, A., Panner Selvam, M. K. & Baskaran, S. Proteomic analyses of human sperm cells: understanding the role of proteins and molecular pathways affecting male reproductive health. Int. J. Mol. Sci. 21, 1621 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Dorus, S., Wasbrough, E. R., Busby, J., Wilkin, E. C. & Karr, T. L. Sperm proteomics reveals intensified selection on mouse sperm membrane and acrosome genes. Mol. Biol. Evol. 27, 1235–1246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Skerget, S. et al. The Rhesus macaque (Macaca mulatta) sperm proteome. Mol. Cell Proteom. 12, 3052–3067 (2013).

    Article  CAS  Google Scholar 

  191. Claw, K. G., George, R. D., MacCoss, M. J. & Swanson, W. J. Quantitative evolutionary proteomics of seminal fluid from primates with different mating systems. BMC Genom. 19, 488 (2018).

    Article  Google Scholar 

  192. Stuppia, L., Franzago, M., Ballerini, P., Gatta, V. & Antonucci, I. Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin. Epigenetics 7, 120 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Siebert-Kuss, L. M. et al. Genome-wide DNA methylation changes in human spermatogenesis. Am. J. Hum. Genet. 111, 1125–1139 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Greeson, K. W., Crow, K. M. S., Edenfield, R. C. & Easley, C. A. Inheritance of paternal lifestyles and exposures through sperm DNA methylation. Nat. Rev. Urol. 20, 356–370 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Bash, J. C. et al. Delta-9-tetrahydrocannabinol exposure alters sperm DNA methylation in rhesus macaques. Fertil. Steril. 120, e131–e132 (2023).

    Article  Google Scholar 

  196. Lu, Z. et al. Cynomolgus-rhesus hybrid macaques serve as a platform for imprinting studies. Innovation 4, 100436 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Liao, C., Walters, B. W., DiStasio, M. & Lesch, B. J. Human-specific epigenomic states in spermatogenesis. Comput. Struct. Biotechnol. J. 23, 577–588 (2024).

    Article  CAS  PubMed  Google Scholar 

  198. Balli, M. et al. Opportunities and limits of conventional IVF versus ICSI: it is time to come off the fence. J. Clin. Med. 11, 5722 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Haddad, M. et al. Thoughts on the popularity of ICSI. J. Assist. Reprod. Genet. 38, 101–123 (2021).

    Article  PubMed  Google Scholar 

  200. Nusser, K. et al. Developmental competence of oocytes after ICSI in the rhesus monkey. Hum. Reprod. 16, 130–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. Pereira, N., O’Neill, C., Lu, V., Rosenwaks, Z. & Palermo, G. D. The safety of intracytoplasmic sperm injection and long-term outcomes. Reproduction 154, F61–F70 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Hart, R. J. & Wijs, L. A. The longer-term effects of IVF on offspring from childhood to adolescence. Front. Reprod. Health 4, 1045762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hewitson, L., Martinovich, C., Simerly, C., Takahashi, D. & Schatten, G. Rhesus offspring produced by intracytoplasmic injection of testicular sperm and elongated spermatids. Fertil. Steril. 77, 794–801 (2002).

    Article  PubMed  Google Scholar 

  204. Palermo, G. D. & Nagy, Z. P. Manual of Intracytoplasmic Sperm Injection in Human Assisted Reproduction: With Other Advanced Micromanipulation Techniques to Edit the Genetic and Cytoplasmic Content of the Oocyte (Cambridge Univ. Press, 2021).

  205. Simerly, C. R. et al. Fertilization and cleavage axes differ in primates conceived by conventional (IVF) versus intracytoplasmic sperm injection (ICSI). Sci. Rep. 9, 15282 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Moretti, A., Kupatt, C. & Wolf, E. Cellular pathophysiology of Duchenne muscular dystrophy: insights from a novel rhesus macaque model. Signal. Transduct. Target. Ther. 9, 357 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Schmidt, J. K. et al. Atypical initial cleavage patterns minimally impact rhesus macaque in vitro embryo morphokinetics and embryo outgrowth development. Biol. Reprod. 109, 812–820 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Klooster, K. L., Burruel, V. R. & Meyers, S. A. Loss of fertilization potential of desiccated rhesus macaque spermatozoa following prolonged storage. Cryobiology 62, 161–166 (2011).

    Article  PubMed  Google Scholar 

  209. Yang, S. et al. Optimization of ethylene glycol concentrations, freezing rates and holding times in liquid nitrogen vapor for cryopreservation of rhesus macaque (Macaca mulatta) sperm. J. Vet. Med. Sci. 73, 717–723 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Nichols, S. & Bavister, B. Comparison of protocols for cryopreservation of rhesus monkey spermatozoa by post-thaw motility recovery and hyperactivation. Reprod. Fertil. Dev. 18, 777–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  211. Si, W. et al. Directional freezing as an alternative method for cryopreserving rhesus macaque (Macaca mulatta) sperm. Theriogenology 74, 1431–1438 (2010).

    Article  CAS  PubMed  Google Scholar 

  212. Alapati, R., Goff, K., Kubisch, H. M. & Devireddy, R. V. Water transport in epididymal and ejaculated rhesus monkey (Macaca mulatta) sperm during freezing. Cryobiology 57, 182–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  213. Moran, S. P., Chi, T., Prucha, M. S., Agca, Y. & Chan, A. W. Cryotolerance of sperm from transgenic rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 55, 520–524 (2016).

    PubMed  PubMed Central  Google Scholar 

  214. de Carvalho, F. M. et al. Cryopreservation and preparation of thawed spermatozoa from rhesus macaques (Macaca mulatta) for in vitro fertilization. J. Am. Assoc. Lab. Anim. Sci. 60, 396–406 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Sultan, I., Alfaar, A. S., Sultan, Y., Salman, Z. & Qaddoumi, I. Trends in childhood cancer: Incidence and survival analysis over 45 years of SEER data. PLoS ONE 20, e0314592 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ehmcke, J., Gassei, K., Westernströer, B. & Schlatt, S. Immature rhesus monkey (Macaca mulatta) testis xenografts show increased growth, but not enhanced seminiferous differentiation, under human chorionic gonadotropin treatment of nude mouse recipients. Int. J. Androl. 34, e459–e467 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Tseng, H., Liu, Y.-L., Lu, B.-J. & Chen, C.-H. Immature testicular tissue engineered from weaned mice to adults for prepubertal fertility preservation — an in vivo translational study. Int. J. Mol. Sci. 23, 2042 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Povlsen, C. O., Skakkebaek, N. E., Rygaard, J. & Jensen, G. Heterotransplantation of human foetal organs to the mouse mutant nude. Nature 248, 247–249 (1974).

    Article  CAS  PubMed  Google Scholar 

  219. Skakkebaek, N., Jensen, G., Povlsen, C. & Rygaard, J. Heterotransplantation of human foetal testicular and ovarian tissue to the mouse mutant nude: a preliminary study. Acta Obstet. Gynecol. Scand. 53, 73–75 (1974).

    Article  Google Scholar 

  220. Honaramooz, A., Li, M.-W., Penedo, M. C. T., Meyers, S. & Dobrinski, I. Accelerated maturation of primate testis by xenografting into mice1. Biol. Reprod. 70, 1500–1503 (2004).

    Article  CAS  PubMed  Google Scholar 

  221. Honaramooz, A. et al. Sperm from neonatal mammalian testes grafted in mice. Nature 418, 778–781 (2002).

    Article  CAS  PubMed  Google Scholar 

  222. Rathi, R. et al. Maturation of testicular tissue from infant monkeys after xenografting into mice. Endocrinology 149, 5288–5296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jahnukainen, K., Ehmcke, J., Nurmio, M. & Schlatt, S. Autologous ectopic grafting of cryopreserved testicular tissue preserves the fertility of prepubescent monkeys that receive sterilizing cytotoxic therapy. Cancer Res. 72, 5174–5178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Shetty, G. et al. Donor spermatogenesis in de novo formed seminiferous tubules from transplanted testicular cells in rhesus monkey testis. Hum. Reprod. 33, 2249–2255 (2018).

    PubMed  PubMed Central  Google Scholar 

  225. Sung, Z.-Y. et al. Advancements in fertility preservation strategies for pediatric male cancer patients: a review of cryopreservation and transplantation of immature testicular tissue. Reprod. Biol. Endocrinol. 22, 47 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Yuan, H. et al. Primary culture of germ cells that portray stem cell characteristics and recipient preparation for autologous transplantation in the rhesus monkey. J. Cell. Mol. Med. 26, 1567–1578 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Hermann, B. P. et al. Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cell 25, 2330–2338 (2007).

    Article  CAS  Google Scholar 

  228. Khampang, S. et al. Blastocyst development after fertilization with in vitro spermatids derived from nonhuman primate embryonic stem cells. F. S. Sci. 2, 365–375 (2021).

    PubMed  PubMed Central  Google Scholar 

  229. Ryu, J. et al. CRISPR/Cas9 editing of the MYO7A gene in rhesus macaque embryos to generate a primate model of Usher syndrome type 1B. Sci. Rep. 12, 10036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ryu, J. et al. Generation of rhesus macaque embryos with expanded CAG trinucleotide repeats in the huntingtin gene. Cells 13, 829 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Midic, U. et al. Quantitative assessment of timing, efficiency, specificity and genetic mosaicism of CRISPR/Cas9-mediated gene editing of hemoglobin beta gene in rhesus monkey embryos. Hum. Mol. Genet. 26, 2678–2689 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. VandeVoort, C. A. & Tollner, T. L. The efficacy of ultrasound treatment as a reversible male contraceptive in the rhesus monkey. Reprod. Biol. Endocrinol. 10, 81 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  233. O’Rand, M. G., Hamil, K. G., Adevai, T. & Zelinski, M. Inhibition of sperm motility in male macaques with EP055, a potential non-hormonal male contraceptive. PLoS ONE 13, e0195953 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Colagross-Schouten, A., Lemoy, M.-J., Keesler, R. I., Lissner, E. & VandeVoort, C. A. The contraceptive efficacy of intravas injection of Vasalgel™ for adult male rhesus monkeys. Basic. Clin. Androl. 27, 4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Lobl, T. J. et al. Contraceptive efficacy of testosterone-estradiol implants in male rhesus monkeys. Contraception 27, 383–389 (1983).

    Article  CAS  PubMed  Google Scholar 

  236. Bunin, D. I. et al. Evaluation of dimethandrolone undecanoate in non-human primates as a candidate for long-acting injectable male contraceptive. Andrology https://doi.org/10.1111/andr.13819 (2024).

    Article  PubMed  Google Scholar 

  237. Sciorio, R., Tramontano, L., Adel, M. & Fleming, S. Decrease in sperm parameters in the 21st century: obesity, lifestyle, or environmental factors? An updated narrative review. J. Pers. Med. 14, 198 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Cappon, G. D. et al. Sensitivity of male reproductive endpoints in nonhuman primate toxicity studies: a statistical power analysis. Reprod. Toxicol. 41, 67–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  239. Buse, E., Habermann, G., Osterburg, I., Korte, R. & Weinbauer, G. F. Reproductive/developmental toxicity and immunotoxicity assessment in the nonhuman primate model. Toxicology 185, 221–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  240. Finelli, R., Mottola, F. & Agarwal, A. Impact of alcohol consumption on male fertility potential: a narrative review. Int. J. Environ. Res. Public Health 19, 328 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Kahler-Quesada, A. M. et al. Voluntary chronic heavy alcohol consumption in male rhesus macaques suppresses cancellous bone formation and increases bone marrow adiposity. Alcohol. Clin. Exp. Res. 43, 2494–2503 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Lo, J. O. et al. First trimester alcohol exposure alters placental perfusion and fetal oxygen availability affecting fetal growth and development in a non-human primate model. Am. J. Obstet. Gynecol. 216, 302.e1–302.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  243. Madden, P. J. et al. An immunoPET probe to SARS-CoV-2 reveals early infection of the male genital tract in rhesus macaques. Preprint at bioRxiv https://doi.org/10.1101/2022.02.25.481974 (2022).

  244. Ravisankar, S. et al. Short-term Western-style diet negatively impacts reproductive outcomes in primates. JCI Insight 6, e138312 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Hung, P. H., Froenicke, L., Lyons, L. A. & VandeVoort, C. A. Nothing ‘FISH’y about the rhesus macaque sex ratio. J. Med. Primatol. 38, 42–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  246. Kelkar, N. S. et al. Sex- and species-associated differences in complement-mediated immunity in humans and rhesus macaques. mBio 15, e0028224 (2024).

    Article  PubMed  Google Scholar 

  247. Yan, X. et al. Biochemical and hematological reference intervals in rhesus and cynomolgus macaques and implications for vaccine and drug development. Lab. Anim. 54, 141–155 (2025).

    Article  Google Scholar 

  248. Bjornson-Hooper, Z. B. et al. A comprehensive atlas of immunological differences between humans, mice, and non-human primates. Front. Immunol. 13, 867015 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Uno, Y., Uehara, S. & Yamazaki, H. Utility of non-human primates in drug development: comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes. Biochem. Pharmacol. 121, 1–7 (2016).

    Article  CAS  PubMed  Google Scholar 

  250. He, Z. X., Chen, X. W., Yang, Y. & Zhou, S. F. A comparison of non-human primate cytochrome P450 2D members and the implication in drug discovery. Curr. Drug. Metab. 17, 520–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  251. Stefanoni, D. et al. Red blood cell metabolism in Rhesus macaques and humans: comparative biology of blood storage. Haematologica 105, 2174–2186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Prescott, M. J. Ethics of primate use. Adv. Sci. Res. 5, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Coleman, K. Caring for nonhuman primates in biomedical research facilities: scientific, moral and emotional considerations. Am. J. Primatol. 73, 220–225 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  254. National Academies of Sciences, Engineering & Medicine. Nonhuman Primate Models in Biomedical Research: State of the Science and Future Needs (The National Academies Press, 2023).

Download references

Acknowledgements

J.O.L. is funded by NIH NIDA DP1 DA056793. C.A.E is funded by NIH OD R01OD028223 and previously by NIH NIEHS K22ES025418.

Author information

Authors and Affiliations

Authors

Contributions

R.C.E., J.C.B., C.B.H. and J.O.L. researched data for the article. All authors contributed substantially to discussion of the content. R.C.E., J.C.B., C.B.H. and J.O.L. wrote the article. All authors reviewed and edited the manuscript before submission. R.C.E. and T.L.R.-S. researched data for the article. R.C.E. write the manuscript. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to R. Clayton Edenfield.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Manuela Simone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Mount Sinai FSH blood test: https://www.mountsinai.org/health-library/tests/follicle-stimulating-hormone-fsh-blood-test

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edenfield, R.C., Bash, J.C., Shorey-Kendrick, L.E. et al. Non-human primates as a translational model for the study of male reproductive health. Nat Rev Urol (2025). https://doi.org/10.1038/s41585-025-01062-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-025-01062-2

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research