Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Iatrogenic upper urinary tract injuries during ureteroscopy for urolithiasis: a comprehensive review on incidence, mechanisms and preventative strategies

Subjects

Abstract

The incidence of urolithiasis is increasing globally, with a prevalence of 13% in North America and 9% in Europe. Ureteroscopy is a minimally invasive approach for treating conditions affecting the upper urinary tract, including urolithiasis, for which its efficacy and safety is well recognized. There is a risk of complications associated with ureteroscopy, including iatrogenic mechanical ureteric injuries. These injuries are multifactorial in nature, with ureteroscopes and auxiliary endoscopic equipment having an important role, in addition to patient and stone factors. Excessive friction and insertion forces during ureteroscope and ureteric access sheath insertion, apparatus malfunction or thermal injuries during laser lithotripsy might cause injury to the upper urinary tract. Ureteric avulsion is a serious event, which necessitates further intervention such as ureteric reimplantation or nephrectomy. Ureteric mucosal injuries can be managed with a period of ureteric stenting, although stent-related symptoms can be challenging for patients. The ability of endoscopic equipment to injure the ureter is an area that requires further study to reduce incidence and minimize patient morbidity. In this article, we review the operative mechanisms that contribute to iatrogenic mechanical ureteric injuries and discuss preventative strategies.

Key points

  • Ureteric injuries occurring during ureteroscopy for stone surgery are due to a combination of stone, surgeon and equipment factors. The extent to which each aspect contributes to injury remains unknown.

  • Excessive force applied during instrument insertion and manipulation are recognized contributors to ureteric injuries during ureteroscopy, although safe limits of force are yet to be defined.

  • Flexible ureteroscope use is associated with lower rates of ureteric injuries in comparison with rigid ureteroscope use, probably because of instrument design and composition.

  • Laser fibres injure the ureteric mucosa via both thermal and mechanical effects. Thermal laser-induced injuries are associated with subsequent stricture formation.

  • Ureteric injuries stemming from stent and guidewire insertion are rare. Friction between the guidewire and ureteric mucosa is a potential causative factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagrammatic representation of semi-rigid ureteroscopy.

Similar content being viewed by others

References

  1. Sorokin, I. et al. Epidemiology of stone disease across the world. World J. Urol. 35, 1301–1320 (2017).

    Article  Google Scholar 

  2. Akram, M. et al. Urological guidelines for kidney stones: overview and comprehensive update. J. Clin. Med. 13, 1114 (2024).

    Article  CAS  Google Scholar 

  3. Monga, M., Murphy, M., Paranjpe, R., Cutone, B. & Eisner, B. Prevalence of stone disease and procedure trends in the United States. Urology 176, 63–68 (2023).

    Article  Google Scholar 

  4. Wignall, G. R., Canales, B. K., Denstedt, J. D. & Monga, M. Minimally invasive approaches to upper urinary tract urolithiasis. Urol. Clin. North Am. 35, 441–454 (2008).

    Article  Google Scholar 

  5. de la Rosette, J. et al. The clinical research office of the endourological society ureteroscopy global study: indications, complications, and outcomes in 11,885 patients. J. Endourol. 28, 131–139 (2014).

    Article  Google Scholar 

  6. Rassweiler, J., Rassweiler, M.-C. & Klein, J. New technology in ureteroscopy and percutaneous nephrolithotomy. Curr. Opin. Urol. 26, 95–106 (2016).

    Article  Google Scholar 

  7. Skolarikos, A. et al. Urolithiasis. EAU Guidelines https://uroweb.org/guidelines/urolithiasis (2024).

  8. Assimos, D. et al. Surgical management of stones: American Urological Association/Endourological Society guideline, part II. J. Urol. 196, 1161–1169 (2016).

    Article  Google Scholar 

  9. Giusti, G. et al. Current standard technique for modern flexible ureteroscopy: tips and tricks. Eur. Urol. 70, 188–194 (2016).

    Article  Google Scholar 

  10. Gauhar, V. et al. Indications, preferences, global practice patterns and outcomes in retrograde intrarenal surgery (RIRS) for renal stones in adults: results from a multicenter database of 6669 patients of the global FLEXible ureteroscopy outcomes registry (FLEXOR). World J. Urol. 41, 567–574 (2023).

    Article  Google Scholar 

  11. Giusti, G. et al. Sky is no limit for ureteroscopy: extending the indications and special circumstances. World J. Urol. 33, 257–273 (2015).

    Article  Google Scholar 

  12. Drake, T. et al. What are the benefits and harms of ureteroscopy compared with shock-wave lithotripsy in the treatment of upper ureteral stones? A systematic review. Eur. Urol. 72, 772–786 (2017).

    Article  Google Scholar 

  13. Veeratterapillay, R. et al. Infection after ureteroscopy for ureteric stones: analysis of 71 305 cases in the hospital episode statistics database. BJU Int. 131, 109–115 (2023).

    Article  Google Scholar 

  14. De Coninck, V. et al. Complications of ureteroscopy: a complete overview. World J. Urol. 38, 2147–2166 (2020).

    Article  Google Scholar 

  15. Komori, M. et al. Complications of flexible ureteroscopic treatment for renal and ureteral calculi during the learning curve. Urol. Int. 95, 26–32 (2015).

    Article  Google Scholar 

  16. Öğreden, E. et al. Categorization of ureteroscopy complications and investigation of associated factors by using the modified Clavien classification system. Turk. J. Med. Sci. 46, 686–694 (2016).

    Article  Google Scholar 

  17. Baş, O. et al. Factors affecting complication rates of retrograde flexible ureterorenoscopy: analysis of 1571 procedures — a single-center experience. World J. Urol. 35, 819–826 (2017).

    Article  Google Scholar 

  18. Bhaskarapprakash, A. R., Karri, L., Velmurugan, P., Venkatramanan, S. & Natarajan, K. Ureteral avulsion during semirigid ureteroscopy: a single-centre experience. Surg. Res. Pract. 2020, 3198689 (2020).

    CAS  Google Scholar 

  19. Yan, Y. et al. Trends and predictors of changes in renal function after radical nephrectomy for renal tumours. BMC Nephrol. 25, 174 (2024).

    Article  Google Scholar 

  20. Traxer, O. & Thomas, A. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J. Urol. 189, 580–584 (2013).

    Article  Google Scholar 

  21. Schoenthaler, M. et al. The post-ureteroscopic lesion scale (PULS): a multicenter video-based evaluation of inter-rater reliability. World J. Urol. 32, 1033–1040 (2014).

    Article  Google Scholar 

  22. Miernik, A. et al. Standardized flexible ureteroscopic technique to improve stone-free rates. Urology 80, 1198–1202 (2012).

    Article  Google Scholar 

  23. El Darawany, H. et al. Iatrogenic submucosal tunnel in the ureter: a rare complication during advancement of the guide wire. Ann. Saudi Med. 36, 112–115 (2016).

    Article  Google Scholar 

  24. Tepeler, A. et al. Categorization of intraoperative ureteroscopy complications using modified Satava classification system. World J. Urol. 32, 131–136 (2014).

    Article  Google Scholar 

  25. Croghan, S. M. et al. In vivo ureteroscopic intrarenal pressures and clinical outcomes: a multi-institutional analysis of 120 consecutive patients. BJU Int. 132, 531–540 (2023).

    Article  CAS  Google Scholar 

  26. Pauchard, F., Ventimiglia, E., Corrales, M. & Traxer, O. A practical guide for intra-renal temperature and pressure management during RIRS: what is the evidence telling us. J. Clin. Med. 11, 3429 (2022).

    Article  Google Scholar 

  27. Jung, H. & Osther, P. J. Intraluminal pressure profiles during flexible ureterorenoscopy. Springerplus 4, 373 (2015).

    Article  Google Scholar 

  28. Croghan, S. M. et al. Upper urinary tract pressures in endourology: a systematic review of range, variables and implications. BJU Int. 131, 267–279 (2023).

    Article  Google Scholar 

  29. Chen, Y. J. et al. The effect and safety assessment of monitoring ethanol concentration in exhaled breath combined with intelligent control of renal pelvic pressure on the absorption of perfusion fluid during flexible ureteroscopic lithotripsy. Int. Urol. Nephrol. 56, 45–53 (2024).

    Article  CAS  Google Scholar 

  30. Neto, A. C. L., Dall’Aqua, V., Carrera, R. V., Molina, W. R. & Glina, S. Intra-renal pressure and temperature during ureteroscopy: does it matter? Int. Braz. J. Urol. 47, 436–442 (2021).

    Article  Google Scholar 

  31. Tokas, T., Herrmann, T. R. W., Skolarikos, A. & Nagele, U. Training and Research in Urological Surgery and Technology (T.R.U.S.T.)-Group Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World J. Urol. 37, 125–131 (2019).

    Article  Google Scholar 

  32. Moretto, S. et al. Ureteral stricture rate after endoscopic treatments for urolithiasis and related risk factors: systematic review and meta-analysis. World J. Urol. 42, 234 (2024).

    Article  CAS  Google Scholar 

  33. Butticè, S. et al. Temperature changes inside the kidney: what happens during holmium:yttrium-aluminium-garnet laser usage? J. Endourol. 30, 574–579 (2016).

    Article  Google Scholar 

  34. Aldoukhi, A. H. et al. Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model. J. Endourol. 32, 724–729 (2018).

    Article  Google Scholar 

  35. Chung, J. H., Baek, M., Park, S. S. & Han, D. H. The feasibility of pop-dusting using high-power laser (2 J × 50 Hz) in retrograde intrarenal surgery for renal stones: retrospective single-center experience. J. Endourol. 35, 279–284 (2021).

    Article  Google Scholar 

  36. Best, S. L. Ho:YAG laser and dusting — high power vs low power: there is no difference. World J. Urol. 42, 96 (2024).

    Article  Google Scholar 

  37. Juliebo-Jones, P. et al. Holmium and thulium fiber laser safety in endourological practice: What does the clinician need to know? Curr. Urol. Rep. 24, 409–415 (2023).

    Article  Google Scholar 

  38. Liang, H. et al. Thermal effect of holmium laser during ureteroscopic lithotripsy. BMC Urol. 20, 69 (2020).

    Article  Google Scholar 

  39. Guan, W. et al. The effect of irrigation rate on intrarenal pressure in an ex vivo porcine kidney model — preliminary study with different flexible ureteroscopes and ureteral access sheaths. World J. Urol. 41, 865–872 (2023).

    Article  Google Scholar 

  40. Giulianelli, R. et al. Low-cost semirigid ureteroscopy is effective for ureteral stones: experience of a single high volume center. Arch. Ital. Urol. Androl. 86, 118–122 (2014).

    Article  Google Scholar 

  41. Mandal, S. et al. Clavien classification of semirigid ureteroscopy complications: a prospective study. Urology 80, 995–1001 (2012).

    Article  Google Scholar 

  42. Galal, E. M., Anwar, A. Z., El-Bab, T. K. & Abdelhamid, A. M. Retrospective comparative study of rigid and flexible ureteroscopy for treatment of proximal ureteral stones. Int. Braz. J. Urol. 42, 967–972 (2016).

    Article  Google Scholar 

  43. Omar, M. et al. Randomized comparison of 4.5/6 Fr versus 6/7.5 Fr ureteroscopes for laser lithotripsy of lower/middle ureteral calculi: towards optimization of efficacy and safety of semirigid ureteroscopy. World J. Urol. 40, 3075–3081 (2022).

    Article  Google Scholar 

  44. Atis, G. et al. Comparison of different ureteroscope sizes in treating ureteral calculi in adult patients. Urology 82, 1231–1235 (2013).

    Article  Google Scholar 

  45. Tanimoto, R., Cleary, R. C., Bagley, D. H. & Hubosky, S. G. Ureteral avulsion associated with ureteroscopy: insights from the MAUDE database. J. Endourol. 30, 257–261 (2016).

    Article  Google Scholar 

  46. Tanriverdi, O. et al. Revisiting the predictive factors for intra-operative complications of rigid ureteroscopy: a 15-year experience. Urol. J. 9, 457–464 (2012).

    Google Scholar 

  47. Chuang, T. Y., Kao, M. H., Chen, P. C. & Wang, C. C. Risk factors of morbidity and mortality after flexible ureteroscopic lithotripsy. Urol. Sci. 31, 253–257 (2020).

    Article  Google Scholar 

  48. Juliebo-Jones, P. et al. Device failure and adverse events related to single-use and reusable flexible ureteroscopes: findings and new insights from an 11-year analysis of the manufacturer and user facility device experience database. Urology 177, 41–47 (2023).

    Article  Google Scholar 

  49. Gauhar, V. et al. RIRS with disposable or reusable scopes: does it make a difference? Results from the multicenter FLEXOR study. Ther. Adv. Urol. 15, 17562872231158072 (2023).

    Article  Google Scholar 

  50. Jing, Q., Liu, F., Yuan, X., Zhang, X. & Cao, X. Clinical comparative study of single-use and reusable digital flexible ureteroscopy for the treatment of lower pole stones: a retrospective case-controlled study. BMC Urol. 24, 149 (2024).

    Article  Google Scholar 

  51. Mager, R. et al. Clinical outcomes and costs of reusable and single-use flexible ureterorenoscopes: a prospective cohort study. Urolithiasis 46, 587–593 (2018).

    Article  CAS  Google Scholar 

  52. Pallauf, M. et al. LithoVue™ for renal stone therapy — a perfect fit for high volume academic centers; a retrospective evaluation of 108 cases. BMC Urol. 20, 56 (2020).

    Article  Google Scholar 

  53. Anderson, S. et al. Perspectives on technology: to use or to reuse, that is the endoscopic question — a systematic review of single-use endoscopes. BJU Int. 133, 14–24 (2024).

    Article  Google Scholar 

  54. Li, Y. C. et al. Comparison of single-use and reusable flexible ureteroscope for renal stone management: a pooled analysis of 772 patients. Transl. Androl. Urol. 10, 483–493 (2021).

    Article  CAS  Google Scholar 

  55. Ulvik, Ø., Wentzel-Larsen, T. & Ulvik, N. M. A safety guidewire influences the pushing and pulling forces needed to move the ureteroscope in the ureter: a clinical randomized, crossover study. J. Endourol. 27, 850–855 (2013).

    Article  Google Scholar 

  56. Abdelfatah Zaza, M. M., Farouk Salim, A., El-Mageed Salem, T. A., Mohammed Ezzat, A. & Hassan Ali, M. Impact of ureteric access sheath use during flexible ureteroscopy: a comparative study on efficacy and safety. Actas Urol. Esp. 48, 204–209 (2024).

    Article  CAS  Google Scholar 

  57. Astroza, G. et al. Is a ureteral stent required after use of ureteral access sheath in presented patients who undergo flexible ureteroscopy? Cent. European J. Urol. 70, 88–92 (2017).

    Google Scholar 

  58. Cristallo, C. et al. Flexible ureteroscopy without ureteral access sheath. Actas Urol. Esp. 46, 354–360 (2022).

    Article  CAS  Google Scholar 

  59. Traxer, O. et al. Differences in renal stone treatment and outcomes for patients treated either with or without the support of a ureteral access sheath: the clinical research office of the Endourological Society ureteroscopy global study. World J. Urol. 33, 2137–2144 (2015).

    Article  Google Scholar 

  60. Kaplan, A. G., Lipkin, M. E., Scales, C. D. & Preminger, G. M. Use of ureteral access sheaths in ureteroscopy. Nat. Rev. Urol. 13, 135–140 (2016).

    Article  Google Scholar 

  61. Sari, S. et al. Outcomes with ureteral access sheath in retrograde intrarenal surgery: a retrospective comparative analysis. Ann. Saudi Med. 40, 382–388 (2020).

    Article  Google Scholar 

  62. Stern, K. L., Loftus, C. J., Doizi, S., Traxer, O. & Monga, M. A prospective study analyzing the association between high-grade ureteral access sheath injuries and the formation of ureteral strictures. Urology 128, 38–41 (2019).

    Article  Google Scholar 

  63. Breda, A., Territo, A. & López-Martínez, J. M. Benefits and risks of ureteral access sheaths for retrograde renal access. Curr. Opin. Urol. 26, 70–75 (2016).

    Article  Google Scholar 

  64. Lima, A. et al. Impact of ureteral access sheath on renal stone treatment: prospective comparative non-randomised outcomes over a 7-year period. World J. Urol. 38, 1329–1333 (2020).

    Article  Google Scholar 

  65. Lildal, S. K., Andreassen, K. H., Jung, H., Pedersen, M. R. & Osther, P. J. S. Evaluation of ureteral lesions in ureterorenoscopy: impact of access sheath use. Scand. J. Urol. 52, 157–161 (2018).

    Article  Google Scholar 

  66. Loftus, C. J. et al. Ureteral wall injury with ureteral access sheaths: a randomized prospective trial. J. Endourol. 34, 932–936 (2020).

    Article  Google Scholar 

  67. Lin, C. B., Chuang, S. H., Shih, H. J. & Pan, Y. H. Utilization of ureteral access sheath in retrograde intrarenal surgery: a systematic review and meta-analysis. Med.-Lith. 60, 1084 (2024).

    Google Scholar 

  68. Özman, O. et al. Multi-aspect analysis of ureteral access sheath usage in retrograde intrarenal surgery: a RIRSearch group study. Asian J. Urol. 11, 80–85 (2024).

    Article  Google Scholar 

  69. Tsaturyan, A. et al. The use of 14/16Fr ureter access sheath for safe and effective management of large upper ureteral calculi. World J. Urol. 40, 1217–1222 (2022).

    Article  CAS  Google Scholar 

  70. Cruz, J. A. C. S. et al. Ureteral access sheath. Does it improve the results of flexible ureteroscopy? A narrative review. Int. Braz. J. Urol. 50, 346–358 (2024).

    Article  Google Scholar 

  71. De Coninck, V. et al. Ureteral access sheaths and its use in the future: a comprehensive update based on a literature review. J. Clin. Med. 11, 5128 (2022).

    Article  Google Scholar 

  72. Bozzini, G. et al. Ureteral access sheath-related injuries vs. post-operative infections. Is sheath insertion always needed? A prospective randomized study to understand the lights and shadows of this practice. Actas Urol. Esp. 45, 576–581 (2021).

    Article  CAS  Google Scholar 

  73. Elsaqa, M. et al. Comparison of commonly utilized ureteral access sheaths: a prospective randomized trial. Arch. Ital. Urol. Androl. 95, 47–50 (2023).

    Google Scholar 

  74. Huettenbrink, C. et al. Different ureteral access sheaths sizes for retrograde intrarenal surgery. World J. Urol. 41, 1913–1919 (2023).

    Article  Google Scholar 

  75. Li, W. F. et al. Is 10/12 Fr ureteral access sheath more suitable for flexible ureteroscopic lithotripsy? Urol. J. 19, 89–94 (2022).

    Google Scholar 

  76. Taguchi, M., Yasuda, K. & Kinoshita, H. Evaluation of ureteral injuries caused by ureteral access sheath insertion during ureteroscopic lithotripsy. Int. J. Urol. 30, 554–558 (2023).

    Article  Google Scholar 

  77. Tracy, C. R., Ghareeb, G. M., Paul, C. J. & Brooks, N. A. Increasing the size of ureteral access sheath during retrograde intrarenal surgery improves surgical efficiency without increasing complications. World J. Urol. 36, 971–978 (2018).

    Article  Google Scholar 

  78. Ergül, R. B. et al. Peak force of insertion during ureteral access sheath placement in an ex-vivo experimental model with different commercially available access sheaths. Urology 192, 12–18 (2024).

    Article  Google Scholar 

  79. Stern, J. M., Yiee, J. & Park, S. Safety and efficacy of ureteral access sheaths. J. Endourol. 21, 119–123 (2007).

    Article  Google Scholar 

  80. Harper, J. D. et al. Comparison of a novel radially dilating balloon ureteral access sheath to a conventional sheath in the porcine model. J. Urol. 179, 2042–2045 (2008).

    Article  Google Scholar 

  81. Lildal, S. K. et al. Ureteral access sheath influence on the ureteral wall evaluated by cyclooxygenase-2 and tumor necrosis factor-α in a porcine model. J. Endourol. 31, 307–313 (2017).

    Article  Google Scholar 

  82. Lallas, C. D. et al. Laser Doppler flowmetric determination of ureteral blood flow after ureteral access sheath placement. J. Endourol. 16, 583–590 (2002).

    Article  Google Scholar 

  83. Özsoy, M. et al. Histological changes caused by the prolonged placement of ureteral access sheaths: an experimental study in porcine model. Urolithiasis 46, 397–404 (2018).

    Article  Google Scholar 

  84. Hu, J. P. et al. CT-based predictor for the success of 12/14-Fr ureteral access sheath placement. Int. J. Clin. Pract. 2022, 3343244 (2022).

    Article  Google Scholar 

  85. Damar, E. et al. Does ureteral access sheath affect the outcomes of retrograde intrarenal surgery: a prospective study. Minim. Invasive Ther. Allied Technol. 31, 777–781 (2022).

    Article  Google Scholar 

  86. Diab, T., El-Shaer, W., Ibrahim, S., El-Barky, E. & Elezz, A. A. Does preoperative silodosin administration facilitate ureteral dilatation during flexible ureterorenoscopy? A randomized clinical trial. Int. Urol. Nephrol. 56, 839–846 (2024).

    Article  CAS  Google Scholar 

  87. Kim, J. K. et al. Silodosin for prevention of ureteral injuries resulting from insertion of a ureteral access sheath: a randomized controlled trial. Eur. Urol. Focus. 8, 572–579 (2022).

    Article  Google Scholar 

  88. Nam, K. H., Suh, J., Shin, J. H., Chae, H. K. & Park, H. K. Effect of perioperative tamsulosin on successful ureteral access sheath placement and stent-related symptom relief: a double-blinded, randomized, placebo-controlled study. Investig. Clin. Urol. 65, 342–350 (2024).

    Article  Google Scholar 

  89. Mao, L. et al. Effect of bladder emptying status on the ureteral access sheath insertion resistance and following ureteral injury in RIRS: a prospective randomized controlled trial in academic hospital. World J. Urol. 41, 2535–2540 (2023).

    Article  Google Scholar 

  90. Doizi, S. et al. First clinical evaluation of a new innovative ureteral access sheath (Re-Trace™): a European study. World J. Urol. 32, 143–147 (2014).

    Article  Google Scholar 

  91. De, S., Sarkissian, C., Torricelli, F. C. M., Brown, R. & Monga, M. New ureteral access sheaths: a double standard. Urology 85, 757–763 (2015).

    Article  Google Scholar 

  92. Tapiero, S. et al. Determining the safety threshold for the passage of a ureteral access sheath in clinical practice using a purpose-built force sensor. J. Urol. 206, 364–372 (2021).

    Article  Google Scholar 

  93. Tefik, T. et al. Impact of ureteral access sheath force of insertion on ureteral trauma: in vivo preliminary study with 7 patients. Ulus. Travma Acil. Cerrahi Derg. 24, 514–520 (2018).

    Google Scholar 

  94. Koo, K. C. et al. The impact of preoperative α-adrenergic antagonists on ureteral access sheath insertion force and the upper limit of force required to avoid ureteral mucosal injury: a randomized controlled study. J. Urol. 199, 1622–1630 (2018).

    Article  CAS  Google Scholar 

  95. Kaler, K. S. et al. Ureteral access sheath deployment: how much force is too much? Initial studies with a novel ureteral access sheath force sensor in the porcine ureter. J. Endourol. 33, 712–718 (2019).

    Article  Google Scholar 

  96. O’Meara, S. et al. Mechanical characteristics of the ureter and clinical implications. Nat. Rev. Urol. 21, 197–213 (2024).

    Article  Google Scholar 

  97. Tefik, T. et al. The relationship between the force applied and perceived by the surgeon during ureteral access sheath placement: ex-vivo experimental model. World J. Urol. 42, 329 (2024).

    Article  Google Scholar 

  98. Pirani, F. et al. Prospective randomized trial comparing the safety and clarity of water versus saline irrigant in ureteroscopy. Eur. Urol. Focus. 7, 850–856 (2021).

    Article  Google Scholar 

  99. Aykaç, A. et al. Simultaneous measurement of pressure in the calyces during RIRS in a human cadaver model. J. Urol. Surg. 6, 213–217 (2019).

    Article  Google Scholar 

  100. Balawender, K., Pliszka, A. & Oleksy, M. The intrapelvic pressure during retrograde intrarenal surgery in the setting of ureteral access sheath size: experimental study on 3D printed model. Appl. Sci. 13, 12385 (2023).

  101. Chew, B. H. et al. Complication risk of endourological procedures: the role of intrarenal pressure. Urology 181, 45–47 (2023).

    Article  Google Scholar 

  102. Antonucci, M. et al. Standardization of retrograde intrarenal surgery with “gravity irrigation” technique leads to low postoperative infection rate regardless of surgeon experience. Arch. Esp. Urol. 75, 339–345 (2022).

    Article  Google Scholar 

  103. Balawender, K. & Dybowski, B. Influence of manual hand pump irrigation on intrapelvic temperature during retrograde intrarenal surgery: a thermography-based in vitro study. Cent. European J. Urol. 77, 512–517 (2024).

    Article  Google Scholar 

  104. Noureldin, Y. A. et al. Effects of irrigation parameters and access sheath size on the intra-renal temperature during flexible ureteroscopy with a high-power laser. World J. Urol. 39, 1257–1262 (2021).

    Article  CAS  Google Scholar 

  105. Hong, A., Browne, C., Jack, G. & Bolton, D. Intrarenal pressures during flexible ureteroscopy: an insight into safer endourology. BJU Int. 133, 18–24 (2024).

    Article  Google Scholar 

  106. Doizi, S., Letendre, J., Cloutier, J., Ploumidis, A. & Traxer, O. Continuous monitoring of intrapelvic pressure during flexible ureteroscopy using a sensor wire: a pilot study. World J. Urol. 39, 555–561 (2021).

    Article  Google Scholar 

  107. Croghan, S. M. et al. Intrarenal pressure with hand-pump or pressurized-bag irrigation: randomized clinical trial at retrograde intrarenal surgery. Br. J. Surg. 111, znae137 (2024).

    Article  Google Scholar 

  108. Sener, T. E. et al. Can we provide low intrarenal pressures with good irrigation flow by decreasing the size of ureteral access sheaths? J. Endourol. 30, 49–55 (2016).

    Article  Google Scholar 

  109. Lazarus, J., Wisniewski, P. & Kaestner, L. Beware the bolus size: understanding intrarenal pressure during ureteroscopic fluid administration. South. Afr. J. Surg. 58, 220A–220E (2020).

    Google Scholar 

  110. Kim, H. J. et al. Quantification of outflow resistance for ureteral drainage devices used during ureteroscopy. World J. Urol. 41, 873–878 (2023).

    Article  CAS  Google Scholar 

  111. Marom, R. et al. Effect of outflow resistance on intrarenal pressure at different irrigation rates during ureteroscopy: in vivo evaluation. Urolithiasis 51, 98 (2023).

    Article  Google Scholar 

  112. Wright, A., Williams, K., Somani, B. & Rukin, N. Intrarenal pressure and irrigation flow with commonly used ureteric access sheaths and instruments. Cent. European J. Urol. 68, 434–438 (2015).

    CAS  Google Scholar 

  113. Fang, L. et al. The effect of ratio of endoscope-sheath diameter on intrapelvic pressure during flexible ureteroscopic lasertripsy. J. Endourol. 33, 132–139 (2019).

    Article  Google Scholar 

  114. Maccraith, E. et al. Evaluation of the impact of ureteroscope, access sheath, and irrigation system selection on intrarenal pressures in a porcine kidney model. J. Endourol. 35, 512–517 (2021).

    Article  Google Scholar 

  115. Deng, X. et al. Fluid absorption during flexible ureteroscopy with intelligent control of renal pelvic pressure: a randomized controlled trial. World J. Urol. 42, 331 (2024).

    Article  Google Scholar 

  116. Chiu, P. K. et al. Subcapsular hematoma after ureteroscopy and laser lithotripsy. J. Endourol. 27, 1115–1119 (2013).

    Article  Google Scholar 

  117. Choi, T., Choi, J., Min, G. E. & Lee, D. G. Massive retroperitoneal hematoma as an acute complication of retrograde intrarenal surgery: a case report. World J. Clin. Cases 9, 3914–3918 (2021).

    Article  Google Scholar 

  118. Firdolaş, F., Pirinççi, N., Ozan, T., Karakeçi, A. & Orhan, İ. Retrograde intrarenal surgery technique without using fluoroscopy and access sheet in the treatment of kidney stones. Turkish J. Med. Sci. 49, 821–825 (2019).

    Article  Google Scholar 

  119. John, J. et al. Introducing an lsoprenaline eluting guidewire: report on its design and the results of the dose-determining pilot study. J. Endourol. 38, 590–597 (2024).

    Article  CAS  Google Scholar 

  120. Ulvik, Ø., Rennesund, K., Gjengstø, P., Wentzel-Larsen, T. & Ulvik, N. M. Ureteroscopy with and without safety guide wire: should the safety wire still be mandatory? J. Endourol. 27, 1197–1202 (2013).

    Article  Google Scholar 

  121. Tao, W., Cai, C. J., Sun, C. Y., Xue, B. X. & Shan, Y. X. Subcapsular renal hematoma after ureteroscopy with holmium:yttrium-aluminum-garnet laser lithotripsy. Lasers Med. Sci. 30, 1527–1532 (2015).

    Article  Google Scholar 

  122. Deng, X. X., Zhang, W., Fu, D. & Fu, B. Renal pseudoaneurysms after flexible ureteroscopy and holmium laser lithotripsy: a case report. Front. Surg. 9, 896548 (2022).

    Article  Google Scholar 

  123. Graversen, J. A. et al. The effect of extralumenal safety wires on ureteral injury and insertion force of ureteral access sheaths: evaluation using an ex vivo porcine model. Urology 79, 1011–1014 (2012).

    Article  Google Scholar 

  124. Asali, M. Sheathed flexible retrograde intrarenal surgery without safety guide wire for upper urinary tract stones. Arch. Ital. Urol. Androl. 94, 186–189 (2022).

    Article  Google Scholar 

  125. Patel, S. R., McLaren, I. D. & Nakada, S. Y. The ureteroscope as a safety wire for ureteronephroscopy. J. Endourol. 26, 351–354 (2012).

    Article  Google Scholar 

  126. Dickstein, R. J., Kreshover, J. E., Babayan, R. K. & Wang, D. S. Is a safety wire necessary during routine flexible ureteroscopy? J. Endourol. 24, 1589–1592 (2010).

    Article  Google Scholar 

  127. Basiri, A. et al. Is a safety guide wire necessary for transurethral lithotripsy using semi-rigid ureteroscope? Results from a prospective randomized controlled trial. Urol. J. 18, 497–502 (2021).

    Google Scholar 

  128. Binbay, M. et al. Evaluation of pneumatic versus holmium:YAG laser lithotripsy for impacted ureteral stones. Int. Urol. Nephrol. 43, 989–995 (2011).

    Article  Google Scholar 

  129. Chen, L. C. et al. Comparison of pneumatic and holmium laser ureteroscopic lithotripsy for upper third ureteral stones. Urol. Sci. 28, 101–104 (2017).

    Article  Google Scholar 

  130. Cimino, S. et al. Pneumatic lithotripsy versus holmium:YAG laser lithotripsy for the treatment of single ureteral stones: a prospective, single-blinded study. Urol. Int. 92, 468–472 (2014).

    Article  Google Scholar 

  131. Jeon, S. S., Hyun, J. H. & Lee, K. S. A comparison of holmium:YAG laser with Lithoclast lithotripsy in ureteral calculi fragmentation. Int. J. Urol. 12, 544–547 (2005).

    Article  Google Scholar 

  132. Li, L. et al. A prospective randomized trial comparing pneumatic lithotripsy and holmium laser for management of middle and distal ureteral calculi. J. Endourol. 29, 883–887 (2015).

    Article  CAS  Google Scholar 

  133. Nuttall, M. C., Abbaraju, J., Dickinson, I. K. & Sriprasad, S. A review of studies reporting on complications of upper urinary tract stone ablation using the holmium:YAG laser. Br. J. Med. Surg. Urol. 3, 151–159 (2010).

    Article  Google Scholar 

  134. Æsøy, M. S., Juliebø-Jones, P., Beisland, C. & Ulvik, I. Temperature measurements during flexible ureteroscopic laser lithotripsy: a prospective clinical trial. J. Endourol. 38, 308–315 (2024).

    Article  Google Scholar 

  135. Balawender, K. & Dybowski, B. The effect of laser settings and ureteral access sheath size on intrapelvic temperature during holmium laser lithotripsy. Appl. Sci. 14, 3501 (2024).

    Article  CAS  Google Scholar 

  136. Louters, M. M., Dau, J. J., Hall, T. L., Ghani, K. R. & Roberts, W. W. Laser operator duty cycle effect on temperature and thermal dose: in-vitro study. World J. Urol. 40, 1575–1580 (2022).

    Article  CAS  Google Scholar 

  137. Marom, R., Dau, J. J., Ghani, K. R., Hall, T. L. & Roberts, W. W. Assessing renal tissue temperature changes and perfusion effects during laser activation in an in vivo porcine model. World J. Urol. 42, 197 (2024).

    Article  Google Scholar 

  138. Maxwell, A. D. et al. Simulation of laser lithotripsy-induced heating in the urinary tract. J. Endourol. 33, 113–119 (2019).

    Article  Google Scholar 

  139. Rice, P., Somani, B. K., Nagele, U., Herrmann, T. R. W. & Tokas, T. Generated temperatures and thermal laser damage during upper tract endourological procedures using the holmium:yttrium-aluminum-garnet (Ho:YAG) laser: a systematic review of experimental studies. World J. Urol. 40, 1981–1992 (2022).

    Article  CAS  Google Scholar 

  140. Winship, B. et al. The rise and fall of high temperatures during ureteroscopic holmium laser lithotripsy. J. Endourol. 33, 794–799 (2019).

    Article  Google Scholar 

  141. Peretti, D. et al. Flexible ureteroscopy using A 120-W holmium laser: the low-energy/high-frequency approach. Arch. Esp. Urol. 74, 343–349 (2021).

    Google Scholar 

  142. Peretti, D. et al. Low-energy high-frequency Ho-YAG lithotripsy: is RIRS going forward? A case–control study. Urolithiasis 50, 79–85 (2022).

    Article  CAS  Google Scholar 

  143. Pietropaolo, A., Jones, P., Whitehurst, L. & Somani, B. K. Role of ‘dusting and pop-dusting’ using a high-powered (100 W) laser machine in the treatment of large stones (≥15 mm): prospective outcomes over 16 months. Urolithiasis 47, 391–394 (2019).

    Article  Google Scholar 

  144. Humphreys, M. R. et al. Dusting versus basketing during ureteroscopy-which technique is more efficacious? A prospective multicenter trial from the EDGE research consortium. J. Urol. 199, 1272–1276 (2018).

    Article  Google Scholar 

  145. Tzelves, L., Somani, B., Berdempes, M., Markopoulos, T. & Skolarikos, A. Basic and advanced technological evolution of laser lithotripsy over the past decade: an educational review by the European Society of Urotechnology section of the European Association of Urology. Turk. J. Urol. 47, 183–192 (2021).

    Article  Google Scholar 

  146. Althunayan, A. M., Elkoushy, M. A., Elhilali, M. M. & Andonian, S. Adverse events resulting from lasers used in urology. J. Endourol. 28, 256–260 (2014).

    Article  Google Scholar 

  147. Bai, J. et al. Subcapsular renal haematoma after holmium:yttrium-aluminum-garnet laser ureterolithotripsy. BJU Int. 109, 1230–1234 (2012).

    Article  Google Scholar 

  148. Almasoud, N. A. et al. Super pulsed thulium fiber laser outcomes in retrograde intrarenal surgery for ureteral and renal stones: a systematic review and meta-analysis. BMC Urol. 23, 179 (2023).

    Article  Google Scholar 

  149. Basulto-Martínez, M. et al. Understanding the ablation rate of holmium:YAG and thulium fiber lasers. Perspectives from an in vitro study. Urolithiasis 51, 32 (2023).

    Article  Google Scholar 

  150. Chen, J. et al. In vitro investigation of stone ablation efficiency, char formation, spark generation, and damage mechanism produced by thulium fiber laser. Urolithiasis 51, 124 (2023).

    Article  Google Scholar 

  151. Chua, M. E. et al. Thulium fibre laser vs holmium:yttrium-aluminium-garnet laser lithotripsy for urolithiasis: meta-analysis of clinical studies. BJU Int. 131, 383–394 (2023).

    Article  CAS  Google Scholar 

  152. Enikeev, D. et al. Endoscopic lithotripsy with a SuperPulsed thulium-fiber laser for ureteral stones: a single-center experience. Int. J. Urol. 28, 261–265 (2021).

    Article  CAS  Google Scholar 

  153. Li, Z., Wu, S., Liu, T., Li, S. & Wang, X. Optimal parameter settings of thulium fiber laser for ureteral stone lithotripsy: a comparative study in two different testing environments. Urolithiasis 52, 78 (2024).

    Article  Google Scholar 

  154. Mishra, A. et al. Exploring optimal settings for safe and effective thulium fibre laser lithotripsy in a kidney model. BJU Int. 133, 223–230 (2024).

    Article  CAS  Google Scholar 

  155. Molina, W. R., Carrera, R. V., Chew, B. H. & Knudsen, B. E. Temperature rise during ureteral laser lithotripsy: comparison of super pulse thulium fiber laser (SPTF) vs high power 120 W holmium-YAG laser (Ho:YAG). World J. Urol. 39, 3951–3956 (2021).

    Article  CAS  Google Scholar 

  156. Sierra, A., Corrales, M., Somani, B. & Traxer, O. Laser efficiency and laser safety: holmium YAG vs. thulium fiber laser. J. Clin. Med. 12, 149 (2023).

    Article  CAS  Google Scholar 

  157. Cloutier, J. et al. The glue-clot technique: a new technique description for small calyceal stone fragments removal. Urolithiasis 42, 441–444 (2014).

    Article  CAS  Google Scholar 

  158. Ptashnyk, T., Cueva-Martinez, A., Michel, M. S., Alken, P. & Köhrmann, K. U. Comparative investigations on the retrieval capabilities of various baskets and graspers in four ex vivo models. Eur. Urol. 41, 406–410 (2002).

    Article  Google Scholar 

  159. Anan, G., Hattori, K., Hatakeyama, S., Ohyama, C. & Sato, M. Efficacy of one-surgeon basketing technique for stone extraction during flexible ureteroscopy for urolithiasis. Arab. J. Urol. 19, 447–453 (2021).

    Article  Google Scholar 

  160. Li, D. et al. Actively extracting kidney stones combined dusting technique can improve SFR of moderate-complexity kidney stones in fURL. Int. Urol. Nephrol. 56, 2547–2553 (2024).

    Article  CAS  Google Scholar 

  161. Liao, N. et al. A study comparing dusting to basketing for renal stones < 2 cm during flexible ureteroscopy. Int. Braz. J. Urol. 49, 194–201 (2023).

    Article  Google Scholar 

  162. Netsch, C., Herrera, G., Gross, A. J. & Bach, T. In vitro evaluation of nitinol stone retrieval baskets for flexible ureteroscopy. J. Endourol. 25, 1217–1220 (2011).

    Article  Google Scholar 

  163. Gallentine, M. L., Bishoff, J. T. & Harmon, W. J. The broken stone basket: configuration and technique for removal. J. Endourol. 15, 911–914 (2001).

    Article  CAS  Google Scholar 

  164. Lukasewycz, S., Hoffman, N., Botnaru, A., Deka, P. M. & Monga, M. Comparison of tipless and helical baskets in an in vitro ureteral model. Urology 64, 435–438 (2004). discussion 438.

    Article  Google Scholar 

  165. Juliebo-Jones, P. et al. Adverse events related to accessory devices used during ureteroscopy: findings from a 10-year analysis of the manufacturer and user facility device experience (MAUDE) database. BJUI Compass 5, 70–75 (2024).

    Article  Google Scholar 

  166. de la Rosette, J., Skrekas, T. & Segura, J. W. Handling and prevention of complications in stone basketing. Eur. Urol. 50, 991–999 (2006).

    Article  Google Scholar 

  167. Ansari, M. S., Goel, A., Karan, S. C., Aron, M. Holmium: YAG laser rescue for a stuck stone basket. Int. Urol. Nephrol. 34, 463–464 (2002).

    Article  CAS  Google Scholar 

  168. Najafi, Z., Tieu, T., Mahajan, A. M. & Schwartz, B. F. Significance of extraction forces in kidney stone basketing. J. Endourol. 29, 1270–1275 (2015).

    Article  Google Scholar 

  169. Chenven, E. S. & Bagley, D. H. Retrieval and releasing capabilities of stone-basket designs in vitro. J. Endourol. 19, 204–209 (2005).

    Article  Google Scholar 

  170. Assimos, D. et al. Preoperative JJ stent placement in ureteric and renal stone treatment: results from the Clinical Research Office of Endourological Society (CROES) ureteroscopy (URS) global study. BJU Int. 117, 648–654 (2016).

    Article  Google Scholar 

  171. Barghouthy, Y. et al. Silicone-hydrocoated ureteral stents encrustation and biofilm formation after 3-week dwell time: results of a prospective randomized multicenter clinical study. World J. Urol. 39, 3623–3629 (2021).

    Article  CAS  Google Scholar 

  172. Bernasconi, V. et al. Comprehensive overview of ureteral stents based on clinical aspects, material and design. Cent. European J. Urol. 76, 49–56 (2023).

    Google Scholar 

  173. Adanur, S. & Ozkaya, F. Challenges in treatment and diagnosis of forgotten/encrusted double-J ureteral stents: the largest single-center experience. Ren. Fail. 38, 920–926 (2016).

    Article  CAS  Google Scholar 

  174. Al-Kandari, A. M. et al. Effects of proximal and distal ends of double-J ureteral stent position on postprocedural symptoms and quality of life: a randomized clinical trial. J. Endourol. 21, 698–702 (2007).

    Article  Google Scholar 

  175. Juliebø-Jones, P. et al. Endourological management of encrusted ureteral stents: an up-to-date guide and treatment algorithm on behalf of the European Association of Urology Young Academic Urology Urolithiasis Group. Cent. Eur. J. Urol. 74, 571–578 (2021).

    Google Scholar 

  176. Livadas, K. E. et al. Ureteroscopic removal of mildly migrated stents using local anesthesia only. J. Urol. 178, 1998–2001 (2007).

    Article  Google Scholar 

  177. Meeks, J. J., Helfand, B. T., Thaxton, C. S. & Nadler, R. B. Retrieval of migrated ureteral stents by coaxial cannulation with a flexible ureteroscope and paired helical basket. J. Endourol. 22, 927–929 (2008).

    Article  Google Scholar 

  178. Maurice, M. J. & Cherullo, E. E. Urologic stenting-induced trauma: a comprehensive review and case series. Urology 84, 36–41 (2014).

    Article  Google Scholar 

  179. Ahmed, F. et al. Jejunal perforation and upward migration of double J stents during the cystoscopic procedure: a case report and review of literature. Pan Afr. Med. J. 42, 56 (2022).

    Article  Google Scholar 

  180. Arab, D., Zadeh, A. A., Eskandarian, R., Asaadi, M. & Ghods, K. An extremely rare complication of ureteral pigtail stent placement: a case report. Nephrourol. Mon. 8, e36527 (2016).

    Article  Google Scholar 

  181. Falahatkar, S., Hemmati, H. & Gholamjani Moghaddam, K. Intracaval migration: an uncommon complication of ureteral double-J stent placement. J. Endourol. 26, 119–121 (2012).

    Article  Google Scholar 

  182. Marques, V., Parada, B., Rolo, F. & Figueiredo, A. Intracaval misplacement of a double-J ureteral stent. BMJ Case Rep. 2018, bcr2017221713 (2018).

    Article  Google Scholar 

  183. Jendouzi, O. et al. Knotted double J ureteral stent: a case report and literature review. Pan Afr. Med. J. 43, 5 (2022).

    Article  Google Scholar 

  184. Dündar, M., Calişkan, T. & Koçak, I. Unexpected complication: renal parenchymal perforation with double-J ureteral stent. Urol. Res. 36, 279–281 (2008).

    Article  Google Scholar 

  185. Rahoui, M. et al. Life-threatening complication due to double-J stent: renal subcapsular hematoma. J. Surg. Case Rep. 2022, rjac329 (2022).

    Article  Google Scholar 

  186. Binbay, M. et al. Is there a difference in outcomes between digital and fiberoptic flexible ureterorenoscopy procedures? J. Endourol. 24, 1929–1934 (2010).

    Article  Google Scholar 

  187. Gao, X. et al. A novel ureterorenoscope for the management of upper urinary tract stones: initial experience from a prospective multicenter study. J. Endourol. 29, 718–724 (2015).

    Article  Google Scholar 

  188. Cai, Y. et al. A practical pressure measuring method for the upper urinary tract during ureteroscopy. Clin. Invest. Med. 35, E322 (2012).

    Article  Google Scholar 

  189. Borofsky, M. & Lingeman, J. The role of open and laparoscopic stone surgery in the modern era of endourology. Nat. Rev. Urol. 12, 392–400 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this review was provided by the StAR MD programme of the Royal College of Surgeons in Ireland

Author information

Authors and Affiliations

Authors

Contributions

O.C. researched data for the article, made a substantial contribution to discussion of the content and wrote the article. E.B. researched data for the article. S.O’M. made a substantial contribution to discussion of the content, and wrote and reviewed/edited the manuscript before submission. A.S., B.S. and N.F.D. made a substantial contribution to discussion of the content and reviewed/edited the manuscript before submission. E.M.C., M.T.W. and F.J.O’B. made a substantial contribution to discussion of the content.

Corresponding author

Correspondence to Orla Cullivan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Ioannis Kartalas Goumas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Baskets

Retrieval devices composed of wires for insertion into a scope.

Flexible scopes

A fibreoptic or digital telescoping camera with a flexible tip to allow improved access to anatomical structures.

Forniceal rupture

Perirenal extravasation of urine from the renal fornices. Deemed to result from increased renal pelvis pressure, most often associated with urinary obstruction.

French

A unit of measurement used for catheters and surgical instruments. It refers to the outer diameter of the instrument, with 1 French being the equivalent to 0.33 mm; thus a 21-French catheter has an outer diameter of 7 mm. Also known as Charriére and commonly shortened to Fr.

Guidewires

Used during urological procedures to obtain access to the kidney. Instruments such as ureteroscopes or access sheaths can be passed over guidewires to facilitate their entry into the ureter. They can be rigid or flexible in nature, with a hydrophilic coating.

Laser fibres

Devices consisting of a light source and laser medium that are inserted through a scope for disintegration and ablation purposes and have numerous urological applications.

Pyelotubular reflux

Retrograde passage of urine from the renal pelvis and calyces into the collecting ducts and renal tubules.

Pyelovenous reflux

Retrograde passage of urine from the renal pelvis and calyces into the renal vein.

Ureteric access sheaths

Tubular apparatuses consisting of an inner obturator and outer sheath that are inserted over a guidewire into the ureter to facilitate access to the upper urinary tract.

Ureteric intussusception

Condition in which the proximal ureteric wall telescopes into the more distal lumen. Main causes include ureteral wall neoplasms, ureteric calculi or endoscopic procedures of the ureter.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cullivan, O., Browne, E., O’Meara, S. et al. Iatrogenic upper urinary tract injuries during ureteroscopy for urolithiasis: a comprehensive review on incidence, mechanisms and preventative strategies. Nat Rev Urol (2025). https://doi.org/10.1038/s41585-025-01067-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-025-01067-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing