Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The current landscape of single-port robotic surgery in urology

Subjects

Abstract

The advent of the purpose-built da Vinci single-port robotic platform marks a pivotal advancement in minimally invasive urological surgery. Designed to overcome the ergonomic and technical limitations of prior single-site approaches, the single-port system enables complex procedures through a single incision, with enhanced dexterity, optimized use of confined spaces and improved cosmetic and peri-operative outcomes. The single-port system has been increasingly used across a wide range of urological indications, including robot-assisted radical prostatectomy, partial nephrectomy, nephroureterectomy and reconstructive surgeries such as pyeloplasty and ureteral re-implantation. Innovative access strategies, such as the single-port transvesical and low anterior access approaches, have facilitated regionalized and multi-quadrant surgeries without the need for repositioning or robot re-docking. These advances have translated into reduced morbidity, faster recovery and increased feasibility of opioid-sparing, same-day discharge protocols. As surgical expertise deepens and technology evolves, the single-port robotic platform stands as a refinement of minimally invasive surgery, and also as a potential paradigm shift in urological practice.

Key points

  • The single-port robotic platform enables complex urological procedures to be carried out through a single incision, enhancing surgical precision, ergonomics and access to confined spaces while reducing invasiveness.

  • The single-port system has been successfully applied across various urological procedures, including radical prostatectomy, partial nephrectomy, nephroureterectomy and reconstructive surgeries such as pyeloplasty and ureteral re-implantation.

  • Innovative approaches, such as transvesical and retroperitoneal low anterior access, have expanded single-port capabilities, enabling regionalized and multi-quadrant surgeries to be performed without repositioning or robot re-docking.

  • Single-port-related techniques have shown improved peri-operative outcomes, including reduced morbidity, reduced hospital stays and increased potential for opioid-sparing, outpatient recovery protocols.

  • The single-port platform addresses crucial technical limitations of previous single-site approaches, offering improved dexterity, control and surgeon ergonomics in narrow operative fields.

  • With growing clinical experience and ongoing technological development, single-port robotic surgery is positioned as a transformative advancement in minimally invasive urology, with potential to redefine procedural standards.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intraoperative room configuration for single-port robotic surgery.
Fig. 2: Surgical approaches for single-port robot-assisted radical prostatectomy.
Fig. 3: Extra-peritoneal versus transvesical single-port robot-assisted radical prostatectomy.
Fig. 4: Surgical approach for single-port robot-assisted partial nephrectomy.
Fig. 5: Surgical approach for single-port robot-assisted radical nephrectomy.
Fig. 6: Surgical approach for single-port radical cystectomy.

Similar content being viewed by others

References

  1. Autorino, R. & Porpiglia, F. Robotic surgery in urology: the way forward. World J. Urol. 38, 809–811 (2020).

    Article  PubMed  Google Scholar 

  2. Bignante, G. et al. Robotic-assisted surgery for the treatment of urologic cancers: recent advances. Expert. Rev. Med. Devices 21, 1165–1177 (2024).

    Article  PubMed  Google Scholar 

  3. Kaouk, J. H. et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur. Urol. 66, 1033–1043 (2014).

    Article  PubMed  Google Scholar 

  4. Kaouk, J. H. et al. Laparoendoscopic single-site surgery in urology: worldwide multi-institutional analysis of 1076 cases. Eur. Urol. 60, 998–1005 (2011).

    Article  PubMed  Google Scholar 

  5. Sorokin, I. et al. The decline of laparoendoscopic single-site surgery: a survey of the endourological society to identify shortcomings and guidance for future directions. J. Endourol. 31, 1049–1055 (2017).

    Article  PubMed  Google Scholar 

  6. Kaouk, J. et al. Robotic one access surgery (R-1): initial preclinical experience for urological surgeries. Urology 133, 5–10.e1 (2019).

    Article  PubMed  Google Scholar 

  7. Garisto, J. D., Bertolo, R. & Kaouk, J. Technique for docking and port placement using a purpose-built robotic system (SP1098) in human cadaver. Urology 119, 91–96 (2018).

    Article  PubMed  Google Scholar 

  8. Maurice, M. J., Ramirez, D. & Kaouk, J. H. Robotic laparoendoscopic single-site retroperitioneal renal surgery: initial investigation of a purpose-built single-port surgical system. Eur. Urol. 71, 643–647 (2017).

    Article  PubMed  Google Scholar 

  9. Kaouk, J., Bertolo, R., Eltemamy, M. & Garisto, J. Single-port robot-assisted radical prostatectomy: first clinical experience using the SP surgical system. Urology 124, 309 (2019).

    Article  PubMed  Google Scholar 

  10. Kaouk, J. et al. Single port transvesical robotic radical prostatectomy: initial clinical experience and description of technique. Urology 155, 130–137 (2021).

    Article  PubMed  Google Scholar 

  11. Beksac, A. T. et al. Single-port mini-Pfannenstiel robotic pyeloplasty: establishing a non-narcotic pathway along with a same-day discharge protocol. Urology 160, 130–135 (2022).

    Article  PubMed  Google Scholar 

  12. Kaouk, J. et al. Initial experience with single-port robotic-assisted kidney transplantation and autotransplantation. Eur. Urol. 80, 366–373 (2021).

    Article  PubMed  Google Scholar 

  13. Soputro, N. A., Ferguson, E. L., Ramos-Carpinteyro, R., Chavali, J. S. & Kaouk, J. The transition toward opioid-sparing outpatient radical prostatectomy: a single institution experience with three contemporary robotic approaches. Urology 180, 140–150 (2023).

    Article  PubMed  Google Scholar 

  14. Ditonno, F. et al. The single port robotic surgical ‘toolbox’: a primer for beginners. Minerva Urol. Nephrol. 76, 635–639 (2024).

    Article  PubMed  Google Scholar 

  15. Lenfant, L., Kim, S., Aminsharifi, A., Sawczyn, G. & Kaouk, J. Floating docking technique: a simple modification to improve the working space of the instruments during single-port robotic surgery. World J. Urol. 39, 1299–1305 (2021).

    Article  PubMed  Google Scholar 

  16. Soputro, N. A. & Kaouk, J. Single-port robot-assisted radical prostatectomy. World J. Urol. 42, 245 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moschovas, M. C. et al. Contemporary techniques of da Vinci SP radical prostatectomy: multicentric collaboration and expert opinion. Int. Braz. J. Urol. 48, 696–705 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moschovas, M. C. et al. Does type of robotic platform make a difference in the final cost of robotic-assisted radical prostatectomy? J. Robot. Surg. 16, 1329–1335 (2022).

    Article  PubMed  Google Scholar 

  19. Saidian, A. et al. Perioperative outcomes of single vs multi-port robotic assisted radical prostatectomy: a single institutional experience. J. Urol. 204, 490–495 (2020).

    Article  PubMed  Google Scholar 

  20. Agarwal, D. K. et al. Initial experience with da Vinci single-port robot-assisted radical prostatectomies. Eur. Urol. 77, 373–379 (2020).

    Article  PubMed  Google Scholar 

  21. Noh, T. I. et al. Single-port vs multiport robot-assisted radical prostatectomy: a propensity score matching comparative study. J. Endourol. 36, 661–667 (2022).

    Article  PubMed  Google Scholar 

  22. Kim, K. H., Song, W., Yoon, H. & Lee, D. H. Single-port robot-assisted radical prostatectomy with the da Vinci SP system: a single surgeon’s experience. Investig. Clin. Urol. 61, 173–179 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Balasubramanian, S. et al. Comparison of three approaches to single-port robot-assisted radical prostatectomy: our institution’s initial experience. J. Endourol. 36, 1551–1558 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Norton, J. C. et al. Incidence of incisional hernias after single-port versus multi-port robotic radical prostatectomy. J. Endourol. 39, 2–9 (2025).

    Article  PubMed  Google Scholar 

  25. Abaza, R., Martinez, O., Murphy, C., Urkmez, A. & Davis, J. Adoption of single-port robotic prostatectomy: two alternative strategies. J. Endourol. 34, 1230–1234 (2020).

    Article  PubMed  Google Scholar 

  26. Abou Zeinab, M. et al. Single-port extraperitoneal and transperitoneal radical prostatectomy: a multi-institutional propensity-score matched study. Urology 171, 140–145 (2023).

    Article  PubMed  Google Scholar 

  27. Koukourikis, P., Alqahtani, A. A., Han, W. K. & Rha, K. H. Pure single-port Retzius-sparing robot-assisted radical prostatectomy with the da Vinci SP: initial experience and technique description. BJUI Compass 3, 251–256 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bassett, J. C., Salibian, S. & Crivellaro, S. Single-port Retzius-sparing robot-assisted radical prostatectomy: feasibility and early outcomes. J. Endourol. 36, 620–625 (2022).

    Article  PubMed  Google Scholar 

  29. Galfano, A. et al. A new anatomic approach for robot-assisted laparoscopic prostatectomy: a feasibility study for completely intrafascial surgery. Eur. Urol. 58, 457–461 (2010).

    Article  PubMed  Google Scholar 

  30. Joseph, J. V., Rosenbaum, R., Madeb, R., Erturk, E. & Patel, H. R. H. Robotic extraperitoneal radical prostatectomy: an alternative approach. J. Urol. 175, 945–950; discussion 951 (2006).

    Article  PubMed  Google Scholar 

  31. Kaouk, J., Valero, R., Sawczyn, G. & Garisto, J. Extraperitoneal single-port robot-assisted radical prostatectomy: initial experience and description of technique. BJU Int. 125, 182–189 (2020).

    Article  PubMed  Google Scholar 

  32. Soputro, N. A. et al. Perioperative complications of single-port and multiport robotic radical prostatectomy: a single institutional comparison analysis. J. Endourol. 38, 450–457 (2024).

    Article  PubMed  Google Scholar 

  33. Ko, Y. H., Jang, J. Y., Kim, Y. U. & Kim, S. W. Faster both in operative time and functional recovery by the extraperitoneal daVinci SP-based robot-assisted radical prostatectomy: a propensity score matching analysis compared to transperitoneal multiport counterpart. J. Robot. Surg. 18, 205 (2024).

    Article  PubMed  Google Scholar 

  34. Kwon, H. J. et al. Extraperitoneal single-port robot-assisted radical prostatectomy: short-term outcomes and technique description. Investig. Clin. Urol. 65, 442–450 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Soputro, N. A. et al. Complications of single-port robot-assisted radical prostatectomy: multi-institutional analysis from the single-port advanced research consortium (SPARC). BJU Int. 134, 54–62 (2024).

    Article  PubMed  Google Scholar 

  36. Harrison, R. et al. Propensity-score matched analysis between extraperitoneal single port and intraperitoneal multiport radical prostatectomy: a single-institutional experience. Urology 165, 198–205 (2022).

    Article  PubMed  Google Scholar 

  37. Lenfant, L. et al. Robot-assisted radical prostatectomy using single-port perineal approach: technique and single-surgeon matched-paired comparative outcomes. Eur. Urol. 79, 384–392 (2021).

    Article  PubMed  Google Scholar 

  38. Ferguson, E. L. et al. Single-port robotic radical prostatectomy using transvesical and transperineal access in patients with a hostile abdomen. J. Endourol. 38, 150–158 (2024).

    Article  PubMed  Google Scholar 

  39. Soputro, N. A. et al. Vesicourethral anastomosis in transvesical single-port robotic radical prostatectomy: a technical description and perioperative outcomes. J. Endourol. 37, 1001–1011 (2023).

    Article  PubMed  Google Scholar 

  40. Soputro, N. A. et al. Predictors for selection of outpatient single-port robot-assisted laparoscopic radical prostatectomy. BJU Int. 135, 249–259 (2025).

    Article  PubMed  Google Scholar 

  41. Goldfarb, M. A., Protyniak, B. & Schultheis, M. Hostile abdomen index risk stratification and laparoscopic complications. JSLS 18, 14–19 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kaouk, J. et al. Transvesical percutaneous access allows for epidural anesthesia without mechanical ventilation in single-port robotic radical and simple prostatectomy. Urology 175, 209–215 (2023).

    Article  PubMed  Google Scholar 

  43. Ramos-Carpinteyro, R. et al. Predictors of early continence after single-port transvesical robot-assisted radical prostatectomy. Urology 184, 176–181 (2024).

    Article  PubMed  Google Scholar 

  44. Ghoreifi, A. et al. Identifying the best candidate for focal therapy: a comprehensive review. Prostate Cancer Prostatic Dis. https://doi.org/10.1038/s41391-024-00907-y (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kaouk, J. H. et al. Single-port robotic transvesical partial prostatectomy for localized prostate cancer: initial series and description of technique. Eur. Urol. 82, 551–558 (2022).

    Article  PubMed  Google Scholar 

  46. Pedraza, A. M. et al. Single-port robotic transvesical partial prostatectomy: a novel approach for focal treatment in prostate cancer. J. Endourol. 39, 261–270 (2025).

    Article  PubMed  Google Scholar 

  47. Razdan et al. Developing an algorithm on multiport and single port use for robotic prostate and kidney surgery. American Urological Association https://auanews.net/issues/articles/2024/march-2024/developing-an-algorithm-on-multiport-and-single-port-use-for-robotic-prostate-and-kidney-surgery (2024).

  48. Davidiuk, A. J. et al. Mayo adhesive probability score: an accurate image-based scoring system to predict adherent perinephric fat in partial nephrectomy. Eur. Urol. 66, 1165–1171 (2014).

    Article  PubMed  Google Scholar 

  49. Soputro, N. A. et al. Development of patient-specific nomogram to assist in clinical decision-making for single port versus multi-port robotic partial nephrectomy: a report from the single port advanced robotic consortium. J. Endourol. 39, 252–260 (2025).

    Article  PubMed  Google Scholar 

  50. Carbonara, U. et al. Retroperitoneal robot-assisted partial nephrectomy: a systematic review and pooled analysis of comparative outcomes. Eur. Urol. Open. Sci. 40, 27–37 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bang, S. et al. Comparison of transperitoneal and retroperitoneal partial nephrectomy with single-port robot. J. Endourol. 37, 551–556 (2023).

    Article  PubMed  Google Scholar 

  52. Rich, J. M. et al. Transperitoneal versus retroperitoneal single-port robotic-assisted partial nephrectomy: an analysis from the single port advanced research consortium. Eur. Urol. Focus. 9, 1059–1064 (2023).

    Article  PubMed  Google Scholar 

  53. Ditonno, F. et al. Single port partial nephrectomy: techniques and outcomes. MIS 7, 36 (2023).

    Google Scholar 

  54. Billah, M. et al. Single port modified partial nephrectomy: novel simultaneous access to peritoneal and retroperitoneal partial nephrectomy, initial clinical experience. J. Endourol. 38, 444–449 (2024).

    Article  PubMed  Google Scholar 

  55. Pellegrino, A. A., Chen, G., Morgantini, L., Calvo, R. S. & Crivellaro, S. Simplifying retroperitoneal robotic single-port surgery: novel supine anterior retroperitoneal access. Eur. Urol. 84, 223–228 (2023).

    Article  PubMed  Google Scholar 

  56. Shumaker, L., Rais-Bahrami, S. & Nix, J. Renal hilar clamping with a standard robotic bulldog clamp using the single port da Vinci robot. Urology 145, 297 (2020).

    Article  PubMed  Google Scholar 

  57. Homewood, D. et al. An overview of renorrhaphy techniques for partial nephrectomy. Int. J. Urol. 32, 329–340 (2025).

    Article  PubMed  Google Scholar 

  58. Socarrás, M. R. et al. Retroperitoneal robot-assisted partial nephrectomy (rRAPN): surgical technique and review. Curr. Urol. Rep. 22, 33 (2021).

    Article  PubMed  Google Scholar 

  59. Tameze, Y. & Low, Y. H. Outpatient robotic surgery: considerations for the anesthesiologist. Adv. Anesth. 40, 15–32 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bhalodia, V. M., Sestokas, A. K., Tomak, P. R. & Schwartz, D. M. Transcranial electric motor evoked potential detection of compressional peroneal nerve injury in the lateral decubitus position. J. Clin. Monit. Comput. 22, 319–326 (2008).

    Article  PubMed  Google Scholar 

  61. Mills, J. T. et al. Positioning injuries associated with robotic assisted urological surgery. J. Urol. 190, 580–584 (2013).

    Article  PubMed  Google Scholar 

  62. Shaikh, S., Nabi, G. & McClinton, S. Risk factors and prevention of rhabdomyolysis after laparoscopic nephrectomy. BJU Int. 98, 960–962 (2006).

    Article  PubMed  Google Scholar 

  63. Yanagi, M. et al. Rhabdomyolysis after retroperitoneal laparoscopic radical nephrectomy in the lateral decubitus position. J. Nippon Med. Sch. 89, 466–468 (2022).

    Article  PubMed  Google Scholar 

  64. Cannoletta, D. et al. Surgical outcomes of novel retroperitoneal low anterior vs posterior and transperitoneal access in single-port partial nephrectomy. World J. Urol. 42, 387 (2024).

    Article  PubMed  Google Scholar 

  65. Ditonno, F. et al. Implementation of single-port robotic urologic surgery: experience at a large academic center. J. Robot. Surg. 18, 119 (2024).

    Article  PubMed  Google Scholar 

  66. Raver, M. et al. Adoption of single-port robotic partial nephrectomy increases utilization of the retroperitoneal approach: a report from the single-port advanced research consortium. J. Laparoendosc. Adv. Surg. Tech. A 35, 131–137 (2025).

    Article  PubMed  Google Scholar 

  67. Kaouk, J., Garisto, J., Eltemamy, M. & Bertolo, R. Pure single-site robot-assisted partial nephrectomy using the SP surgical system: initial clinical experience. Urology 124, 282–285 (2019).

    Article  PubMed  Google Scholar 

  68. Francavilla, S. et al. Single-port robot assisted partial nephrectomy: initial experience and technique with the da Vinci single-port platform (IDEAL phase 1). Minerva Urol. Nephrol. 74, 216–224 (2022).

    Article  PubMed  Google Scholar 

  69. Shukla, D., Small, A., Mehrazin, R. & Palese, M. Single-port robotic-assisted partial nephrectomy: initial clinical experience and lessons learned for successful outcomes. J. Robot. Surg. 15, 293–298 (2021).

    Article  PubMed  Google Scholar 

  70. Fang, A. M., Saidian, A., Magi-Galluzzi, C., Nix, J. W. & Rais-Bahrami, S. Single-port robotic partial and radical nephrectomies for renal cortical tumors: initial clinical experience. J. Robot. Surg. 14, 773–780 (2020).

    Article  PubMed  Google Scholar 

  71. Okhawere, K. E. et al. A propensity-matched comparison of the perioperative outcomes between single-port and multi-port robotic assisted partial nephrectomy: a report from the single port advanced research consortium (SPARC). J. Endourol. 36, 1526–1531 (2022).

    Article  PubMed  Google Scholar 

  72. Palacios, A. R., Morgantini, L., Trippel, R., Crivellaro, S. & Abern, M. R. Comparison of perioperative outcomes between retroperitoneal single-port and multiport robot-assisted partial nephrectomies. J. Endourol. 36, 1545–1550 (2022).

    Article  PubMed  Google Scholar 

  73. Harrison, R. et al. Single-port versus multiport partial nephrectomy: a propensity-score-matched comparison of perioperative and short-term outcomes. J. Robot. Surg. 17, 223–231 (2023).

    PubMed  Google Scholar 

  74. Glaser, Z. A. et al. Single- versus multi-port robotic partial nephrectomy: a comparative analysis of perioperative outcomes and analgesic requirements. J. Robot. Surg. 16, 695–703 (2022).

    Article  PubMed  Google Scholar 

  75. Mehrazin, R., Ranti, D. & Altschuler, J. Early perioperative outcomes of single-port compared to multi-port robot-assisted laparoscopic partial nephrectomy. J. Robot. Surg. 17, 2409–2414 (2023).

    Article  PubMed  Google Scholar 

  76. Licari, L. C. et al. Single-port vs multi-port robot-assisted partial nephrectomy: a single center propensity score-matched analysis. Eur. J. Surg. Oncol. 50, 108011 (2024).

    Article  PubMed  Google Scholar 

  77. Li, K.-P., Chen, S.-Y., Wang, C.-Y. & Yang, L. Perioperative and oncologic outcomes of single-port versus conventional robotic-assisted partial nephrectomy: an evidence-based analysis of comparative outcomes. J. Robot. Surg. 17, 765–777 (2023).

    Article  PubMed  Google Scholar 

  78. Nguyen, T. T. et al. Single-port vs multiport robot-assisted partial nephrectomy: a meta-analysis. J. Endourol. 38, 253–261 (2024).

    PubMed  Google Scholar 

  79. Lasorsa, F. et al. Predictors of delayed hospital discharge after robot-assisted partial nephrectomy: the impact of single-port robotic surgery. World J. Urol. 43, 30 (2024).

    Article  PubMed  Google Scholar 

  80. Pellegrino, A., Briganti, A. & Crivellaro, S. Same-day outpatient robotic surgery in urology. Eur. Urol. Focus 11, 11–14 (2025).

    Article  PubMed  Google Scholar 

  81. Anele, U. A. et al. Robotic versus laparoscopic radical nephrectomy: a large multi-institutional analysis (ROSULA Collaborative Group). World J. Urol. 37, 2439–2450 (2019).

    Article  PubMed  Google Scholar 

  82. Crocerossa, F. et al. Robot-assisted radical nephrectomy: a systematic review and meta-analysis of comparative studies. Eur. Urol. 80, 428–439 (2021).

    Article  PubMed  Google Scholar 

  83. Kim, K. H., Ahn, H. K., Kim, M. & Yoon, H. Technique and perioperative outcomes of single-port robotic surgery using the da Vinci SP platform in urology. Asian J. Surg. 46, 472–477 (2023).

    Article  PubMed  Google Scholar 

  84. Orsini, A. et al. Single port robotic nephrectomy via lower anterior retroperitoneal approach: feasible, safe and effective option in surgically complex patients. Int. Braz. J. Urol. 50, 785–786 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rais-Bahrami, S., Romero, F. R., Lima, G. C., Kohanim, S. & Kavoussi, L. R. Reinstatement of continuous ambulatory peritoneal dialysis after transperitoneal laparoscopic nephrectomy. Urology 68, 715–717 (2006).

    Article  PubMed  Google Scholar 

  86. Pandolfo, S. D. et al. Upper tract urothelial cancer: guideline of guidelines. Cancers 16, 1115 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Veccia, A. et al. Single-stage Xi® robotic radical nephroureterectomy for upper tract urothelial carcinoma: surgical technique and outcomes. Minerva Urol. Nephrol. 74, 233–241 (2022).

    Article  PubMed  Google Scholar 

  88. Bang, S., Cho, H. J., Ha, U.-S., Lee, J. Y. & Hong, S.-H. Retroperitoneal single-port robot-assisted nephroureterectomy with bladder cuff excision: initial experience and description of the technique. J. Clin. Med. 12, 6091 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pellegrino, A. A., Mima, M. & Crivellaro, S. Application of the single-port robotic platform during radical nephroureterectomy for upper tract urothelial carcinoma: feasibility of the single-port robot in the multi-quadrant setting. Transl. Androl. Urol. 12, 1469–1474 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sparwasser, P. et al. First completely robot-assisted retroperitoneal nephroureterectomy with bladder cuff: a step-by-step technique. World J. Urol. 40, 1019–1026 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Izzo, A. et al. Single-port robot-assisted nephroureterectomy via a supine anterior approach: step-by-step technique. BJU Int. 135, 535–538 (2025).

    Article  PubMed  Google Scholar 

  92. Okhawere, K. E. et al. Comparison of outcomes between single-port and multi-port robotic radical nephrectomy. J. Robot. Surg. 18, 407 (2024).

    Article  PubMed  Google Scholar 

  93. Kaouk, J., Garisto, J., Eltemamy, M. & Bertolo, R. Step-by-step technique for single-port robot-assisted radical cystectomy and pelvic lymph nodes dissection using the da Vinci® SP™ surgical system. BJU Int. 124, 707–712 (2019).

    Article  PubMed  Google Scholar 

  94. Menon, M. et al. Nerve-sparing robot-assisted radical cystoprostatectomy and urinary diversion. BJU Int. 92, 232–236 (2003).

    Article  PubMed  Google Scholar 

  95. Ali, D. et al. Single-port robotic radical cystectomy with intracorporeal bowel diversion: initial experience and review of surgical outcomes. J. Endourol. 36, 216–223 (2022).

    Article  PubMed  Google Scholar 

  96. Fang, A. M. et al. Postoperative outcomes and analgesic requirements of single-port vs multiport robotic-assisted radical cystectomy. J. Endourol. 38, 438–443 (2024).

    Article  PubMed  Google Scholar 

  97. Tyson, M., Andrews, P., Cheney, S. & Humphreys, M. Single incision robotic cystectomy and hybrid orthotopic neobladder reconstruction: a step by step description. Urology 156, 285–288 (2021).

    Article  PubMed  Google Scholar 

  98. Hemal, S., Sobhani, S., Hakimi, K., Rosenberg, S. & Gill, I. Single-port robot assisted partial cystectomy for urachal adenocarcinoma. Int. Braz. J. Urol. 50, 659–660 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Singh, A. et al. Comparing outcomes of robotic and open inguinal lymph node dissection in patients with carcinoma of the penis. J. Urol. 199, 1518–1525 (2018).

    Article  PubMed  Google Scholar 

  100. Tillu, N. et al. Single-port robot-assisted superficial inguinal node dissection for penile cancer. Videourology https://doi.org/10.1089/vid.2023.0062 (2023).

  101. Patel, A. S. & Isharwal, S. Single-port robotic inguinal lymph node dissection: a safe and feasible option for penile cancer. Surg. Oncol. 38, 101633 (2021).

    Article  PubMed  Google Scholar 

  102. Perdonà, S. et al. Advancing surgical management of penile cancer: single port bilateral inguinal lymph node dissection. Int. Braz. J. Urol. 51, e20240663 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Perdonà, S. et al. Single-port robot-assisted post-chemotherapy unilateral retroperitoneal lymph node dissection: feasibility and surgical considerations. Int. Braz. J. Urol. 51, e20250091 (2025).

    Article  PubMed  Google Scholar 

  104. Fareed, K. et al. Robotic single port suprapubic transvesical enucleation of the prostate (R-STEP): initial experience. BJU Int. 110, 732–737 (2012).

    Article  PubMed  Google Scholar 

  105. Franco, A. et al. Robot-assisted single-port transvesical enucleation of the prostate: step-by-step technique and early single-centre experience. BJU Int. 133, 778–782 (2024).

    Article  PubMed  Google Scholar 

  106. Ramos, R. et al. Single-port transvesical robot-assisted simple prostatectomy: surgical technique and clinical outcomes. Eur. Urol. 85, 445–456 (2024).

    Article  PubMed  Google Scholar 

  107. Ramos-Carpinteyro, R. et al. Predictors of same-day discharge after single-port transvesical enucleation of the prostate. Urology 193, 107–113 (2024).

    Article  PubMed  Google Scholar 

  108. Palacios, D. A. et al. Holmium laser enucleation of the prostate vs transvesical single-port robotic simple prostatectomy for large prostatic glands. Urology 181, 98–104 (2023).

    Article  PubMed  Google Scholar 

  109. Talamini, S. et al. Surgical treatment of benign prostatic hyperplasia: thulium enucleation versus single-port transvesical robotic simple prostatectomy. BJUI Compass 4, 549–555 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gurung, P. M. et al. Transvesical versus transabdominal — which is the best approach to bladder diverticulectomy using the single port robotic system? Urology 142, 248 (2020).

    Article  PubMed  Google Scholar 

  111. Bologna, E. et al. Transperitoneal single-port robotic firefly-guided bladder diverticulectomy and simple prostatectomy. Cent. European J. Urol. 77, 161–162 (2024).

    PubMed  PubMed Central  Google Scholar 

  112. Krajewski, W., Wojciechowska, J., Dembowski, J., Zdrojowy, R. & Szydełko, T. Hydronephrosis in the course of ureteropelvic junction obstruction: an underestimated problem? Current opinions on the pathogenesis, diagnosis and treatment. Adv. Clin. Exp. Med. 26, 857–864 (2017).

    Article  PubMed  Google Scholar 

  113. Harrison, R. et al. Single port vs multiport robotic pyeloplasty: propensity-score matched analysis of perioperative and follow-up outcomes. Urology 160, 124–129 (2022).

    Article  PubMed  Google Scholar 

  114. Kang, S. K. et al. Comparison of intraoperative and short-term postoperative outcomes between robot-assisted laparoscopic multi-port pyeloplasty using the da Vinci Si system and single-port pyeloplasty using the da Vinci SP system in children. Investig. Clin. Urol. 62, 592–599 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ramos, R. et al. Low anterolateral incision for single-port extraperitoneal robot-assisted pyeloplasty: description of technique and initial experience. World J. Urol. 42, 263 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Anderson, J. C. & Hynes, W. Retrocaval ureter; a case diagnosed pre-operatively and treated successfully by a plastic operation. Br. J. Urol. 21, 209–214 (1949).

    Article  PubMed  Google Scholar 

  117. Yang, J.-W. et al. Single-port robot-assisted pyeloplasty versus multiport pyeloplasty: evidence from controlled trials. J. Robot. Surg. 19, 87 (2025).

    Article  PubMed  Google Scholar 

  118. Gu, L., Li, Y., Li, X. & Liu, W. Single-port vs multiple-port robot-assisted laparoscopic pyeloplasty for the treatment of ureteropelvic junction obstruction: a systematic review and meta-analysis. J. Endourol. 37, 681–687 (2023).

    Article  PubMed  Google Scholar 

  119. Ditonno, F. et al. Single port robot-assisted pyeloplasty: an early comparative outcomes analysis. Int. J. Med. Robot. 20, e2622 (2024).

    Article  PubMed  Google Scholar 

  120. Li, J., Chen, J., Jia, J., He, S. & Xu, D. Comparison of robot-assisted single-port-plus-one pyeloplasty vs. laparoscopic single-port pyeloplasty in the treatment of ureteropelvic junction obstruction in children. Front. Pediatr. 12, 1371514 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Asghar, A. M., Lee, R. A., Yang, K. K., Metro, M. & Eun, D. D. Robot-assisted distal ureteral reconstruction for benign pathology: current state. Investig. Clin. Urol. 61, S23–S32 (2020).

    Article  PubMed  Google Scholar 

  122. Abboudi, H. et al. Ureteric injury: a challenging condition to diagnose and manage. Nat. Rev. Urol. 10, 108–115 (2013).

    Article  PubMed  Google Scholar 

  123. Kaouk, J., Garisto, J. & Bertolo, R. Robotic urologic surgical interventions performed with the single port dedicated platform: first clinical investigation. Eur. Urol. 75, 684–691 (2019).

    Article  PubMed  Google Scholar 

  124. Kaouk, J. H., Garisto, J., Eltemamy, M. & Bertolo, R. Robot-assisted surgery for benign distal ureteral strictures: step-by-step technique using the SP® surgical system. BJU Int. 123, 733–739 (2019).

    Article  PubMed  Google Scholar 

  125. Heo, J. E. et al. Outcomes of single-port robotic ureteral reconstruction using the da Vinci SP® system. Investig. Clin. Urol. 64, 373–379 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Corse, T. D. et al. A multi-institutional experience utilizing Boari flap in robotic urinary reconstruction. J. Endourol. 37, 775–780 (2023).

    PubMed  Google Scholar 

  127. Xu, A. J. et al. Single-port robotic laparoscopic ureterocalicostomy: surgical technique and clinical outcomes. Can. J. Urol. 31, 12072–12076 (2024).

    PubMed  Google Scholar 

  128. Xu, A. J., Shakir, N. A., Jun, M. S. & Zhao, L. C. Robotic assisted repair of post-ileal conduit parastomal hernia: technique and outcomes. Urology 158, 232–236 (2021).

    Article  PubMed  Google Scholar 

  129. Chen, B., Alford, A. V., Lonze, B. E. & Zhao, L. C. Single-port robotic-assisted ureteral reconstruction for management of strictures after renal transplantation. Am. J. Transpl. 23, 1800–1805 (2023).

    Article  Google Scholar 

  130. Liu, W., Shakir, N. & Zhao, L. C. Single-port robotic posterior urethroplasty using buccal mucosa grafts: technique and outcomes. Urology 159, 214–221 (2022).

    Article  PubMed  Google Scholar 

  131. Zhang, T. R., Alford, A., Wang, A. & Zhao, L. C. Robotic-assisted posterior urethroplasty: outcomes from 105 men in a single-center experience. Urology 181, 167–173 (2023).

    Article  PubMed  Google Scholar 

  132. Emrich Accioly, J. P. et al. Single-port, robot-assisted transanal harvest of rectal mucosa grafts for substitution urethroplasty. Urology 166, 1–5 (2022).

    Article  PubMed  Google Scholar 

  133. Dy, G. W., Jun, M. S., Blasdel, G., Bluebond-Langner, R. & Zhao, L. C. Outcomes of gender affirming peritoneal flap vaginoplasty using the da Vinci single port versus Xi robotic systems. Eur. Urol. 79, 676–683 (2021).

    Article  PubMed  Google Scholar 

  134. Rudnick, B., Billah, M. S., Nguyen, J., Sheckley, F. & Ahmed, M. Surgical technique and perioperative outcomes following single-port robotic adrenalectomy: a single institutional experience. J. Endourol. 38, 353–357 (2024).

    Article  PubMed  Google Scholar 

  135. Kim, B.-C. et al. Safety and feasibility of single-port surgery for posterior retro-peritoneal adrenalectomy using the da Vinci SP robotic system: a retrospective cohort study. Surg. Endosc. 37, 8269–8276 (2023).

    Article  PubMed  Google Scholar 

  136. Humar, A. et al. Are wound complications after a kidney transplant more common with modern immunosuppression? Transplantation 72, 1920–1923 (2001).

    Article  PubMed  Google Scholar 

  137. Lynch, R. J. et al. Obesity, surgical site infection, and outcome following renal transplantation. Ann. Surg. 250, 1014–1020 (2009).

    Article  PubMed  Google Scholar 

  138. Oberholzer, J. et al. Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. Am. J. Transpl. 13, 721–728 (2013).

    Article  Google Scholar 

  139. Eltemamy, M., Garisto, J., Miller, E., Wee, A. & Kaouk, J. Single port robotic extra-peritoneal dual kidney transplantation: initial preclinical experience and description of the technique. Urology 134, 232–236 (2019).

    Article  PubMed  Google Scholar 

  140. Kaouk, J. et al. Single port robotic kidney autotransplantation: initial case series and description of technique. Urology 176, 87–93 (2023).

    Article  PubMed  Google Scholar 

  141. Chavali, J. S., Kaouk, J., Soputro, N. & Eltemamy, M. Single-port extraperitoneal robotic kidney transplantation: early experience of novel technique. BJU Int. 135, 433–436 (2025).

    Article  PubMed  Google Scholar 

  142. Palese, M. A. et al. Comparison of single-port robotic donor nephrectomy and laparoscopic donor nephrectomy. J. Endourol. 38, 136–141 (2024).

    Article  PubMed  Google Scholar 

  143. Noh, T. I. et al. Initial experience of single-port robot-assisted radical prostatectomy: a single surgeon’s experience with technique description. Prostate Int. 10, 85–91 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Pellegrino, A. A. et al. Learning curve for single-port robot-assisted urological surgery: single-center experience and implications for adoption. Eur Urol Focus 11, 136–141 (2024).

    Article  PubMed  Google Scholar 

  145. Ditonno, F. et al. Current expectations and opinions on single-port robotic surgery: a survey among European experts by the SPARC collaborative group. Eur. Urol. Open. Sci. 60, 54–57 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ghazi, A. et al. Do skills naturally transfer between multiport and single-port robotic platforms? A comparative study in a simulated environment. J. Endourol. 37, 233–239 (2023).

    Article  PubMed  Google Scholar 

  147. Bologna, E. et al. The impact of single-port robotic surgery: a survey among urology residents and fellows in the United States. J. Robot. Surg. 18, 369 (2024).

    Article  PubMed  Google Scholar 

  148. Lenfant, L., Sawczyn, G., Kim, S., Aminsharifi, A. & Kaouk, J. Single-institution cost comparison: single-port versus multiport robotic prostatectomy. Eur. Urol. Focus. 7, 532–536 (2021).

    Article  PubMed  Google Scholar 

  149. Zhang, C. et al. Robot-assisted single-port retroperitoneal partial nephrectomy with a novel purpose-built single-port robotic system with deformable surgical instruments. World J. Urol. 42, 134 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wu, Z. et al. Robot-assisted single-port radical prostatectomy with the SHURUI SP and da Vinci SP platforms: comparison of the technology, intraoperative performance, and outcomes. Eur. Urol. Open. Sci. 67, 26–37 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zhang, L. et al. Initial urological surgery using a new domestic single-port surgical robotic system. J. Endourol. 39, 375–380 (2025).

    Article  PubMed  Google Scholar 

  152. MicroPort® MedBot™’s Toumai® Single-port laparoscopic surgical robot receives NMPA market approval in China. MedBot https://www.medbotsurgical.com/en/news/256.html (2025).

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.A., A. Biasatti and N.A.S. researched data for the article. R.A., A. Biasatti and N.A.S. contributed substantially to discussion of the content. R.A., A. Biasatti, N.A.S. and L.C.Z. wrote the article. R.A., F.P., S.D.P., F.A., R.N., C.R., L.C.Z., A. Ghazi, B.C., C.E., A. Mattei, C.D.F., A. Breda, B.R., F.M., A. Briganti, A.A.P., A. Mottrie, R.D.G., A.H., M.G., M.C.M., V. Patel, G.S., A. Galfano, S.S., R.B., S.P., V. Pansadoro, F.L.F.C., J.V.J., M.R., J.S-R., B.Y., J.N., D.I.L., S.R.B., S.H., M.E., A.T.B., Z.S., L.M.S., M.B., M.P., A.T., P.W., E.E.C., S.V., J.A.L., Z.W., M.S., M.A., R.M., K.B., R.E.L., S.C. and J.K. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Riccardo Autorino.

Ethics declarations

Competing interests

R.N. is a proctor for Intuitive surgical and a consultant for Fortec medical and Lexion. A. Ghazi has a research grant with Intuitive. A. Mattei is the CEO of Orsi Academy and adviser of Medtronic, Conmed, Microport, Medicaroid, Intuitive and Samantree. M.R. is consultant and proctor for Intuitive. J.S.R. is consultant and proctor for Intuitive. S.R.B. received research funding from Blue Earth Diagnostics and Progenics/Lantheus and is consultant for Intuitive Surgical and GE Healthcare. J.A.L. was a speaker for Intuitive surgical and is on the scientific advisory board of Medtronic. M.S. is on the Intuitive advisory board of VTI. M.A. is a consultant for Intuitive surgical, VTI, Ethicon and BioTissue. R.E.L. is a consultant and proctor for Intuitive. S.C. is a consultant and proctor for Intuitive. J.K. is a consultant for Intuitive, Endoquest, VTI and is on the advisory board of Method AI. R.A. is a consultant and proctor for Intuitive and is on the advisory board of Method AI. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Abhay Rane and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biasatti, A., Soputro, N.A., Porpiglia, F. et al. The current landscape of single-port robotic surgery in urology. Nat Rev Urol (2025). https://doi.org/10.1038/s41585-025-01081-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-025-01081-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing