Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultralow-dielectric-constant amorphous boron nitride

Matters Arising to this article was published on 03 February 2021

Abstract

Decrease in processing speed due to increased resistance and capacitance delay is a major obstacle for the down-scaling of electronics1,2,3. Minimizing the dimensions of interconnects (metal wires that connect different electronic components on a chip) is crucial for the miniaturization of devices. Interconnects are isolated from each other by non-conducting (dielectric) layers. So far, research has mostly focused on decreasing the resistance of scaled interconnects because integration of dielectrics using low-temperature deposition processes compatible with complementary metal–oxide–semiconductors is technically challenging. Interconnect isolation materials must have low relative dielectric constants (κ values), serve as diffusion barriers against the migration of metal into semiconductors, and be thermally, chemically and mechanically stable. Specifically, the International Roadmap for Devices and Systems recommends4 the development of dielectrics with κ values of less than 2 by 2028. Existing low-κ materials (such as silicon oxide derivatives, organic compounds and aerogels) have κ values greater than 2 and poor thermo-mechanical properties5. Here we report three-nanometre-thick amorphous boron nitride films with ultralow κ values of 1.78 and 1.16 (close to that of air, κ = 1) at operation frequencies of 100 kilohertz and 1 megahertz, respectively. The films are mechanically and electrically robust, with a breakdown strength of 7.3 megavolts per centimetre, which exceeds requirements. Cross-sectional imaging reveals that amorphous boron nitride prevents the diffusion of cobalt atoms into silicon under very harsh conditions, in contrast to reference barriers. Our results demonstrate that amorphous boron nitride has excellent low-κ dielectric characteristics for high-performance electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atomic structure of a-BN.
Fig. 2: Chemical structure of a-BN.
Fig. 3: Dielectric properties of a-BN.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding authors on reasonable request.

Code availability

The code used to generate the figures is available from the corresponding authors on reasonable request.

References

  1. Shamiryan, D., Abell, T., Iacopi, F. & Maex, K. Low-k dielectric materials. Mater. Today 7, 34–39 (2004).

    Article  CAS  Google Scholar 

  2. Moore’s deviation. Nat. Nanotechnol. 12, 1105 (2017).

  3. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  ADS  CAS  Google Scholar 

  4. IRTS. More Moore roadmap in The International Technology Roadmap for Semiconductors 2.0 White Paper: 2015 15–16 (IEEE, 2015); http://itrs2.net.

  5. King, S. W. Dielectric barrier, etch stop, and metal capping materials for state of the art and beyond metal interconnects. ECS J. Solid State Sci. Technol. 4, N3047 (2015).

    Article  Google Scholar 

  6. del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317–323 (2011).

    Article  ADS  Google Scholar 

  7. Venema, L. Silicon electronics and beyond. Nature 479, 309 (2011).

    Article  ADS  CAS  Google Scholar 

  8. Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, aab2750 (2015).

    Article  Google Scholar 

  9. Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    Article  ADS  CAS  Google Scholar 

  10. Liu, C. et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14, 662–667 (2019).

    Article  ADS  CAS  Google Scholar 

  11. Xiang, D., Liu, T. & Chen, W. Fused computing and storage in a 2D transistor. Nat. Nanotechnol. 14, 642–643 (2019).

    Article  ADS  CAS  Google Scholar 

  12. Grill, A. PECVD low and ultralow dielectric constant materials: from invention and research to products. J. Vac. Sci. Technol. B 34, 020801 (2016).

    Article  Google Scholar 

  13. IRDS. More Moore in The International Roadmap for Devices and Systems: 2017, (IEEE, 2017); http://irds.ieee.org.

  14. IRTS. Interconnect in The International Technology Roadmap for Semiconductors 2.0: 2015 (2015); http://itrs2.net.

  15. Liu, J. et al. Plasma deposition of low dielectric constant (k = 2.2~2.4) boron nitride on methylsilsesquioxane-based nanoporous films. J. Appl. Phys. 96, 6679–6684 (2004).

    Article  ADS  CAS  Google Scholar 

  16. Glavin, N. R. et al. Amorphous boron nitride: a universal, ultrathin dielectric for 2D nanoelectronics. Adv. Funct. Mater. 26, 2640–2647 (2016).

    Article  CAS  Google Scholar 

  17. Kim, G. et al. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 13, 1834–1839 (2013).

    Article  ADS  CAS  Google Scholar 

  18. Jang, A. R. et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 16, 3360–3366 (2016).

    Article  ADS  CAS  Google Scholar 

  19. Plass, M. F., Fukarek, W., Mändl, S. & Möller, W. Phase identification of boron nitride thin films by polarized infrared reflection spectroscopy. Appl. Phys. Lett. 69, 46–48 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Kim, D. Y. et al. Role of hydrogen carrier gas on the growth of few layer hexagonal boron nitrides by metal-organic chemical vapor deposition. AIP Adv. 7, 045116 (2017).

    Article  ADS  Google Scholar 

  21. Jiménez, I. et al. Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride. Phys. Rev. B 55, 12025–12037 (1997).

    Article  ADS  Google Scholar 

  22. Dharma-wardana, M. W. C. Relation of the refractive index to the dielectric constant containing Doppler-like spatial dispersion. J. Phys. Math. Gen. 9, L93–L97 (1976).

    Article  ADS  Google Scholar 

  23. Ling, X. & Zhang, J. Interference phenomenon in graphene-enhanced Raman scattering. J. Phys. Chem. C 115, 2835–2840 (2011).

    Article  CAS  Google Scholar 

  24. Plimpton, S., Crozier, P. & Thompson, A. LAMMPS-Large-Scale Atomic/Molecular Massively Parallel Simulator (Sandia National Laboratories, 2007).

  25. Los, J. et al. Extended Tersoff potential for boron nitride: energetics and elastic properties of pristine and defective h-BN. Phys. Rev. B 96, 184108 (2017).

    Article  ADS  Google Scholar 

  26. Tersoff, J. Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B 38, 9902 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Matsunaga, K. & Iwamoto, Y. Molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron. J. Am. Ceram. Soc. 84, 2213–2219 (2001).

    Article  CAS  Google Scholar 

  28. Al-Ghalith, J., Dasmahapatra, A., Kroll, P., Meletis, E. & Dumitricǎ, T. Compositional and structural atomistic study of amorphous Si–B–N networks of interest for high-performance coatings. J. Phys. Chem. C 120, 24346–24353 (2016).

    Article  CAS  Google Scholar 

  29. Kimura, K., Joumori, S., Oota, Y., Nakajima, K. & Suzuki, M. High-resolution RBS: a powerful tool for atomic level characterization. Nucl. Instrum. Methods Phys. Res. B 219-220, 351–357 (2004).

    Article  ADS  CAS  Google Scholar 

  30. Kitahara, A., Yasuno, S. & Fujikawa, K. Study of thin-film thickness and density by high-resolution Rutherford backscattering spectrometry and X-ray reflectivity. Trans. Mater. Res. Soc. Jpn. 34, 613–615 (2009).

    Article  CAS  Google Scholar 

  31. Hatton, B. D. et al. Materials chemistry for low-k materials. Mater. Today 9, 22–31 (2006).

    Article  CAS  Google Scholar 

  32. Cheng, Y.-L. & Lee, C.-Y. in Nanoporous Materials Porous Low-Dielectric-Constant Material for Semiconductor Microelectronics Ch. 6 (IntechOpen, 2018).

  33. Zhao, L. et al. Role of copper in time dependent dielectric breakdown of porous organo-silicate glass low-k materials. Appl. Phys. Lett. 99, 222110 (2011).

    Article  ADS  Google Scholar 

  34. Volinsky, A. A., Palacio, M. L. B. & Gerberich, W. W. "Incompressible" pore effect on the mechanical behavior of low-K dielectric films. In MRS Proceedings Vol. 750, 567–572 (2002).

  35. Das, A. et al. Characterisation and integration feasibility of JSR’s low-k dielectric LKD-5109. Microelectron. Eng. 64, 25–33 (2002).

    Article  CAS  Google Scholar 

  36. Chang, S. Y. et al. Mechanical property analyses of porous low-dielectric-constant films for stability evaluation of multilevel-interconnect structures. Thin Solid Films 460, 167–174 (2004).

    Article  ADS  CAS  Google Scholar 

  37. Li, H. Y. et al. Process improvement of 0.13 μm Cu/Low K (Black DiamondTM) dual damascene interconnection. Microelectron. Reliab. 45, 1134–1143 (2005).

    Article  CAS  Google Scholar 

  38. Pang. B., Yau W., Lee P. & Naik M. A New CVD Process for Damascene Low-k Applications 285–289 (Semiconductor Fabtech, 1999).

  39. Sekhar, N. V. in Nanoindentation in Materials Science (ed. Němeček, J.) Ch. 10 (InTech, 2012).

  40. Tyberg, C. et al. in Polymers for Microelectronics and Nanoelectronics Vol. 874, 161–172 (American Chemical Society, 2004).

  41. Im, J., Townsend, P. H., Curphy, J., Karas, C. & Shaffer, E. O. in Metallization of Polymers 2 (ed Sacher, E.) 53–60 (Springer, 2002).

  42. Grill, A. Plasma enhanced chemical vapor deposited SiCOH dielectrics: from low-k to extreme low-k interconnect materials. J. Appl. Phys. 93, 1785–1790 (2003).

    Article  ADS  CAS  Google Scholar 

  43. Brandrup, J., Immergut, E. H. & Grulke, E. A. Polymer Handbook 4th edn (Wiley-Interscience, 2004).

  44. Lee, H. J. et al. Structural characterization of porous low-k thin films prepared by different techniques using X-ray porosimetry. J. Appl. Phys. 95, 2355–2359 (2004).

    Article  ADS  CAS  Google Scholar 

  45. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl. 2, 6 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank UNIST Central Research Facilities (UCRF) and Y. K. Kim for the cross-sectional high-resolution TEM images. This work was supported by Samsung Electronics (Samsung-SKKU Graphene/2D Center), the research fund (NRF-2017R1E1A1A01074493 and NRF-2019R1A4A1027934), the IBS (IBS-R-019-D1) and a grant (CASE-2013M3A6A5073173) from the Centre for Advanced Soft Electronics under the Global Frontier Research Program via the National Research Foundation of the Ministry of Science and ICT, South Korea. The NEXAFS experiments performed at the 4D, 6D and 10A2 beamlines of the Pohang Accelerator Laboratory (PAL) were supported in part by the Ministry of Science and ICT, POSTECH and UNIST. M.C. acknowledges support from Leverhulme Trust Research Grant RPG-2019-227. S.R., A.A. and M.C. acknowledge the European Union Horizon 2020 research and innovation programme for grant number 785219 and 881603 (Graphene Flagship). A.A. is supported by Project MECHANIC (PCI2018-093120) funded by Ministerio de Ciencia, Innovación y Universidades. The Catalan Institute of Nanoscience and Nanotechnology is funded by the CERCA Programme/Generalitat de Catalunya and supported by the Severo Ochoa Centres of Excellence programme, funded by the Spanish Research Agency (grant number SEV-2017-0706).

Author information

Authors and Affiliations

Authors

Contributions

H.S.S. and H.-J.S. planned and supervised this project. S.H., K.Y.M., G.K, S.I.Y. and H.S.S. performed the growth and characterization experiments. C.-S.L., M.-H.L. and H.-J.S. fabricated the electrical devices. S.W.K. performed and analysed the ellipsometry measurements. H.-I.L. obtained and analysed the RBS data. Y.L. and Z.L. obtained the TEM data. K.I., K.-J.K. and T.J.S. measured the NEXAFS data. E.-c.J., H.J. and J.-Y.K measured the mechanical properties and adhesion. A.A. and S.R. performed the molecular dynamics simulations. M.C. suggested key experiments and measurements and helped with the interpretation of results. M.C. wrote and edited the manuscript with H.S.S. All authors contributed to the writing of the manuscript and agreed on the contents of the paper.

Corresponding authors

Correspondence to Manish Chhowalla, Hyeon-Jin Shin or Hyeon Suk Shin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Francesca Iacopi, Lain-Jong Li and Junhao Lin for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Growth of a-BN on Cu and SiO2 substrates.

ac, Raman (a), XPS (b) and EDS mapping (c) images of a-BN grown on copper foils (plasma power 30 W, growth temperature 300 °C) and transferred onto SiO2 substrates for Raman measurements. The typical Raman spectrum of the a-BN film is similar to that of bare amorphous SiO2. df, Raman (d), XPS (e) and EDS mapping (f) images of an a-BN film grown directly on SiO2 (plasma power 10 W, growth temperature 200 °C). The spectra are largely the same for all substrates. The dielectric properties obtained from spectroscopic ellipsometry reveal no influence of the substrate. Scale bar, 40 nm.

Extended Data Fig. 2 Analysis of the reduced radial distribution function obtained from the electron diffraction data and cross-sectional chemical mapping of the a-BN film.

a, Azimuthally averaged experimental electron diffraction intensity of a-BN. b, Reduced radial distribution function, G(r), of a-BN obtained from the electron diffraction data. The peak position r = 1.44 Å corresponds to the nearest-neighbour distance of B–N. The G(r) curve was calculated using eRDF Analyser (an open-source interactive GUI for electron reduced density function analysis). c, High-angle annular dark-field (HAADF) scanning TEM image (left) overlaid with EDS maps of carbon (red), nitrogen (green) and silicon (blue). An image with overlaid EDS maps for all elements is shown on the right. Scale bars, 20 nm.

Extended Data Fig. 3 Molecular dynamics simulation.

a, b, Side view (a) and top view (b) of a-BN grown on Si substrates at 673 K, calculated using molecular dynamics simulations. Different atomic species are shown in different colours: yellow (Si), blue (N) and pink (B). c, Mass density profile along the transverse direction (z), obtained from the results shown in a and b. Coloured solid lines denote the densities of different chemical species. The simulated density of a-BN is consistent with the experimental result. The black dashed line corresponds to the measured BN mass density.

Extended Data Fig. 4 FTIR, HR-RBS, HR-ERDA and NEXAFS analyses of a-BN films.

a, FTIR spectra of a-BN, showing the absence of B–H and N–H bonds. Abs, absorption. b, c, HR-RBS (b) and HR-ERDA (c) spectra of an a-BN film in the energy range 240–400 keV and 52–68 keV, respectively. d, Elemental composition calculated using the HR-RBS and HR-ERDA spectra. e, PEY-NEXAFS spectra for the N K edge of a-BN, measured at incident angles of 30°, 55° and 70°, demonstrating a small angular dependence of the N K edge.

Extended Data Fig. 5 Comparison of a-BN and nc-BN films.

a, Structure of nc-BN film deposited at 700 °C. b, Low-magnification TEM images of nc-BN. The selected-area electron diffraction pattern in the inset shows a typical polycrystalline ring pattern. c, High-resolution TEM images of nc-BN, clearly showing small crystallites of hBN. The cross-sectional TEM image in the inset indicates a layered structure. d, Magnification of the area indicated by the blue box in c. e, Fast Fourier transform image showing the hexagonal superstructure of multilayer hBN. f, g, XPS profiles of the B 1s (f) and N 1s (g) peaks observed in 3-nm-thick a-BN and nc-BN samples. h, Raman spectra of a-BN, nc-BN and epitaxially grown trilayer hBN (tri-hBN; 1.2 nm thick; used as reference) samples transferred onto SiO2/Si substrates. i, FTIR spectra for a-BN (red) and nc-BN (blue) measured using s-polarized radiation at an incident angle of 60°. The E1u longitudinal optical (LO) mode is related to the amorphous phase of BN; see ref. 19.

Extended Data Fig. 6 Nanoindentation and nanoscratch test results.

a, b, Nanoindentation results showing that the deposition of a-BN on Si substrates leads to an enhancement in surface hardness and stiffness. The average and standard deviation values for the hardness in b are 11.31 ± 0.13 for a-BN on Si and 10.93 ± 0.09 for bare Si. c, Nanoscratch test results revealing that a scratch depth of 40 nm (more than 10 times the film thickness) is required to delaminate the film, which suggests excellent adhesion with the Si substrate. Scanning electron microscopy observations show that the scratch regions are clean, with no evidence of delamination of a-BN for a scratch depth smaller than 40 nm. The datasets 1–4 in the bottom panel represent scratch test data obtained at four different positions under the same experimental conditions.

Extended Data Fig. 7 Cross-sectional TEM images of Co(80 nm)/TiN(3 nm)/Si films after thermal diffusion tests at different temperatures.

ac, Images obtained after thermal diffusion at 600 °C for 60 min (a), 600 °C for 30 min (b) and 400 °C for 30 min (c). d, Magnified cross-sectional TEM image (right) and EDS line profile (left) of the film shown in a.

Extended Data Fig. 8 Large-area cross-sectional TEM images, EDS line profiles and maps of a Co/a-BN(3 nm)/Si film after thermal diffusion at 600 °C for 60 min.

a, Large-area cross-sectional TEM image and EDS line profiles. b, EDS maps of Co and Si showing that Co is isolated above the a-BN film and does not diffuse into the Si. c, EDS maps of a magnified area in b.

Extended Data Fig. 9

Breakdown bias at different temperatures for a-BN and TiN barriers.

Extended Data Table 1 Comparison of dielectric constants of various dielectric materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Lee, CS., Lee, MH. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 582, 511–514 (2020). https://doi.org/10.1038/s41586-020-2375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-020-2375-9

This article is cited by

Comments

Commenting on this article is now closed.

  1. The reported dielectric properties are probably a measurement artifact coming from the resistivity of the electrodes (silicon has relatively high resistivity). This will cause the decrease of measured capacitance at high frequencies and increase in losses (not reported here). One example of such response are capacitors with transparent electrodes, see for example Journal of Applied Physics 122, 214102 (2017). This is also the reason why the measured dielectric constant at 1 MHz is smaller than the one obtained from ellipsometry, which is physically impossible.

  2. There are wrong and inconsistent statements in this paper:
    1)When authors are comparing the low frequencies dielectric constants with refractive indices, they missed the fact that h-BN is optically anisotropic. Parallel to C-axis (where they actually measured the dielectric constant), the refractive index in visible frequency is not 2.16 but much lower (they measured the refractive index in perpendicular to C-axis!). Several studies consistently reported a refractive index of 1.6±0.1 for this polarization [See: Nature 557, 530–533 (2018); Nature Communications 5, 5221 (2014); J Mater Sci 51, 4660–4669 (2016); Physical Review Materials 2, 024001 (2018)]. Therefore, it is misleading and wrong to claim ‘the κ values for hBN and a-BN from ellipsometry are 4.67 and 1.88, respectively—closely matching those obtained with electrical measurements at 100 kHz.’
    2)Another obvious point which has been missed by authors is relatively large polarization of BN in infrared region. h-BN is known to have strong infrared active lattice modes contributing to dielectric constant. In parallel to C-axis this polarization adds up to the electronic polarization which leads to a value about 3.3±0.2 [Physical Review 146, 543 (1966); Nature 557, 530–533 (2018)]. From Figure 2d of this paper, it is clear that these modes of polarization still exist for amorphous BN and adds up to the electronic polarization! Therefore, the dielectric constant must be larger than 1.37^2=1.88. Refractive indices in Far-infrared region should have been measured if authors planned to compare them to their measurements.
    3)Such a massive reduction in dielectric constant and refractive index should appear in form of remarkable increase of optical band gap. Inverse correlation between the refractive index and optical band gap is known for decades [Physical Review Materials 3, 044602 (2019)]. It would have been illuminating if data on optical band gap of a-BN had been reported.

  3. Subject: Potential Fallacies in Dielectric Constant measurement of Plasma deposited BN using n-type Silicon substrate- (https://doi.org/10.1038/s41...

    Dear Authors

    In recent Nature publication: ”Ultralow-dielectric-constant amorphous boron

    nitride’ published June 24, 2020 (https://doi.org/10.1038/s41... by Hong et. al. . The authors reported three-nanometre-thick amorphous boron nitride films with ultralow κ values of 1.78 and 1.16 (close to that of air, κ = 1) at operation frequencies of 100 kilohertz and 1 megahertz, respectively. For Breakdown voltage and dielectric constant measurements, the current density–voltage (J–V) and capacitance–frequency (C–f) characteristics of the films in metal/a-BN/n-Si stacks were measured using the C–f measurements in the frequency range 1kHz–10 MHz with a hold bias of 0.5 V and an a.c. drive of ±30 mV. The measured capacitance values did not change substantially as a function of the applied voltage of 0.5 V. Therefore, the relative dielectric constant was evaluated using the relation κ = Ct/Aε0, where t denotes the a-BN film thickness.

    We would like to bring attention to the Authors that the use of metal/a-BN/n-Si

    stacks for plasma deposited Boron Nitride k measurement may create a p-n
    junction in the a-BN/n-Si interface due to minor B diffusion during the

    initial substrate-plasma interactions with excess boron in plasma boron nitride deposition. The p-n junction will create a fault capacitance reading that may eventually result in the reported extremely and extraordinary low k value (K~1.16-1.78 range). The reported extremely low k value for BN film is difficult to achieve without any film’s porosity. It is also cannot be explained by any currently knowledge of low k BN bonding structures. We suggest that

    the authors should repeat the electrical capacitance k measurement with
    Metal/Insulator/Metal (MIM) structure with precisely BN thickness measured to
    confirm the extraordinarily low k value reported. Extraordinary low k result should requires additional confirmation.

    Our IBM team did a similar evaluation for Plasma deposited BN (a-BN and h-BN) and SiBN at various phases some years ago (Appl. Phys. Lett. 63, 2103 (1993); https://doi.org/10.1063/1.1... and J. Electrochem. Soc., Vol. 141, No. 6, June 1994 by Nguyen et al.). We found the BN MIS measurement vs. capacitance can be misleading if n-type Si substrates are used. This is because the initial substrate-plasma interactions of excess boron during plasma boron nitride deposition, that consequently forms a p-n junction at interfaces.
    This p-n junction causes inaccurate capacitance measurements and hence false dielectric constant calculated values as following: “Characterization of the dielectric constant of PECVD boron nitride (BN) and silicon boron nitride (SiBN) films has been studied using MIS and MIM structures. Using the measurement technique of calculating the dielectric constant value from the capacitance, the average dielectric constant value for the BN and SiBN films deposited under similar conditions can vary as much as 40% (from 2.8 to 4.4). Low dielectric constant values are normally observed on MIS structures where the silicon substrate is n type. Detailed C-V analysis at various test frequencies (100 Hz- 1 MHz) shows that the flatband and the threshold voltages shift for more than

    30 V for much thicker BN film in n-type and p-type substrate wafers, respectively. These C- V characteristics suggest the formation of a p-n junction at the insulator-substrate interface. This interface p-n junction is probably formed by the boron-rich boron nitride deposition during the initial substrate-plasma interactions transient period”.
    I hope our suggestion will bring attention to the authors (and editor ) to reevaluate and reconfirm the extreme extraordinary low k value in above recent paper per our suggestion.

    Best regards
    Son Nguyen

    Son Van Nguyen, Ph.D.
    IBM Semiconductor Technology Research
    AI Hardware Research Center
    257 Fuller Road, suite 31000
    Albany, New York 12203 USA
    E-mail: sonn@us.ibm.com

    PS : This letter/note is posted Per suggestion of Nature correspondent forresponse.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing