Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Outlook
  • Published:

Smooth muscle cell plasticity in pelvic organ prolapse

Vaginal wall smooth muscle underpins pelvic support. In pelvic organ prolapse, smooth muscle cells are depleted and shift from a contractile phenotype to remodelling programmes, paralleling stress-induced switching in vascular disease. Defining trajectories and drivers could yield biomarkers and translatable, locally deliverable therapies to curb progression and recurrence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multilayer regulation of smooth muscle cell phenotypic switching in pelvic organ prolapse and parallels with vascular disease.

References

  1. Friedman, T., Eslick, G. D. & Dietz, H. P. Risk factors for prolapse recurrence: systematic review and meta-analysis. Int. Urogynecol. J. 29, 13–21 (2018).

    Article  PubMed  Google Scholar 

  2. De Landsheere, L. et al. Histology of the vaginal wall in women with pelvic organ prolapse: a literature review. Int. Urogynecol. J. 24, 2011–2020 (2013).

    Article  PubMed  Google Scholar 

  3. Sferra, R. et al. Neurovascular alterations of muscularis propria in the human anterior vaginal wall in pelvic organ prolapse. J. Anat. 235, 281–288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mei, S. et al. The role of smooth muscle cells in the pathophysiology of pelvic organ prolapse. Female Pelvic Med. Reconstr. Surg. 19, 254–259 (2013).

    Article  PubMed  Google Scholar 

  5. Northington, G. M., Basha, M., Arya, L. A., Wein, A. J. & Chacko, S. Contractile response of human anterior vaginal muscularis in women with and without pelvic organ prolapse. Reprod. Sci. 18, 296–303 (2011).

    Article  PubMed  Google Scholar 

  6. Li, Y. et al. Single-cell transcriptome profiling of the vaginal wall in women with severe anterior vaginal prolapse. Nat. Commun. 12, 87 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. White, S. E. et al. Remodelling of murine vaginal smooth muscle function with reproductive age and elastic fiber disruption. Acta Biomater. 175, 186–198 (2024).

    Article  PubMed  Google Scholar 

  8. Chakraborty, R. et al. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc. Sci. 2, 79–94 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thenappan, T., Chan, S. Y. & Weir, E. K. Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension. Am. J. Physiol. Heart Circ. Physiol. 315, H1322–H1331 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tan, B. et al. Endothelial progenitor cells control remodelling of uterine spiral arteries for the establishment of utero-placental circulation. Dev. Cell 59, 1842–1859.e12 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, H., Lin, L., Zhang, M. et al. Smooth muscle cell plasticity in pelvic organ prolapse. Nat Rev Urol (2026). https://doi.org/10.1038/s41585-026-01131-0

Download citation

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41585-026-01131-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing