Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of edge states derived from topological helix chains

Abstract

Introducing the concept of topology has revolutionized materials classification, leading to the discovery of topological insulators and Dirac–Weyl semimetals1,2,3. One of the most fundamental theories underpinning topological materials is the Su–Schrieffer–Heeger (SSH) model4,5, which was developed in 1979—decades before the recognition of topological insulators—to describe conducting polymers. Distinct from the vast majority of known topological insulators with two and three dimensions1,2,3, the SSH model predicts a one-dimensional analogue of topological insulators, which hosts topological bound states at the endpoints of a chain4,5,6,7,8. To establish this unique and pivotal state, it is crucial to identify the low-energy excitations stemming from bound states, but this has remained unknown in solids because of the absence of suitable platforms. Here we report unusual electronic states that support the emergent bound states in elemental tellurium, the single helix of which was recently proposed to realize an extended version of the SSH chain9,10. Using spin- and angle-resolved photoemission spectroscopy with a micro-focused beam, we have shown spin-polarized in-gap states confined to the edges of the (0001) surface. Our density functional theory calculations indicate that these states are attributed to the interacting bound states originating from the one-dimensional array of SSH tellurium chains. Helices in solids offer a promising experimental platform for investigating exotic properties associated with the SSH chain and exploring topological phases through dimensionality control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topologically non-trivial helix chain and related exotic electronic states.
Fig. 2: Observation of an emergent in-gap state at Te(0001).
Fig. 3: One dimensionality and spin polarization of the in-gap states.
Fig. 4: Summary of ARPES results and theoretical model for the edge-state formation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the main text and the extended data. Any other relevant data are available from the corresponding author upon request.

References

  1. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  CAS  Google Scholar 

  2. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  CAS  Google Scholar 

  3. Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    ADS  Google Scholar 

  4. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    ADS  CAS  Google Scholar 

  5. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Soliton excitations in polyacetylene. Phys. Rev. B 22, 2099–2111 (1980).

    ADS  CAS  Google Scholar 

  6. Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W.-P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).

    ADS  CAS  Google Scholar 

  7. Asbóth, J. K., Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions. Lecture Notes in Physics, Vol. 919 (Springer, 2016).

  8. Guo, H. A brief review on one-dimensional topological insulators and superconductors. Sci. Chn. Phys. Mech. Astron. 59, 637401 (2016).

    Google Scholar 

  9. Kłosiński, A. et al. Topology of chalcogen chains. Phys. Rev. B 107, 125123 (2023).

    ADS  Google Scholar 

  10. Zhang, R. et al. Large shift current, π Zak phase, and the unconventional nature of Se and Te. Phys. Rev. Research 5, 023142 (2023).

    ADS  CAS  Google Scholar 

  11. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    ADS  CAS  PubMed  Google Scholar 

  12. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    ADS  PubMed  Google Scholar 

  13. Shi, B. et al. Phase transition and topological transistors based on monolayer Na3Bi nanoribbons. Nanoscale 13, 15048 (2021).

    CAS  PubMed  Google Scholar 

  14. Wakatsuki, R., Ezawa, M., Tanaka, Y. & Nagaosa, N. Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor. Phys. Rev. B 90, 014505 (2014).

    ADS  CAS  Google Scholar 

  15. Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34, 1633–1635 (2009).

    ADS  CAS  PubMed  Google Scholar 

  16. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795–800 (2013).

    CAS  Google Scholar 

  17. Cheon, S., Kim, T.-H., Lee, S.-H. & Yeom, H. W. Chiral solitons in a coupled double Peierls chain. Science 350, 182–185 (2015).

    ADS  CAS  PubMed  Google Scholar 

  18. Drost, R., Teemu, O., Ari, H. & Peter, L. Topological states in engineered atomic lattices. Nat. Phys. 13, 668–671 (2017).

    CAS  Google Scholar 

  19. Li, P., Sau, J. D. & Appelbaum, I. Robust zero-energy bound states in a helical lattice. Phys. Rev. B 96, 115446 (2017).

    ADS  Google Scholar 

  20. Asnin, V. M. et al. “Circular” photogalvanic effect in optically active crystals. Solid State Commun. 30, 565–570 (1979).

    ADS  CAS  Google Scholar 

  21. Vorob’ev, E. L. et al. Optical activity in tellurium induced by a current. JETP Lett. 29, 441–445 (1979).

    ADS  Google Scholar 

  22. Shalygin, V. A., Sofronov, A. N., Vorob’ev, L. E. & Farbshtein, I. I. Current-induced spin polarization of holes in tellurium. Phys. Solid State 54, 2362–2373 (2012).

    ADS  CAS  Google Scholar 

  23. Yoda, T., Yokoyama, T. & Murakami, S. Current-induced Orbital and Spin Magnetizations in Crystals with Helical Structure. Sci Rep. 5, 12024 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  24. Furukawa, T., Shimokawa, Y., Kobayashi, K. & Itou, T. Observation of current-induced bulk magnetization in elemental tellurium. Nat. Commun. 8, 954 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  25. Tsirkin, S. S., Puente, P. A. & Souza, I. Gyrotropic effects in trigonal tellurium studied from first principles. Phys. Rev. B 97, 035158 (2018).

    ADS  CAS  Google Scholar 

  26. Hirayama, M., Okugawa, R., Ishibashi, S., Murakami, S. & Miyake, T. Weyl node and spin texture in trigonal tellurium and selenium. Phys. Rev. Lett. 114, 206401 (2015).

    ADS  PubMed  Google Scholar 

  27. Nakayama, K. et al. Band splitting and Weyl nodes in trigonal tellurium studied by angle-resolved photoemission spectroscopy and density functional theory. Phys. Rev. B 95, 125204 (2017).

    ADS  Google Scholar 

  28. Sakano, M. et al. Radial spin texture in elemental tellurium with chiral crystal structure. Phys. Rev. Lett. 124, 136404 (2020).

    ADS  CAS  PubMed  Google Scholar 

  29. Gatti, G. et al. Radial spin texture of the Weyl fermions in chiral tellurium. Phys. Rev. Lett. 125, 216402 (2020).

    ADS  CAS  PubMed  Google Scholar 

  30. Qiu, G. et al. Quantum transport and band structure evolution under high magnetic field in few-layer tellurene. Nano Lett. 18, 5760–5767 (2018).

    ADS  CAS  PubMed  Google Scholar 

  31. Qiu, G. et al. Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene. Nat. Nanotechnol. 15, 585–591 (2020).

    ADS  CAS  PubMed  Google Scholar 

  32. Zhang, N. et al. Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium. Proc. Natl Acad. Sci. USA 117, 11337–11343 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ideue, T. et al. Pressure-induced topological phase transition in noncentrosymmetric elemental tellurium. Proc. Natl Acad. Sci. USA 116, 25530–25534 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, J. et al. Topological phase change transistors based on tellurium Weyl semiconductor. Sci. Adv. 8, eabn3837 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lau, A., van den Brink, J. & Ortix, C. Topological mirror insulators in one dimension. Phys. Rev. B 94, 165164 (2016).

    ADS  Google Scholar 

  36. Li, P. & Appelbaum, I. Intrinsic two-dimensional states on the pristine surface of tellurium. Phys. Rev. B 97, 201402 (2018).

    ADS  CAS  Google Scholar 

  37. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989).

    ADS  CAS  PubMed  Google Scholar 

  38. Takayama, A., Sato, T., Souma, S., Oguchi, T. & Takahashi, T. One-dimensional edge states with giant spin splitting in a bismuth thin film. Phys. Rev. Lett. 114, 066402 (2015).

    ADS  CAS  PubMed  Google Scholar 

  39. Andersson, S., Andersson, D. & Marklund, I. Clean Te surfaces studied by LEED. Surf. Sci. 12, 284–298 (1968).

    ADS  CAS  Google Scholar 

  40. Qin, J.-K. et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat. Electron. 3, 141–147 (2020).

    CAS  Google Scholar 

  41. Jin, K.-H. & Liu, F. 1D topological phases in transition-metal monochalcogenide nanowires. Nanoscale 12, 14661–14667 (2020).

    CAS  PubMed  Google Scholar 

  42. Liu, S., Yin, H., Singh, D. J. & Liu, P.-F. Ta4SiTe4: a possible one-dimensional topological insulator. Phys. Rev. B 105, 195419 (2022).

    ADS  CAS  Google Scholar 

  43. Guo, H., Lin, Y. & Shen, S.-Q. Dimensional evolution between one- and two-dimensional topological phases. Phys. Rev. B 90, 085413 (2014).

    ADS  Google Scholar 

  44. Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    ADS  CAS  PubMed  Google Scholar 

  45. Tokuyama, A., Moriya, A. & Nakayama, K. Development of Ar gas cluster ion beam system for surface preparation in angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 94, 023904 (2023).

    ADS  CAS  PubMed  Google Scholar 

  46. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    ADS  CAS  Google Scholar 

  47. El Azab, M., McLaughlin, C. R. & Champness, C. H. Preparation and characterization of tellurium surfaces. J. Cryst. Growth 28, 1–7 (1975).

    ADS  CAS  Google Scholar 

  48. Kitamura, M. et al. Development of a versatile micro-focused angle-resolved photoemission spectroscopy system with Kirkpatrick–Baez mirror optics. Rev. Sci. Instrum. 93, 033906 (2022).

    ADS  CAS  PubMed  Google Scholar 

  49. Souma, S., Takayama, A., Sugawara, K., Sato, T. & Takahashi, T. Ultrahigh-resolution spin-resolved photoemission spectrometer with a mini Mott detector. Rev. Sci. Instrum. 81, 095101 (2010).

    ADS  CAS  PubMed  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  CAS  PubMed  Google Scholar 

  52. Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: an open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).

    ADS  CAS  Google Scholar 

  53. Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    ADS  CAS  Google Scholar 

  54. Aihara, Y., Hirayama, M. & Murakami, S. Anomalous dielectric response in insulators with the π Zak phase. Phys. Rev. Res. 2, 033224 (2020).

    CAS  Google Scholar 

  55. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654(1993).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JST-PRESTO (no. JPMJPR18L7), JST-CREST (no. JPMJCR18T1), Grant-in-Aid for Scientific Research (JSPS KAKENHI grant no. JP21H04435) and KEK-PF (proposal no. 2021S2-001). T.K. acknowledges support from GP-Spin at Tohoku University, JSPS (no. 23KJ0099) and JST-SPRING (no. JPMJSP2114).

Author information

Authors and Affiliations

Authors

Contributions

The research was conceived by K.N. and proceeded by discussion among K.N., A.T. and T.S.; A.T. and K. Segawa carried out the growth of single crystals; K.N. and A.T. performed the sample surface preparation; K.N., A.T., A.M., T.K., K. Sugawara, S.S., M.K., K.H., H.K., T.T. and T.S. performed the ARPES measurements; K.Y. and T.O. carried out the band-structure calculations; K.N. wrote the paper with input from all the authors. All the authors discussed the results and commented on the paper.

Corresponding author

Correspondence to K. Nakayama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Madhab Neupane and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Normal-emission ARPES data and estimation of inner potential.

a, Bulk and surface Brillouin zone (BZ) (dark blue and orange, respectively) for Te(0001). b, ARPES spectra measured in the normal-emission set up with varying photon energy () from 46 eV to 100 eV. Blue dotted curve is a guide for the eyes to trace the band dispersion as a function of . c, ARPES intensity as a function of kz and binding energy, generated from the data in b by using the inner potential of 10.5 eV. Red curves indicate the bulk bands along the ΓA line obtained from the first-principles band calculations. d-j, Plots of peak position of the energy band traced by the blue dashed line in b, as a function of kz calculated with V0 = 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, and 12.0 eV, respectively. Red curves are the results of numerical fittings with a cosine curve. Blue arrows highlight a finite phase shift δ. k, Plot of δ as a function of V0.

Extended Data Fig. 2 Band structure at naturally occurring edge on the surface.

a, Optical microscope image of Te(0001) surface. b, Plot of ARPES intensity at EF measured at the edge of naturally occurring terraces (indicated by a red circle in a) with 86-eV photons. The ARPES intensity of the in-gap states is marked by an orange arrow. c, Band dispersion measured along the yellow dashed line in b. Light blue curves are the calculated bulk band structure at kz = π.

Extended Data Fig. 3 Photon-energy dependent study of the in-gap states.

a-e, ARPES intensity plots measured at T = 30 K with  = 76, 86, 96, 106, and 116 eV, respectively, along the \(\overline{{\rm{K}}\Gamma {\rm{KM}}}\) cut (same as the yellow dashed line in Fig. 2e). The in-gap states are marked by orange arrows.

Extended Data Fig. 4 Observation of in-gap states at room temperature.

a, b, ARPES intensity plots at EF measured at room temperature on a large terrace and at the crystal edge of Te(0001) surface, respectively, using 86-eV photons. c, Band dispersion measured along the yellow dashed line in b. Light blue curves are the calculated bulk band structure at kz = π. The ARPES intensity originating from the in-gap states is marked by orange arrow in b and c.

Extended Data Fig. 5 Orbital character of the in-gap states.

a, Orbital-resolved band structure. Red circles in a-c represent the contributions from the px, py, and pz orbitals, respectively, of Te atoms at the end of open Te chains (orange circles in d). The size of circle indicates the magnitude of contribution. d, Model crystal structure constructed to reproduce the band structure of the edge states, reproduced from Fig. 4f.

Extended Data Fig. 6 Site-selective dimerization.

a, b, Side and top views, respectively, of an artificial lattice in which the central Te helix is one-atom longer than others. The endpoints of the central and surrounding helices are indicated by magenta and green spheres, respectively. c, Same as b, but after site-selective dimerization of the helices indexed as A and L. d, e, Magnified view of the central Te helix of b and c, respectively. The definition of Te bond angle θ1 and θ2 is displayed.

Extended Data Fig. 7 Surface tilting effects.

a, b, Side and top views, respectively, of an artificial lattice to illustrate an example of tilted Te(0001) surfaces. The endpoint of each helix is shown by either orange, green, or magenta sphere. c, Reconstructed structure of b, obtained by taking into account the site-selective dimer formation. 1D arrays of open Te chains are highlighted by dashed orange rectangle.

Extended Data Fig. 8 AFM image of Te(0001) surface.

3D view of edges on the Te(0001) surface separated by a surface scratch, visualized by AFM measurements.

Extended Data Fig. 9 Calculated band structure of fully dimerized chains.

a, [0001] projection of the crystal structure which consists of full dimerization of Te chains. The unit cell is indicated by black line. b, Calculated band dispersions for the model shown in a.

Extended Data Fig. 10 Calculated band structure for a slanted surface with full dimerization.

a, b, Top and side views, respectively, of a fully dimerized \((01\bar{1}2)\) surface. c, Band dispersions calculated by assuming the slab displayed in a and b.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, K., Tokuyama, A., Yamauchi, K. et al. Observation of edge states derived from topological helix chains. Nature 631, 54–59 (2024). https://doi.org/10.1038/s41586-024-07484-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07484-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing