Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sialylation of immunoglobulin E is a determinant of allergic pathogenicity

Abstract

Approximately one-third of the world’s population suffers from allergies1. Exposure to allergens crosslinks immunoglobulin E (IgE) antibodies that are bound to mast cells and basophils, triggering the release of inflammatory mediators, including histamine2. Although IgE is absolutely required for allergies, it is not understood why total and allergen-specific IgE concentrations do not reproducibly correlate with allergic disease3,4,5. It is well-established that glycosylation of IgG dictates its effector function and has disease-specific patterns. However, whether IgE glycans differ in disease states or affect biological activity is completely unknown6. Here we perform an unbiased examination of glycosylation patterns of total IgE from individuals with a peanut allergy and from non-atopic individuals without allergies. Our analysis reveals an increase in sialic acid content on total IgE from individuals with a peanut allergy compared with non-atopic individuals. Removal of sialic acid from IgE attenuates effector-cell degranulation and anaphylaxis in several functional models of allergic disease. Therapeutic interventions—including removing sialic acid from cell-bound IgE with a neuraminidase enzyme targeted towards the IgE receptor FcεRI, and administering asialylated IgE—markedly reduce anaphylaxis. Together, these results establish IgE glycosylation, and specifically sialylation, as an important regulator of allergic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glycan composition of non-atopic and allergic IgE.
Fig. 2: Removal of sialic acid attenuates IgE.
Fig. 3: Modulating IgE sialylation and anaphylaxis.

Similar content being viewed by others

Data availability

Source Data are provided for Figs. 13 and Extended Data Figs. 1, 47. Full scans of all uncropped protein gel stains, lectin blots and western blots with size marker indications presented here can be found in the Supplementary Information. All other data supporting the findings of this study are available from the corresponding author upon request.

References

  1. Gupta, R. S. et al. Prevalence and severity of food allergies among US adults. JAMA Netw. Open 2, e185630 (2019).

    Article  Google Scholar 

  2. Gould, H. J. & Sutton, B. J. IgE in allergy and asthma today. Nat. Rev. Immunol. 8, 205–217 (2008).

    Article  CAS  Google Scholar 

  3. Bird, J. A., Crain, M. & Varshney, P. Food allergen panel testing often results in misdiagnosis of food allergy. J. Pediatr. 166, 97–100 (2015).

    Article  Google Scholar 

  4. Du Toit, G. et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 372, 803–813 (2015).

    Article  Google Scholar 

  5. Peters, R. L., Gurrin, L. C. & Allen, K. J. The predictive value of skin prick testing for challenge-proven food allergy: a systematic review. Pediatr. Allergy Immunol. 23, 347–352 (2012).

    Article  Google Scholar 

  6. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    Article  CAS  Google Scholar 

  7. Bégin, P. et al. Phase 1 results of safety and tolerability in a rush oral immunotherapy protocol to multiple foods using omalizumab. Allergy Asthma Clin. Immunol. 10, 7 (2014).

    Article  Google Scholar 

  8. Patil, S. U. et al. Peanut oral immunotherapy transiently expands circulating Ara h 2-specific B cells with a homologous repertoire in unrelated subjects. J. Allergy Clin. Immunol. 136, 125–134 (2015).

    Article  CAS  Google Scholar 

  9. Wang, T. T. et al. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science 355, 395–398 (2017).

    Article  ADS  CAS  Google Scholar 

  10. Lu, L. L. et al. A functional role for antibodies in tuberculosis. Cell 167, 433–443 (2016).

    Article  CAS  Google Scholar 

  11. Wang, T. T. et al. Anti-HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy. Cell 162, 160–169 (2015).

    Article  CAS  Google Scholar 

  12. Parekh, R. B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Espy, C. et al. Sialylation levels of anti-proteinase 3 antibodies are associated with the activity of granulomatosis with polyangiitis (Wegener’s). Arthritis Rheum. 63, 2105–2115 (2011).

    Article  CAS  Google Scholar 

  14. Wang, T. T. & Ravetch, J. V. Functional diversification of IgGs through Fc glycosylation. J. Clin. Invest. 129, 3492–3498 (2019).

    Article  Google Scholar 

  15. Arnold, J. N. et al. The glycosylation of human serum IgD and IgE and the accessibility of identified oligomannose structures for interaction with mannan-binding lectin. J. Immunol. 173, 6831–6840 (2004).

    Article  CAS  Google Scholar 

  16. Plomp, R. et al. Site-specific N-glycosylation analysis of human immunoglobulin E. J. Proteome Res. 13, 536–546 (2014).

    Article  CAS  Google Scholar 

  17. Shade, K. T. et al. A single glycan on IgE is indispensable for initiation of anaphylaxis. J. Exp. Med. 212, 457–467 (2015).

    Article  CAS  Google Scholar 

  18. Wu, G. et al. Glycoproteomic studies of IgE from a novel hyper IgE syndrome linked to PGM3 mutation. Glycoconj. J. 33, 447–456 (2016).

    Article  CAS  Google Scholar 

  19. Yamazaki, T. et al. Receptor-destroying enzyme (RDE) from Vibrio cholerae modulates IgE activity and reduces the initiation of anaphylaxis. J. Biol. Chem. 294, 6659–6669 (2019).

    Article  CAS  Google Scholar 

  20. Jabs, F. et al. Trapping IgE in a closed conformation by mimicking CD23 binding prevents and disrupts FcεRI interaction. Nat. Commun. 9, 7 (2018).

    Article  ADS  Google Scholar 

  21. Wuhrer, M. et al. Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 7, 4070–4081 (2007).

    Article  CAS  Google Scholar 

  22. Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory actions of intravenous immunoglobulin. Annu. Rev. Immunol. 26, 513–533 (2008).

    Article  CAS  Google Scholar 

  23. Ding, J. X. et al. Aberrant sialylation of serum IgA1 was associated with prognosis of patients with IgA nephropathy. Clin. Immunol. 125, 268–274 (2007).

    Article  CAS  Google Scholar 

  24. Maurer, M. A. et al. Glycosylation of human IgA directly inhibits influenza A and other sialic-acid-binding viruses. Cell Rep. 23, 90–99 (2018).

    Article  CAS  Google Scholar 

  25. Colucci, M. et al. Sialylation of N-linked glycans influences the immunomodulatory effects of IgM on T cells. J. Immunol. 194, 151–157 (2015).

    Article  CAS  Google Scholar 

  26. Collins, B. E., Smith, B. A., Bengtson, P. & Paulson, J. C. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat. Immunol. 7, 199–206 (2006).

    Article  CAS  Google Scholar 

  27. Abe, K., Yamamoto, K. & Sinohara, H. Clearance of desialylated mouse alpha-macroglobulin and murinoglobulin in the mouse. J. Biochem. 108, 726–729 (1990).

    Article  CAS  Google Scholar 

  28. Fleischer, D. M. et al. Oral food challenges in children with a diagnosis of food allergy. J. Pediatr. 158, 578–583 (2011).

    Article  Google Scholar 

  29. Sampath, V. et al. Deciphering the black box of food allergy mechanisms. Ann. Allergy Asthma Immunol. 118, 21–27 (2017).

    Article  Google Scholar 

  30. Christensen, S. & Egebjerg, J. Cloning, expression and characterization of a sialidase gene from Arthrobacter ureafaciens. Biotechnol. Appl. Biochem. 41, 225–231 (2005).

    Article  CAS  Google Scholar 

  31. Dombrowicz, D. et al. Anaphylaxis mediated through a humanized high affinity IgE receptor. J. Immunol. 157, 1645–1651 (1996).

    CAS  PubMed  Google Scholar 

  32. Dombrowicz, D., Flamand, V., Brigman, K. K., Koller, B. H. & Kinet, J. P. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor alpha chain gene. Cell 75, 969–976 (1993).

    Article  CAS  Google Scholar 

  33. MacGlashan, D. Jr, Lavens-Phillips, S. & Katsushi, M. IgE-mediated desensitization in human basophils and mast cells. Front. Biosci. 3, d746–d756 (1998).

    Article  Google Scholar 

  34. Kirshenbaum, A. S. et al. Characterization of novel stem cell factor responsive human mast cell lines LAD 1 and 2 established from a patient with mast cell sarcoma/leukemia; activation following aggregation of FcεRI or FcγRI. Leuk. Res. 27, 677–682 (2003).

    Article  CAS  Google Scholar 

  35. Bandara, G., Metcalfe, D. D. & Kirshenbaum, A. S. Growth of human mast cells from bone marrow and peripheral blood-derived CD34+ pluripotent hematopoietic cells. Methods Mol. Biol. 1220, 155–162 (2015).

    Article  CAS  Google Scholar 

  36. Anthony, R. M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Jeffrey, F. Wermeling and A. Luster for constructive comments; T. Stanley and D. Hayden (Harvard Catalyst) for guidance in biostatistical analysis; N. Smith for technical assistance; and the patients participating in our studies. This work was supported by grants from the NIH (DP2AR068272 and R01AI139669) and FARE to R.M.A.; NIH T32 and K12 fellowships (T32AR007258 and K12HL141953) to K.C.S.; an NIH NIAID K23 grant (K23AI121491) to S.U.P.; an NIH NIAID U19 grant (5U19 AI095261-03) to W.G.S.; and a Sanofi iAward to M.E.C.

Author information

Authors and Affiliations

Authors

Contributions

K.C.S. conducted mouse experiments, performed functional assays, developed methods, and generated resources, along with D.J.H.; M.K. cloned, generated and characterized NEUFcε; M.E.C. purified samples and analysed data, along with E.L.; N.W. performed mass spectrometry on purified samples; S.U.P. and W.G.S. acquired patient sample resources; S.U.P. and W.G.S. provided collected clinical samples; and R.M.A. conceived and supervised the study, and wrote the manuscript along with K.C.S., M.E.C., S.U.P. and W.G.S.

Corresponding author

Correspondence to Robert M. Anthony.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Steve Galli, Kari Nadeau and Jim Paulson for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Characterization of non-atopic and allergic human IgE.

a, Allergen-specific IgE levels for Ara h 2 (peanut; non-atopic, n = 11; allergic, n = 30), Der p 1 (dust mite; n = 5, 3), Fel d 1 (cat; n = 5, 3) and Bet v 1 (birch pollen; n = 4, 3). b, Strategy for enriching IgE from human sera. c, Quantified degranulation of human LAD2 mast cells sensitized with PBS, non-atopic IgE or allergic IgE and stimulated with anti (α)-human IgE (PBS, n = 1; non-atopic, n = 4; allergic, n = 4). d, Quantified MFI (left) and representative histograms (right) of anti-hIgE FACS staining on human LAD2 mast cells sensitized with PBS, non-atopic hIgE or allergic hIgE (PBS, n = 3; non-atopic, n = 4; allergic, n = 3). APC, allophycocyanin. e, Anti-hIgE from c, d binds similarly to SiahIgE and AshIgE, as determined by hIgE ELISA assays. n = 2 technical replicates per group, representative of three experiments. f, g, IgE glycan distribution by sex (f; n = 9 males; n = 12 females) and age (g; 0–9 years, n = 2; 10–19, n = 2; 20–29, n = 6; 30–39, n = 7; 40–49, n = 1; 50–59, n = 2; 60–69, n = 1). h, Representative structures of complex N-linked glycans from Fig. 1j. Data shown are means ± s.e.m. (a, c, d, f, g). P-values were determined by two-tailed unpaired t-test (d, f) or two-way ANOVA with Sidak’s multiple comparison test (a, c, g). n represents biologically independent serum samples (a, c, d, f, g).

Source Data

Extended Data Fig. 2 N-linked glycans observed on native human IgE.

a, Representative MS/MS spectrum for N265-linked A2F glycopeptide, showing the B ions (non-reducing end fragments) and Y ions (reducing end fragments containing the intact peptide) resulting from glycosidic-bond cleavage, and the b ions containing the peptide N terminus resulting from peptide-bond cleavage. The Y1 ion used for quantification of glycopeptides is circled (n = 18 biologically independent samples). b, Extracted ion chromatograms for IgE N265-linked sialylation variants from a patient with an allergy and a non-atopic donor. c, Extracted ion chromatograms for IgE N168-linked sialylation variants from a patient with an allergy and a non-atopic donor. AV, average (referring to the number of spectra averaged); BP, base peak; MA, manual integration; RT, retention time.

Extended Data Fig. 3 N-linked glycans observed on IgE myeloma standard.

a, b, Extracted ion chromatograms for site-specific N-linked glycosylation from chymotryptic (a) or tryptic (b) digest of the IgE myeloma sample used as a standard.

Extended Data Fig. 4 Site-specific characterization of resolved IgE glycans from non-atopic individuals and individuals with allergies.

a, Occupancy of N-linked glycosylation sites: N140 (non-atopic, n = 15; allergic, n = 13), N168 (n = 16, 14), N218 (n = 15, 15), N265 (n = 12, 15), N371 (n = 15, 15), N383 (n = 16, 15) and N394 (n = 13, 16). b, Percentage of oligomannose moieties at N394 (n = 23, 18). c, Number of fucose residues: N140 (n = 15, 13), N168 (n = 15, 17), N218 (n = 15, 19), N265 (n = 12, 18) and N371 (n = 15, 17). d, Number of biGlcNAc residues: N140 (n = 15, 13), N168 (n = 16, 17), N218 (n = 15, 19), N265 (n = 16, 20) and N371 (n = 16, 17). e, Number of galactose residues: N140 (n = 15, 14), N168 (n = 15, 17), N218 (n = 15, 19), N265 (n = 12, 19) and N371 (n = 15, 17). f, Number of sialic acid residues: N140 (n = 14, 13), N168 (n = 15, 13), N218 (n = 15, 17), N265 (n = 12, 19) and N371 (n = 15, 17). Data plotted are means ± s.e.m. P values were determined by two-way ANOVA with Sidak’s multiple comparison test. n represents biologically independent serum samples (af).

Source Data

Extended Data Fig. 5 Removal of sialic acid from IgE.

a, Protein gel stain and lectin blots of IVIG, native human IgE purified from patients with allergies, and fetuin. MALI, Maackia amurensis lectin I. b, HPLC glycan traces of undigested (Utx) allergic hIgE and fetuin; of allergic hIgE and fetuin digested with sialidase from A. ureafaciens to release α2,3-, α2,6-, α2,8- and α2,9-linked sialic acids (α2-3, 6, 8, 9 NEU-tx); and allergic hIgE and fetuin digested with sialidase from Streptococcus pneumoniae to release α2,3-linked sialic acids (α2-3 NEU-tx). c, HPLC glycan traces of undigested or recombinant OVA-specific mIgE digested with sialidase from A. ureafaciens. d, Left, quantification of vascular leakage by Evan’s blue dye (n = 6 mouse ears per group) after PCA in mice sensitized with PBS or with SiamIgE or AsmIgE specific for DNP; right, representative ear images. e, Gating strategy for IgE loading on mouse skin ear mast cells. Shown are representative FACS plots used to identify mast cells in mouse ears and to determine IgE levels on mouse ear mast cells. SSC, side scatter. f, Binding of OVA-specific SiamIgE and AsmIgE to OVA, as determined by ELISA. n = 2 technical replicates per group, representative of three biologically independent experiments. g, h, OVA-elicited systemic anaphylaxis as measured by temperature drop in mice sensitized with PBS, OVA-specific SiamIgE (g, n = 4; h, n = 6) or OVA-specific AsmIgE (g, n = 5; h, n = 6) by intravenous (g) or intraperitoneal (h) injection. i, Serum levels of DNP-specific SiamIgE (n = 4) and AsmIgE (n = 3) in mice at defined times after systemic administration, determined by ELISA. Data are means ± s.e.m. and are representative of three experiments. P values determined by two-tailed paired t-test (d) or two-way ANOVA with Tukey’s multiple comparison test (g, h).

Source Data

Extended Data Fig. 6 FACS analysis of loading of human mast cells with SiahIgE or AshIgE, phenotypic staining of PBMC-derived mast cells, and activation in primary basophils.

a, MFI (left) and representative histogram (right) of surface-bound hIgE on LAD2 mast cells following sensitization with PBS, OVA-specific SiahIgE or OVA-specific AshIgE (n = 3 technical replicates per group). Data are means ± s.e.m. and are representative of three independent experiments; one-way ANOVA with Tukey’s multiple comparison test. b, Representative phenotypic staining by FACS of primary human mast cells from peripheral blood derived CD34+ pluripotent haematopoietic cells (n = 2 technical replicates per group). c, Gating strategy for basophil activation assay, showing representative FACS plots used to determine basophil activation from PBMCs.

Source Data

Extended Data Fig. 7 PSA for IgE isotype controls and characterization of NEUFcε.

a, Temperature change following OVA-induced PSA in mice receiving DNP-specific SiamIgE on day 0, and then PBS, OVA-specific SiamIgE or OVA-specific AsmIgE isotype controls (from Fig. 3e) on day 1. n = 4 mice for all groups; two-way ANOVA with Tukey’s multiple comparison test. b, Protein gel stain (left) and immunoblot (IB) for mIgE (right) of native and denatured NEUFcε. c, Binding kinetics of analyte NEUFcε to ligand hFcεRIα on biosensor. Kinetics of analytes of threefold serial dilution from 26.2 nM to 0.32 nM were analysed. d, FACS analysis of surface-bound NEUFcε on LAD2 mast cells following 30 min of sensitization at 37 °C. n = 3 technical replicates per group, representative of two independent experiments. eh, Neuraminidase activity of NEUFcε determined by digestion of mIgE or fetuin overnight (eg), and detection of protein loading by Coomassie blue (e), terminal α2,6-sialic acid by SNA (f), and terminal galactose by Erythrina cristagalli lectin (ECL) (g) or by the amount of substrate 2-O-(p-nitrophenyl)-α-d-N-acetylneuraminic acid digested by NEUFcε in a colorimetric assay (h; n = 3 technical replicates per group, representative of two independent experiments). Data are means ± s.e.m.

Source Data

Extended Data Table 1 Patient demographic data
Extended Data Table 2 Targeted mass list for IgE glycopetides
Extended Data Table 3 Pertinent information regarding commercial antibody reagents

Supplementary information

Supplementary Figure 1

Full scans of uncropped protein gel stains, lectin, or western blots with size marker indications presented in this manuscript.

Reporting Summary

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shade, KT.C., Conroy, M.E., Washburn, N. et al. Sialylation of immunoglobulin E is a determinant of allergic pathogenicity. Nature 582, 265–270 (2020). https://doi.org/10.1038/s41586-020-2311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-020-2311-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research