Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-dimensional perovskitoids enhance stability in perovskite solar cells

Subjects

Abstract

Two-dimensional (2D) and three-dimensional (3D) perovskite heterostructures have played a key role in advancing the performance of perovskite solar cells1,2. However, the migration of cations between 2D and 3D layers results in the disruption of octahedral networks, leading to degradation in performance over time3,4. We hypothesized that perovskitoids, with robust organic–inorganic networks enabled by edge- and face-sharing, could impede ion migration. We explored a set of perovskitoids of varying dimensionality and found that cation migration within perovskitoid–perovskite heterostructures was suppressed compared with the 2D–3D perovskite case. Increasing the dimensionality of perovskitoids improves charge transport when they are interfaced with 3D perovskite surfaces—this is the result of enhanced octahedral connectivity and out-of-plane orientation. The 2D perovskitoid (A6BfP)8Pb7I22 (A6BfP: N-aminohexyl-benz[f]-phthalimide) provides efficient passivation of perovskite surfaces and enables uniform large-area perovskite films. Devices based on perovskitoid–perovskite heterostructures achieve a certified quasi-steady-state power conversion efficiency of 24.6% for centimetre-area perovskite solar cells. We removed the fragile hole transport layers and showed stable operation of the underlying perovskitoid–perovskite heterostructure at 85 °C for 1,250 h for encapsulated large-area devices in ambient air.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and synthesis of perovskitoids.
Fig. 2: Construction of perovskitoid–perovskite heterostructures.
Fig. 3: Characteristics of 2D–3D heterostructures.
Fig. 4: Photovoltaic performance.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding authors upon request. All the crystal structure files generated in this study have been deposited at the Cambridge Crystallographic Data Centre under the accession numbers 2362695, 2362696, 2362697, 2362698, 2362699, 2362700, 2362701 and 2362702.

References

  1. Grancini, G. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Luo, L. et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8, 294–303 (2023).

    ADS  CAS  Google Scholar 

  4. Szabó, G. & Kamat, P. V. How cation migration across a 2D/3D interface dictates perovskite solar cell efficiency. ACS Energy Lett. 9, 193–200 (2024).

  5. Liu, C. et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Perini, C. A. R. et al. Interface reconstruction from Ruddlesden–Popper structures impacts stability in lead halide perovskite solar cells. Adv. Mater. 34, 2204726 (2022).

    Article  CAS  Google Scholar 

  9. Chakkamalayath, J., Hiott, N. & Kamat, P. V. How stable is the 2D/3D interface of metal halide perovskite under light and heat? ACS Energy Lett. 8, 169–171 (2023).

    Article  CAS  Google Scholar 

  10. Liu, C. et al. Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12, 6394 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Li, X. et al. Three-dimensional lead iodide perovskitoid hybrids with high X-ray photoresponse. J. Am. Chem. Soc. 142, 6625–6637 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Gao, L. et al. Improved environmental stability and solar cell efficiency of (MA,FA)PbI3 perovskite using a wide-band-gap 1D thiazolium lead iodide capping layer strategy. ACS Energy Lett. 4, 1763–1769 (2019).

    Article  CAS  Google Scholar 

  15. Semerci, A. et al. A novel multi-functional thiophene-based organic cation as passivation, crystalline orientation, and organic spacer agent for low-dimensional 3D/1D perovskite solar cells. Adv. Opt. Mater. 11, 2300267 (2023).

    Article  CAS  Google Scholar 

  16. Chen, J. et al. Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids. Sci. Adv. 8, eabk2722 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kong, T. et al. Perovskitoid-templated formation of a 1D@3D perovskite structure toward highly efficient and stable perovskite solar cells. Adv. Energy Mater. 11, 2101018 (2021).

    Article  ADS  CAS  Google Scholar 

  18. Wang, H. et al. Water stable haloplumbate modulation for efficient and stable hybrid perovskite photovoltaics. Adv. Energy Mater. 11, 2101082 (2021).

    Article  ADS  CAS  Google Scholar 

  19. Miao, Y. et al. Green solvent enabled scalable processing of perovskite solar cells with high efficiency. Nat. Sustain. 6, 1465–1473 (2023).

    Article  Google Scholar 

  20. Zhang, F. et al. Surface lattice engineering through three-dimensional lead iodide perovskitoid for high-performance perovskite solar cells. Chem 7, 774–785 (2021).

    Article  MathSciNet  CAS  Google Scholar 

  21. Li, X., Hoffman, J. M. & Kanatzidis, M. G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Kamminga, M. E. et al. Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 28, 4554–4562 (2016).

    Article  CAS  Google Scholar 

  24. Ansari, F. et al. Passivation mechanism exploiting surface dipoles affords high-performance perovskite solar cells. J. Am. Chem. Soc. 142, 11428–11433 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, H. et al. Self-crystallized multifunctional 2D perovskite for efficient and stable perovskite solar cells. Adv. Funct. Mater. 30, 1910620 (2020).

    Article  CAS  Google Scholar 

  26. Yang, Y. et al. Universal approach toward high-efficiency two-dimensional perovskite solar cells via a vertical-rotation process. Energy Environ. Sci. 13, 3093–3101 (2020).

    Article  CAS  Google Scholar 

  27. Cho, K. T. et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 11, 952–959 (2018).

    Article  CAS  Google Scholar 

  28. Gao, P., Bin Mohd Yusoff, A. R. & Nazeeruddin, M. K. Dimensionality engineering of hybrid halide perovskite light absorbers. Nat. Commun. 9, 5028 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Hoye, R. L. Z. et al. The role of dimensionality on the optoelectronic properties of oxide and halide perovskites, and their halide derivatives. Adv. Energy Mater. 12, 2100499 (2022).

    Article  CAS  Google Scholar 

  30. Hartono, N. T. P. et al. The effect of structural dimensionality on carrier mobility in lead-halide perovskites. J. Mater. Chem. A 7, 23949–23957 (2019).

    Article  CAS  Google Scholar 

  31. Niu, T. et al. Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells. Nano Lett. 19, 7181–7190 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Zhao, R. et al. Rigid conjugated diamine templates for stable Dion–Jacobson-type two-dimensional perovskites. J. Am. Chem. Soc. 143, 19901–19908 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Peng, J. et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601, 573–578 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Li, J. et al. Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nat. Energy https://doi.org/10.1038/s41560-023-01442-1 (2024).

    Article  Google Scholar 

  35. Zhou, J. et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule https://doi.org/10.1016/j.joule.2024.02.019 (2024).

    Article  Google Scholar 

  36. Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Ding, Y. et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nat. Nanotechnol. 17, 598–605 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Liu, C. et al. Retarding solid-state reactions enable efficient and stable all-inorganic perovskite solar cells and modules. Sci. Adv. 9, eadg0087 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, Y. et al. A thermotropic liquid crystal enables efficient and stable perovskite solar modules. Nat. Energy 9, 316–323 (2024).

    Article  ADS  CAS  Google Scholar 

  40. Zhao, Y. et al. A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nat. Energy 7, 144–152 (2022).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by award 70NANB19H005 from the US Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD). M.G.K. was supported by DOE BES grant no. DE-SC0024422 (fundamental studies on metal halides) and T.J.M. by ONR award no. N00014-20-1-2116. This work made use of the SPID, EPIC, Keck-II and NUFAB facilities of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the International Institute of Nanotechnology, Northwestern University and Northwestern’s MRSEC programs (NSF DMR-1720139, NSF DMR-2308691). A.S.R.B. acknowledges support from King Abdullah University of Science and Technology (KAUST) through the Ibn Rushd Postdoctoral Fellowship Award.

Author information

Authors and Affiliations

Authors

Contributions

C.L., Y.Y. and D.Z. conceived the idea and proposed the experimental design. C.L. and Y.Y. conducted the characterization. C.L., Y.Y. and H.C. performed the device fabrication. I.S. performed single-crystal synthesis, characterization and structure analysis. C.L. and A.S.R.B. wrote the first draft of the manuscript. A.S.R.B. performed the SEM and XRD measurements. J.C. synthesized organic halides. B.V. and S.D.W. conducted the TEM measurements. I.W.G., R.P.R., T.E.W. and J.F. helped with the single-crystal synthesis and structure analysis. C.H. and Y.L. helped with photoluminesence measurements. A.M., Z.W., B.C. and L.X.C. helped revise the manuscript. D.Z., T.J.M., A.F., E.H.S. and M.G.K. supervised the project. All the authors contributed to comments on and revision of the manuscript.

Corresponding authors

Correspondence to Ding Zheng, Tobin J. Marks, Antonio Facchetti, Edward H. Sargent or Mercouri G. Kanatzidis.

Ethics declarations

Competing interests

C.L., Y.Y., I.S., B.C., D.Z., A.F., T.J.M., E.H.S. and M.G.K. are filing a patent based on this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Dongqin Bi, Naeimeh Mozaffari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary text, Figs. 1–29, Tables 1–11 and references 1–21.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yang, Y., Chen, H. et al. Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature 633, 359–364 (2024). https://doi.org/10.1038/s41586-024-07764-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07764-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing