Abstract
The Antarctic Ice Sheet is an important indicator of climate change and driver of sea-level rise. Here we combine satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that it lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimetres (errors are one standard deviation). Over this period, ocean-driven melting has caused rates of ice loss from West Antarctica to increase from 53 ± 29 billion to 159 ± 26 billion tonnes per year; ice-shelf collapse has increased the rate of ice loss from the Antarctic Peninsula from 7 ± 13 billion to 33 ± 16 billion tonnes per year. We find large variations in and among model estimates of surface mass balance and glacial isostatic adjustment for East Antarctica, with its average rate of mass gain over the period 1992–2017 (5 ± 46 billion tonnes per year) being the least certain.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).
Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic ice sheet. Science 333, 1427–1430 (2011).
Zwally, H. J., Giovinetto, M. B., Beckley, M. A. & Saba, J. L. Antarctic and Greenland drainage systems. GSFC Cryospheric Sciences Laboratory http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php (2012).
Shepherd, A. et al. Recent loss of floating ice and the consequent sea level contribution. Geophys. Res. Lett. 37, L13503 (2010).
Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).
Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).
Joughin, I., Tulaczyk, S., Bindschadler, R. & Price, S. F. Changes in west Antarctic ice stream velocities: observation and analysis. J. Geophys. Res. Solid Earth 107, 2289 (2002).
Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 31, L18401 (2004).
Shepherd, A., Wingham, D. J. & Mansley, J. A. D. Inland thinning of the Amundsen Sea sector, West Antarctica. Geophys. Res. Lett. 29, https://doi.org/10.1029/2001GL014183 (2002).
Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).
Rignot, E. & Thomas, R. H. Mass balance of polar ice sheets. Science 297, 1502–1506 (2002).
Wingham, D. J., Ridout, A. J., Scharroo, R., Arthern, R. J. & Shum, C. K. Antarctic elevation change from 1992 to 1996. Science 282, 456–458 (1998).
Velicogna, I. & Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 311, 1754–1756 (2006).
van Wessem, J. M. et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – part 2: Antarctica (1979–2016). Cryosphere 12, 1479–1498 (2018).
King, M. A. et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature 491, 586–589 (2012).
Briggs, K. et al. Charting ice-sheet contributions to global sea-level rise. Eos 97, https://doi.org/10.1029/2016EO055719 (2016).
Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).
Rignot, E., Mouginot, J. & Scheuchl, B. Antarctic grounding line mapping from differential satellite radar interferometry. Geophys. Res. Lett. 38, L10504 (2011).
Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).
Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).
A, G., Wahr, J. & Zhong, S. Computations of the viscoelastic response of a 3-D compressible earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys. J. Int. 192, 557–572 (2013).
Sasgen, I. et al. Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. Cryosphere 7, 1499–1512 (2013).
Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G-C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).
King, M. A., Whitehouse, P. L. & van der Wal, W. Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations. Geophys. J. Int. 204, 324–330 (2016).
Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A. & Thomas, I. D. A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int. 190, 1464–1482 (2012).
Spada, G., Melini, D. & Colleoni, F. SELEN v2.9.12, https://geodynamics.org/cig/software/selen/ (Computational Infrastructure for Geodynamics, 2015).
Konrad, H., Sasgen, I., Pollard, D. & Klemann, V. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth Planet. Sci. Lett. 432, 254–264 (2015).
Briggs, R. D., Pollard, D. & Tarasov, L. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quat. Sci. Rev. 103, 91–115 (2014).
Ivins, E. R. & James, T. S. Antarctic glacial isostatic adjustment: a new assessment. Antarct. Sci. 17, 541–553 (2005).
Ivins, E. R. et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res. Solid Earth 118, 3126–3141 (2013).
Nield, G. A. et al. Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth Planet. Sci. Lett. 397, 32–41 (2014).
Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).
Shepherd, A., Fricker, H. A. & Farrell, S. L. Trends and connections across the Antarctic cryosphere. Nature 558, https://doi.org/10.1038/s41586-018-0171-6 (2018).
Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012).
Medley, B. et al. Temperature and snowfall in Western Queen Maud Land increasing faster than climate model projections. Geophys. Res. Lett. 45, 1472–1480 (2018).
Favier, V. et al. An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere 7, 583–597 (2013).
van de Berg, W. J. & Medley, B. Brief Communication: Upper-air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica. Cryosphere 10, 459–463 (2016).
Palerme, C. et al. Evaluation of Antarctic snowfall in global meteorological reanalyses. Atmos. Res. 190, 104–112 (2017).
Van Wessem, J. M. et al. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol. 60, 761–770 (2014).
Bromwich, D. H., Nicolas, J. P. & Monaghan, A. J. An assessment of precipitation changes over Antarctica and the southern ocean since 1989 in contemporary global reanalyses. J. Clim. 24, 4189–4209 (2011).
Behrangi, A. et al. Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. 121, 4468–4486 (2016).
Klemann, V. & Martinec, Z. Contribution of glacial-isostatic adjustment to the geocentre motion. Tectonophysics 511, 99–108 (2011).
van der Wal, W., Whitehouse, P. L. & Schrama, E. J. O. Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica. Earth Planet. Sci. Lett. 414, 134–143 (2015).
Martín-Español, A. et al. An assessment of forward and inverse GIA solutions for Antarctica. J. Geophys. Res. Solid Earth 121, 6947–6965 (2016).
Caron, L. et al. GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophys. Res. Lett. 45, 2203–2212 (2018).
Medley, B. et al. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. Cryosphere 8, 1375–1392 (2014).
Lewis, G. et al. Regional Greenland accumulation variability from Operation IceBridge airborne accumulation radar. Cryosphere 11, 773–788 (2017).
Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past 13, 1491–1513 (2017).
Thomas, I. D. et al. Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys. Res. Lett. 38, L22302 (2011).
Wahr, J., Wingham, D. & Bentley, C. A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. J. Geophys. Res. Solid Earth 105, 16279–16294 (2000).
Fettweis, X. et al. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7, 469–489 (2013).
Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93, 5–48 (2015).
Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
Groh, A. & Horwath, M. The method of tailored sensitivity kernels for GRACE mass change estimates. Geophys. Res. Abstr. 18, 12065 (2016).
Barletta, V. R., Sørensen, L. S. & Forsberg, R. Scatter of mass changes estimates at basin scale for Greenland and Antarctica. Cryosphere 7, 1411–1432 (2013).
Luthcke, S. B. et al. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol. 59, 613–631 (2013).
Andrews, S. B., Moore, P. & King, M. A. Mass change from GRACE: a simulated comparison of Level-1B analysis techniques. Geophys. J. Int. 200, 503–518 (2015).
Save, H., Bettadpur, S. & Tapley, B. D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121, 7547–7569 (2016).
Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).
Schrama, E. J. O., Wouters, B. & Rietbroek, R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. J. Geophys. Res. Solid Earth 119, 6048–6066 (2014).
Seo, K. W. et al. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013. J. Geophys. Res. Solid Earth 120, 3617–3627 (2015).
Velicogna, I., Sutterley, T. C. & van den Broeke, M. R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett. 41, 8130–8137 (2014).
Wouters, B., Bamber, J. L., van den Broeke, M. R., Lenaerts, J. T. M. & Sasgen, I. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci. 6, 613–616 (2013).
Blazquez, A. et al. Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface. Implications for the global water and sea level budgets. (submitted).
Horvath, A. G. Retrieving Geophysical Signals from Current and Future Satellite Missions. PhD thesis, Tech. Univ. Munich (2017).
Harig, C. & Simons, F. J. Mapping Greenland’s mass loss in space and time. Proc. Natl Acad. Sci. USA 109, 19934–19937 (2012).
Rietbroek, R., Brunnabend, S. E., Kusche, J. & Schröter, J. Resolving sea level contributions by identifying fingerprints in time-variable gravity and altimetry. J. Geodyn. 59–60, 72–81 (2012).
Babonis, G. S., Csatho, B. & Schenk, T. Mass balance changes and ice dynamics of Greenland and Antarctic ice sheets from laser altimetry. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. XLI-B8 (eds Zdimal, V. et al.) 481–487 (ISPRS, 2016).
Felikson, D. et al. Comparison of elevation change detection methods from ICESat altimetry over the Greenland Ice Sheet. IEEE Trans. Geosci. Remote Sens. 55, 5494–5505 (2017).
Helm, V., Humbert, A. & Miller, H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 8, 1539–1559 (2014).
Ewert, H. et al. Precise analysis of ICESat altimetry data and assessment of the hydrostatic equilibrium for subglacial Lake Vostok, East Antarctica. Geophys. J. Int. 191, 557–568 (2012).
McMillan, M. et al. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 41, 3899–3905 (2014).
Zwally, H. J. et al. Mass gains of the Antarctic ice sheet exceed losses. J. Glaciol. 61, 1019–1036 (2015).
Gunter, B. C. et al. Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. Cryosphere 8, 743–760 (2014).
Scambos, T. & Shuman, C. Comment on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others. J. Glaciol. 62, 599–603 (2016).
Zwally, H. J. et al. Response to Comment by T. SCAMBOS and C. SHUMAN (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). J. Glaciol. 62, 990–992 (2016).
Richter, A. et al. Height changes over subglacial Lake Vostok, East Antarctica: insights from GNSS observations. J. Geophys. Res. Earth Surf. 119, 2460–2480 (2014).
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011).
Stocker, T. F. et al. (eds) Climate Change 2013: the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 4 (Cambridge Univ. Press, New York, 2013).
Bouman, J. et al. Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry. Geophys. Res. Lett. 41, 5919–5926 (2014).
Konrad, H. et al. Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea embayment, West Antarctica. Geophys. Res. Lett. 44, 910–918 (2017).
Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).
Hogg, A. E. et al. Increased ice flow in Western Palmer Land linked to ocean melting. Geophys. Res. Lett. 44, 4159–4167 (2017).
Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).
Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).
Lenaerts, J. T. M. et al. Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett. 40, 2684–2688 (2013).
Pollard, D. & Deconto, R. M. Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geosci. Model Dev. 5, 1273–1295 (2012).
Martinec, Z. Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth. Geophys. J. Int. 142, 117–141 (2000).
Acknowledgements
This work is an outcome of the ESA–NASA Ice Sheet Mass Balance Inter-comparison Exercise. A.S. was additionally supported by a Royal Society Wolfson Research Merit Award and by the ESA Climate Change Initiative.
Reviewer information
Nature thanks R. Bell and C. Hulbe for their contribution to the peer review of this work.
The IMBIE team:
Andrew Shepherd1,*, Erik Ivins2, Eric Rignot3, Ben Smith4, Michiel van den Broeke5, Isabella Velicogna3, Pippa Whitehouse6, Kate Briggs1, Ian Joughin4, Gerhard Krinner7, Sophie Nowicki8, Tony Payne9, Ted Scambos10, Nicole Schlegel2, Geruo A3, Cécile Agosta11, Andreas Ahlstrøm12, Greg Babonis13, Valentina Barletta14, Alejandro Blazquez15, Jennifer Bonin16, Beata Csatho13, Richard Cullather17, Denis Felikson18, Xavier Fettweis11, Rene Forsberg14, Hubert Gallee7, Alex Gardner2, Lin Gilbert19, Andreas Groh20, Brian Gunter21, Edward Hanna22, Christopher Harig23, Veit Helm24, Alexander Horvath25, Martin Horwath20, Shfaqat Khan14, Kristian K. Kjeldsen12,26, Hannes Konrad1, Peter Langen27, Benoit Lecavalier28, Bryant Loomis8, Scott Luthcke8, Malcolm McMillan1, Daniele Melini29, Sebastian Mernild30,31,32, Yara Mohajerani3, Philip Moore33, Jeremie Mouginot3,7, Gorka Moyano34, Alan Muir19, Thomas Nagler35, Grace Nield6, Johan Nilsson2, Brice Noel5, Ines Otosaka1, Mark E. Pattle34, W. Richard Peltier36, Nadege Pie18, Roelof Rietbroek37, Helmut Rott35, Louise Sandberg-Sørensen14, Ingo Sasgen24, Himanshu Save18, Bernd Scheuchl3, Ernst Schrama38, Ludwig Schröder20, Ki-Weon Seo39, Sebastian Simonsen14, Tom Slater1, Giorgio Spada40, Tyler Sutterley3, Matthieu Talpe41, Lev Tarasov28, Willem Jan van de Berg5, Wouter van der Wal38, Melchior van Wessem5, Bramha Dutt Vishwakarma42, David Wiese2 & Bert Wouters5
Author information
Authors and Affiliations
Consortia
Contributions
A.S. and E.I. designed and led the study. E.R., B.S., M.v.d.B., I.V. and P.W. led the input–output-method, altimetry, SMB, gravimetry and GIA experiments, respectively. G.M. and M.E.P. performed the data collation and analysis. A.S., E.I., K.B., G.K., M.H., I.J., H.K., M.M., J.M., S.N., I.O., M.E.P., T.P., E.R., I.S., T.Sc., N.S., T.Sl., B.S., I.V., M.v.W. and P.W. wrote and edited the manuscript. All authors participated in the data interpretation and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Datasets of ice-sheet mass balance included in our assessment.
Details about the datasets are provided in Supplementary Table 1. Some datasets did not encompass all three ice sheets.
Extended Data Fig. 2 Ice-sheet drainage basins.
AIS drainage basins are determined according to the definitions of ref. 3 (left) and refs 2,19 (right). Basins that fall within the Antarctic Peninsula, West Antarctica and East Antarctica are shown in green, pink and blue, respectively. For the definition from ref. 3, the Antarctic Peninsula, West Antarctica and East Antarctica basins cover areas of 227,725 km2, 1,748,200 km2 and 9,909,800 km2, respectively. For the definition from refs 2,19, the Antarctic Peninsula, West Antarctica and East Antarctica basins cover areas of 232,950 km2, 2,039,525 km2 and 9,620,225 km2, respectively.
Extended Data Fig. 4 Modelled GIA beneath the AIS.
a, Bedrock uplift rates in Antarctica averaged over the GIA model solutions used in this assessment. b, The corresponding standard deviations.
Extended Data Fig. 5 Individual rates of ice-sheet mass balance.
a–i, Mass-balance estimates were determined from satellite altimetry (a–c), gravimetry (d–e) and the input–output method (g–i) for the Antarctic Peninsula (a, d, g), East Antarctica (b, e, h) and West Antarctica (c, f, i). The light-grey shading shows the estimated 1σ uncertainty relative to the ensemble average. The standard error of the mean solutions, per epoch, is shown in mid-grey.
Supplementary information
Supplementary Table 1
This table contains details of the satellite datasets used in this study
Rights and permissions
About this article
Cite this article
The IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018). https://doi.org/10.1038/s41586-018-0179-y
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41586-018-0179-y
This article is cited by
-
Calculations of extreme sea level rise scenarios are strongly dependent on ice sheet model resolution
Communications Earth & Environment (2025)
-
Distinct Impacts of the Central and Eastern Atlantic Niño on West Antarctic Sea Ice
npj Climate and Atmospheric Science (2025)
-
Detection of 85 new active subglacial lakes in Antarctica from a decade of CryoSat-2 data
Nature Communications (2025)
-
Sustained decrease in inland East Antarctic surface mass balance between 2005 and 2020
Nature Geoscience (2025)
-
Rapid increases in satellite-observed ice sheet surface meltwater production
Nature Climate Change (2025)
Frank Olsen
Can anyone explain to me how ice can melt more when the temperature drops?
For the last 30 years, the temperature in both the air and the sea in Antarctica has fallen.
Airtemperature: http://cci-reanalyzer.org/r...
Seatemperature: http://cci-reanalyzer.org/r...
If we see on the annual melting degrees we find that they have decreased a lot the last 30 years: http://cci-reanalyzer.org/r...
while the freezing degrees have increased a little: http://cci-reanalyzer.org/r...
Il Palombaro dell'Orrido Replied to Frank Olsen
I suspect those are average temperatures.
The average temperature in principle can remain stable or even decrease but at the same time there may be a drastic increase in the temperature of a specific sector.
Since Antartica is a very dry continent, having extremely low temperature in, say, the inner part of the continent does not increase the ice content since there are no precipitation there (water concentration in the air is already close to 0%).
Instead, a temperature increase in a border region may allow ice to melt and reach the ocean.
Cécile Agosta Replied to Frank Olsen
In short: it's the Antarctic dynamical ice loss which are increasing (i.e. the ice fluxes toward the ocean), and not the surface melt (i.e. the melt of the snowpack at the surface of the ice sheet, which is related to air temperature). Dynamical ice loss are attributed to changes in ocean circulation itself related to changes in atmospheric circulation.
Frank Olsen Replied to Cécile Agosta
And what should the reason be that the ice is melting "faster than ever" ?
Cécile Agosta Replied to Frank Olsen
It is attributed to changes in the atmospheric circulation (keyword: Amundsen Sea Low) which induced the advection of warm ocean waters under the floating part of the ice sheet. This caused an increase in the melt from under this floating part and as a consequence the increase in the upstream ice fluxes toward the ocean.
Paul Matthews
"the estimated GIA contribution ranges from +12 Gt yr−1 to +81 Gt yr−1; the mean value is 56 Gt yr−1."
"Across the full 25-year survey, the average rate of mass balance of the AIS was −109 ± 56 Gt yr−1"
So, more than half of the claimed mass loss is due to a hugely uncertain adjustment factor, based on modelling, it seems.
David Ray Gillard
Hello:
I recently read an article that stated the southern ice cap has lost
200billion tons of ice every year from 2012 to 2017. I am working on a solution mostly an idea right now. I do still need proof of concept. early calculations show that the atmosphere (ozone) could be restored to preindustrial in less than 15 years. My research continues... Should I have a breakthrough I would need lots of help. I'll keep working at it...
Thank you for your time.
Regards,
David Ray Gillard
Steen
I wonder if an
ice cap floats on water and thus is an iceberg, then the amount of water that
is melted iceberg will fill exactly the same as the hollow iceberg filled in
the ocean. This fact was formulated by a deceased "scientist", namely
Archimedes.
Wondering where the heat comes from melting the ice? Could it be heat from
underwater volcanoes (chimneys) like the North Pole?
Frank Olsen Replied to Steen
Yes, there is a lot of volcanic Activity under the ice in western Antarctica.
https://www.theguardian.com...
But that does not Count; it is not politically correct :-)
All melt of ice MUST come from human Activity.
SchrodingersCake Replied to Steen
The Antarctic ice cap is on Antarctica. The continent. It's mostly rock. So Archimedes would not apply in this case.
Also, you don't seem to understand the effect that decreasing ocean salinity has on marine life. Or the effect it has on ocean currents.
I'm scratching my head wondering what about this issue you do understand. From your post it seems like you know nothing, Jon Snow.
Steen Replied to SchrodingersCake
Dear SchrodingersCake,
I must confess not to be so knowledgeable about the Antarctic and therefore seek knowledge of this. I
have seen a lot about the melting of icecaps in the media, as large
icebergs break off and float away in the ocean, presuming they do not
float around the ocean with cliffs. Now let's have a good tone.
When
you cry that the wolf is coming, you must be sure it's a wolf and
nothing else, and moreover, relate to facts and science rather than mass
hysteria and judgmental day prophecies.
I
think everyone is worried about human violence on our planet, so it is
important to keep the focus scientifically and not demagogically.
SchrodingersCake Replied to Steen
Where do you think those icebergs come from? They come from glaciers from the continent. They don't just form up at the edges over the water. If you're not extremely worried, you don't understand what's happening.
Steen Replied to SchrodingersCake
Dear SchrodingersCake,
I'm definitely very worried and have been since I was young in the 1970s and
was a member of the Nora Group, Greenpeace support very interested in our environmental
issues.
I just ask that the public debate takes place in a scientific and serious way,
without prejudice and indications about the cause of the earth's temperatures,
the cause of metrological phenomena, etc.
It is as if everyone is able to figure out complex problems without having a
professional background without studying and researching.
The researchers who have spent the whole lifetime and probably have the best prerequisites for assessing and commenting on meltdown of the poles, no one is listening to, the media quotes the men and the street parliament in a populist mass hysteria and it all ends with a junk
debate and junk political decisions that eventually slow down the process so important to
dampen the development of soil pollution.
One example is wind turbines as an alternative to fossil fuels and which would
secure the world's energy needs.
My post with Archimedes might be a provocation, but when we discuss as important
an issue as human future on earth, more nuanced and subjective discussion is
expected and the belief that only human beings influence the earth's climate
change, I simply buy not to mention ice drilling and historical facts something completely different. There have been many Ice Age caused by volcanic eruptions etc.
Let's continue to work for a better environment with minimal impact on humanity, but
let's do it qualified and properly.
Suggest to google / read the scientist “Bjorn Lomborg, President and Founder.” He contributes a very fair debate.
http://www.copenhagenconsen...
commonsense405
"lost 2,720 ± 1,390 billion tonnes of ice ... increase in mean sea level of 7.6 ± 3.9 millimetres (errors are one standard deviation)"
Why is one standard deviation used here, rather than the scientific standard of two?
mike
What would we rather deal with, rising sea levels or sudden crustal pole shift caused by excessive ice build up that unbalances the slight warble in earth's rotation?
Wolfgang Richter
What's about the contrary result to this study by another study?
No problem: NASA glaciologist Jay Zwally informed any days ago, that nis new study confirms his findings in 2015 that the Antarctica is gaining mass!
See: http://dailycaller.com/2018...