Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of chiral sulfinate esters by asymmetric condensation

Abstract

Achiral sulfur functional groups, such as sulfonamide, sulfone, thiol and thioether, are common in drugs and natural products. By contrast, chiral sulfur functional groups are often neglected as pharmacophores1,2,3, although sulfoximine, with its unique physicochemical and pharmacokinetic properties4,5, has been recently incorporated into several clinical candidates. Thus, other sulfur stereogenic centres, such as sulfinate ester, sulfinamide, sulfonimidate ester and sulfonimidamide, have started to attract attention. The diversity and complexity of these sulfur stereogenic centres have the potential to expand the chemical space for drug discovery6,7,8,9,10. However, the installation of these structures enantioselectively into drug molecules is highly challenging. Here we report straightforward access to enantioenriched sulfinate esters via asymmetric condensation of prochiral sulfinates and alcohols using pentanidium as an organocatalyst. We successfully coupled a wide range of sulfinates and bioactive alcohols stereoselectively. The initial sulfinates can be prepared from existing sulfone and sulfonamide drugs, and the resulting sulfinate esters are versatile for transformations to diverse chiral sulfur pharmacophores. Through late-stage diversification11,12 of celecoxib and other drug derivatives, we demonstrate the viability of this unified approach towards sulfur stereogenic centres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diverse chiral sulfur pharmacophores for drug discovery and their synthesis.
Fig. 2: Optimization of reaction conditions.
Fig. 3: Reaction scope.
Fig. 4: Functionalization and diversification of drugs.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Tilby, M. J. & Willis, M. C. How do we address neglected sulfur pharmacophores in drug discovery? Expert Opin. Drug Discov. 16, 1227–1231 (2021).

    Article  PubMed  Google Scholar 

  2. Lücking, U. Neglected sulfur(VI) pharmacophores in drug discovery: exploration of novel chemical space by the interplay of drug design and method development. Org. Chem. Front. 6, 1319–1324 (2019).

    Article  Google Scholar 

  3. Kitamura, S. et al. Sulfur(VI) fluoride exchange (SuFEx)-enabled high-throughput medicinal chemistry. J. Am. Chem. Soc. 142, 10899–10904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mader, P. & Kattner, L. Sulfoximines as rising stars in modern drug discovery? Current status and perspective on an emerging functional group in medicinal chemistry. J. Med. Chem. 63, 14243–14275 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Han, Y. et al. Application of sulfoximines in medicinal chemistry from 2013 to 2020. Eur. J. Med. Chem. 209, 112885 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Koizumi, M., Hiratake, J., Nakatsu, T., Kato, H. & Oda, J. I. A potent transition-state analogue inhibitor of Escherichia coli asparagine synthetase A. J. Am. Chem. Soc. 121, 5799–5800 (1999).

    Article  CAS  Google Scholar 

  7. Altenburg, B. et al. Chiral analogues of PFI-1 as BET inhibitors and their functional role in myeloid malignancies. ACS Med. Chem. Lett. 11, 1928–1934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Foote, K. M. et al. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and rad3 related (ATR) kinase with application as an anticancer agent. J. Med. Chem. 61, 9889–9907 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Lücking, U. et al. The lab oddity prevails: discovery of pan-CDK inhibitor (R)-S-cyclopropyl-S-(4-{[4-{[(1R,2R)-2-hydroxy-1-methylpropyl]oxy}-5-(trifluorome thyl)pyrimidin-2-yl]amino}phenyl)sulfoximide (BAY 1000394) for the treatment of cancer. ChemMedChem 8, 1067–1085 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Bentley, R. Role of sulfur chirality in the chemical processes of biology. Chem. Soc. Rev. 34, 609–624 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Börgel, J. & Ritter, T. Late-stage functionalization. Chem 6, 1877–1887 (2020).

    Article  CAS  Google Scholar 

  12. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    Article  CAS  Google Scholar 

  13. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Galloway, W. R., Isidro-Llobet, A. & Spring, D. R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 1, 80 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  16. Feng, M., Tang, B., Liang, S. H. & Jiang, X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr. Top. Med. Chem. 16, 1200–1216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finn, P., Charlton, M., Edmund, G., Jirgensons, A., & Loza, E. 2-Amino-N-(arylsulfinyl)-acetamide compounds as inhibitors of bacterial aminoacyl-trna synthetase. patent WO2018065611A1 (2018).

  18. Chinthakindi, P. K. et al. Sulfonimidamides in medicinal and agricultural chemistry. Angew. Chem. Int. Ed. 56, 4100–4109 (2017).

    Article  CAS  Google Scholar 

  19. Yu, H., Li, Z. & Bolm, C. Copper-catalyzed transsulfinamidation of sulfinamides as a key step in the preparation of sulfonamides and sulfonimidamides. Angew. Chem. Int. Edn 57, 15602–15605 (2018).

    Article  CAS  Google Scholar 

  20. Chatterjee, S., Makai, S. & Morandi, B. Hydroxylamine-derived reagent as a dual oxidant and amino group donor for the iron-catalyzed preparation of unprotected sulfinamides from thiols. Angew. Chem. Int. Edn 60, 758–765 (2021).

    Article  CAS  Google Scholar 

  21. Davies, T. Q. et al. Harnessing sulfinyl nitrenes: a unified one-pot synthesis of sulfoximines and sulfonimidamides. J. Am. Chem. Soc. 142, 15445–15453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wojaczynska, E. & Wojaczynski, J. Modern stereoselective synthesis of chiral sulfinyl compounds. Chem. Rev. 120, 4578–4611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aota, Y., Kano, T. & Maruoka, K. Asymmetric synthesis of chiral sulfoximines via the S-arylation of sulfinamides. J. Am. Chem. Soc. 141, 19263–19268 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Mendonca Matos, P., Lewis, W., Argent, S. P., Moore, J. C. & Stockman, R. A. General method for the asymmetric synthesis of N–H sulfoximines via C–S bond formation. Org. Lett. 22, 2776–2780 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Greed, S. et al. Synthesis of highly enantioenriched sulfonimidoyl fluorides and sulfonimidamides by stereospecific sulfur–fluorine exchange (SuFEx) reaction. Chem. Eur. J. 26, 12533–12538 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Dong, S. et al. Organocatalytic kinetic resolution of sulfoximines. J. Am. Chem. Soc. 138, 2166–2169 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Brauns, M. & Cramer, N. Efficient kinetic resolution of sulfur-stereogenic sulfoximines by exploiting CpXRhIII-catalyzed C–H functionalization. Angew. Chem. Int. Edn 58, 8902–8906 (2019).

    Article  CAS  Google Scholar 

  28. Shen, B., Wan, B. & Li, X. Enantiodivergent desymmetrization in the rhodium(III)-catalyzed annulation of sulfoximines with diazo compounds. Angew. Chem. Int. Edn 57, 15534–15538 (2018).

    Article  CAS  Google Scholar 

  29. Sun, Y. & Cramer, N. Enantioselective synthesis of chiral-at-sulfur 1,2-benzothiazines by CpX RhIII-catalyzed C–H functionalization of sulfoximines. Angew. Chem. Int. Edn 57, 15539–15543 (2018).

    Article  CAS  Google Scholar 

  30. Zhou, T. et al. Efficient synthesis of sulfur-stereogenic sulfoximines via Ru(II)-catalyzed enantioselective C–H functionalization enabled by chiral carboxylic acid. J. Am. Chem. Soc. 143, 6810–6816 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Tang, Y. & Miller, S. J. Catalytic enantioselective synthesis of pyridyl sulfoximines. J. Am. Chem. Soc. 143, 9230–9235 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Tilby, M. J., Dewez, D. F., Hall, A., Martinez Lamenca, C. & Willis, M. C. Exploiting configurational lability in aza-sulfur compounds for the organocatalytic enantioselective synthesis of sulfonimidamides. Angew. Chem. Int. Edn 60, 25680–25687 (2021).

    Article  CAS  Google Scholar 

  33. Kagan, H. B. & Rebiere, F. Some routes to chiral sulfoxides with very high enantiomeric excesses. Synlett 1990, 643–650 (1990).

    Article  Google Scholar 

  34. Fernandez, I., Khiar, N., Llera, J. M. & Alcudia, F. Asymmetric synthesis of alkane- and arenesulfinates of diacetone-D-glucose (DAG): an improved and general route to both enantiomerically pure sulfoxides. J. Org. Chem. 57, 6789–6796 (1992).

    Article  CAS  Google Scholar 

  35. Lu, B. Z. et al. New general sulfinylating process for asymmetric synthesis of enantiopure sulfinates and sulfoxides. Org. Lett. 7, 1465–1468 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Evans, J. W., Fierman, M. B., Miller, S. J. & Ellman, J. A. Catalytic enantioselective synthesis of sulfinate esters through the dynamic resolution of tert-butanesulfinyl chloride. J. Am. Chem. Soc. 126, 8134–8135 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Shibata, N. et al. Cinchona alkaloid/sulfinyl chloride combinations: enantioselective sulfinylating agents of alcohols. J. Am. Chem. Soc. 127, 1374–1375 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Peltier, H. M., Evans, J. W. & Ellman, J. A. Catalytic enantioselective sulfinyl transfer using cinchona alkaloid catalysts. Org. Lett. 7, 1733–1736 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Zong, L. & Tan, C. H. Phase-transfer and ion-pairing catalysis of pentanidiums and bisguanidiniums. Acc. Chem. Res. 50, 842–856 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science 363, 400–404 (2019).

    Article  CAS  ADS  PubMed  Google Scholar 

  41. Fujiwara, Y. et al. Practical and innate carbon-hydrogen functionalization of heterocycles. Nature 492, 95–99 (2012).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  42. Smith, J. M., Dixon, J. A., deGruyter, J. N. & Baran, P. S. Alkyl sulfinates: radical precursors enabling drug discovery. J. Med. Chem. 62, 2256–2264 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Goh, J., Maraswami, M. & Loh, T. P. Synthesis of vinylic sulfones in aqueous media. Org. Lett. 23, 1060–1065 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Fier, P. S. & Maloney, K. M. NHC-catalyzed deamination of primary sulfonamides: a platform for late-stage functionalization. J. Am. Chem. Soc. 141, 1441–1445 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Gauthier, D. R. Jr & Yoshikawa, N. A general, one-pot method for the synthesis of sulfinic acids from methyl sulfones. Org. Lett. 18, 5994–5997 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. DiRocco, D. A. et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science 356, 426–430 (2017).

    Article  CAS  ADS  PubMed  Google Scholar 

  47. Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Slusarczyk, M. et al. Application of ProTide technology to gemcitabine: a successful approach to overcome the key cancer resistance mechanisms leads to a new agent (NUC-1031) in clinical development. J. Med. Chem. 57, 1531–1542 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Zenzola, M., Doran, R., Degennaro, L., Luisi, R. & Bull, J. A. Transfer of electrophilic NH using convenient sources of ammonia: direct synthesis of NH sulfoximines from sulfoxides. Angew. Chem. Int. Edn 55, 7203–7207 (2016).

    Article  CAS  Google Scholar 

  50. Izzo, F., Schafer, M., Stockman, R. & Lücking, U. A new, practical one-pot synthesis of unprotected sulfonimidamides by transfer of electrophilic NH to sulfinamides. Chem. Eur. J. 23, 15189–15193 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Nanyang Technological University for Tier 1 grant (RG2/20). This research was supported by the Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (MOE2019-T2-1-091). This work was supported by the A*STAR Computational Resource Centre through the use of its high-performance computing facilities. The computational work for this article was partially performed on resources of the National Supercomputing Centre, Singapore (https://www.nscc.sg).

Author information

Authors and Affiliations

Authors

Contributions

C.-H.T. and X.Z. conceived the research; X.Z. is responsible for experimental design and data analysis; X.Z., E.C.X.A., and Z.Y. performed the experiments and compounds testing; C.W.K. contributed to mechanistic discussion; C.-H.T. and X.Z. prepared the manuscript with input from all authors.

Corresponding authors

Correspondence to Xin Zhang or Choon-Hong Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Edward Anderson, Danielle Schultz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–11 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ang, E.C.X., Yang, Z. et al. Synthesis of chiral sulfinate esters by asymmetric condensation. Nature 604, 298–303 (2022). https://doi.org/10.1038/s41586-022-04524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-022-04524-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing